Classifying Sentiments About Deposit Product from Social Media Texts Using Machine Learning Techniques
รหัสดีโอไอ
Creator Ploypatcha Chayanonmasakul
Title Classifying Sentiments About Deposit Product from Social Media Texts Using Machine Learning Techniques
Contributor Winai Nadee
Publisher MSMIS Thammasat University
Publication Year 2568
Journal Title Journal of information systems in Business
Journal Vol. 11
Journal No. 2
Page no. 32
Keyword Emotion Classification, Comments, Social Media, Multi-label Classification, BERT Model, Deposit Products
URL Website http://www.jisb.tbs.tu.ac.th
ISSN 3088-1692
Abstract This research aims to develop a model for classifying emotions expressed in user comments related to deposit products. A total of 7,245 comments were collected from the official Facebook pages of commercial banks and Specialized Financial Institutions (SFIs) in Thailand. The comments, originally written in Thai, were translated into English and used to fine-tune the BERT-base-uncased model for multi-label emotion classification across ten categories: Joy, Anger, Sadness, Fear, Trust, Disgust, Surprise, Anticipation, Positive, and Negative After training the model for five epochs, the results demonstrated strong performance, with a Precision of 0.9194, Recall of 0.8526, F1-score of 0.8847, ROC AUC of 0.9614, and Accuracy of 0.6796. These findings suggest that deep learning techniques can be effectively applied to emotional analysis of customer feedback. The model can be integrated into real-world applications such as sentiment dashboards, automated alert systems for negative feedback, or marketing campaigns that respond appropriately to users' emotional tones.
โครงการปริญญาโทระบบสารสนเทศเพื่อการจัดการ

บรรณานุกรม

EndNote

APA

Chicago

MLA

ดิจิตอลไฟล์

Digital File
DOI Smart-Search
สวัสดีค่ะ ยินดีให้บริการสอบถาม และสืบค้นข้อมูลตัวระบุวัตถุดิจิทัล (ดีโอไอ) สำนักการวิจัยแห่งชาติ (วช.) ค่ะ