Novel fractional solutions and singular kink effect of non-linear evolution equations via simple equation method
รหัสดีโอไอ
Creator Weerachai Thadee
Title Novel fractional solutions and singular kink effect of non-linear evolution equations via simple equation method
Contributor Sirasrete Phoosree, Athassawat Kammanee, Panupong Vichitkunakorn, Thawesak Kangkasuwan
Publisher Maejo University
Publication Year 2568
Journal Title Maejo International Journal of Science and Technology
Journal Vol. 19
Journal No. 3
Page no. 218
Keyword simple equation method, Bernoulli equation, fractional calculus, Calogero-Degasperis equation, modified Benjamin-Bona-Mahony equation, kink wave solution
Website title Maejo International Journal of Science and Technology
ISSN 1905-7873
Abstract For non-linear evolution equations in mathematical physics, fractional analytical solutions may be found by using the simple equation method with the Bernoulli equation. In this investigation we utilise the simple equation method with the Bernoulli equation for solving non-linear evolution equations and obtain analytical solutions including parameters by way of the space-time fractional Calogero-Degasperis equation and the space-time fractional modified Benjamin-Bona-Mahony equation. The fractional solutions and resulting 2-D, 3-D and contour graphical effects of those equations have the characteristics of the exponential functions and the singular kink wave respectively. The use of the simple equation method, in conjunction with Bernoulli equation, offers a robust mathematical tool for generating a wider range of analytical solutions. Moreover, the estimation of the solutions of both equations by the Runge-Kutta method also results in the same direction.
MaejoInternational Journal of ScienceandTechnology

บรรณานุกรม

EndNote

APA

Chicago

MLA

DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ