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ABSTRACT

Short-term load forecasting plays a critical role in power system planning,
operational scheduling, and economic dispatch. However, forecasting accuracy often
deteriorates under irregular calendar conditions, such as weekends, public holidays, and
bridging holidays, when load behavior deviates from typical daily patterns. This study
proposes a two-stage hybrid forecasting framework that integrates calendar-aware
classification with machine learning regression to improve day-ahead load prediction
across diverse operating conditions. The methodology incorporates Random Forest
(RF) classification to segment historical data using Month of Year (MoY), Day of Week
(DoW), holiday, and bridging-holiday indicators, followed by RF regression to predict
the 48 half-hourly loads for Thailand and the 24-hourly loads for France from 2019 to
2021. A linear interpolation mechanism is introduced to address insufficient samples in
rare calendar categories.

Experimental results demonstrate that the proposed RF-RF framework
consistently outperforms baseline methods, including Multiple Linear Regression

(MLR), Support Vector Regression (SVR), Everyday classification, and Rule-based
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classification across both countries. For Thailand, the hybrid model achieves the lowest
average MAPE o0f 4.03% and RMSE of 4.47%, effectively capturing nonlinear seasonal
and calendar-driven variations. For France, characterized by strong winter heating
demand, the proposed method also yields superior performance, with MAPE 3.01%
and RMSE 4.49%, confirming its generalizability across different climatic and load-
profile regimes. The improvements are most pronounced on holidays and bridging
holidays, where traditional models typically suffer from instability due to irregular
consumption patterns.

Overall, this research demonstrates that integrating calendar-based
segmentation with ensemble learning enhances pattern recognition, model robustness,
and prediction accuracy. The proposed framework offers a scalable, interpretable
solution for system operators seeking reliable short-term forecasting across diverse

climatic contexts and complex calendar effects.

Keywords: Classification, Short-Term Load Forecasting, Machine Learning, Random

Forest Classification, Calendar-Based Segmentation
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CHAPTER 1
INTRODUCTION

1.1 Electricity Load Forecasting

Electric load refers to any electrical device or component within an electric
circuit that requires power to perform essential functions, such as lighting, heating, or
operating machinery. It indicates the demand for electrical supply and is typically
measured in watts (W) or kilowatts (kW).

Electricity load forecasting is the process of estimating future electricity
demand based on historical load trends, weather conditions, and socioeconomic factors.
This forecasting plays a crucial role in modern power system management. Accurate
forecasts enable system operators to optimize generation scheduling, reduce operating
costs, prevent blackouts, and enhance the overall efficiency and reliability of the power
system.

Load forecasting can be categorized by prediction time frame into long-term,
medium-term, and short-term forecasts. Among these, Short-Term Load Forecasting
(STLF) focuses on predicting demand over a period ranging from a few hours to several
days. For instance, STLF is vital for real-time operations, load dispatching, and market

decision-making.

1.1.1 Electricity Load in the Power System
In a power system, the electricity load is the total electrical power demand from
consumers, including residential, commercial, industrial, and other applications.

1. Residential loads are electricity requirements from residences, originating from
lighting, appliances, and heating or cooling systems. In residential load, there are
daily cycles where there is greater demand in the morning and then in the evening,
and seasonal fluctuations based on heating/cooling needs

2. Commercial loads include businesses, offices, and malls that have demand for
lighting, HVAC systems, and equipment like elevators. These loads follow business
hours, with higher consumption during the day, but may also extend into evenings

or nights, depending on the type of business.
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3. Industrial loads are typically high and continuous, with peaks during production
changes in factories and plants where they use large machinery, motors, and high-
energy equipment like furnaces. These loads are less influenced by time of day but

depend on operational schedules and machinery use.

1.2 Nature of Load
The nature of the electricity load refers to the pattern of electricity load

consumption over time, which changes due to various factors. Understanding these
patterns is key to predicting load. This is a simplified explanation of the key aspects:

1) Changes Over Time
Daily Variations: Electricity use fluctuates during the day. There are typically higher
demands in the morning and evening, when people use appliances for heating, cooling,
or cooking.
Seasonal Variations: Demand is higher during hot summers (due to air conditioning) or
cold winters (due to heating).
Weekly Variations: Electricity use is usually lower on weekends compared to
weekdays, except in industries that operate every day.
Holidays and Special Days: National holidays, weekends, and bridging holidays (days
between weekends and holidays) can cause unusual shifts in demand, as people's work
and leisure patterns change.

2) Peak and Off-Peak Times
Peak Load: This is the highest demand for electricity during a specific time, usually
during high-use periods (e.g., summer afternoons or winter mornings).
Off-Peak Load: This is the lower demand during periods when fewer people are using
electricity, such as late at night or early in the morning.

3) Load Patterns
Base Load: This is the steady minimum level of electricity needed throughout the day,
usually for essential activities like lighting and refrigeration.
Peak Load: These are the sharp increases in demand during certain times of the day or
special events, which require extra power generation capacity.
Load Factor: This is a measure of how steady or variable electricity use is. A high load

factor means electricity is used consistently, while a low load factor indicates
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significant demand fluctuations.
4) Factors that Influence Load

Weather: Extreme temperatures (hot or cold) can cause spikes in electricity demand
due to heating or cooling needs.

Economic and Social Factors: Changes in population, economic activity, and lifestyle
can also affect electricity demand. Special events, such as festivals or public holidays,
can cause unexpected surges in demand.

Calendar Effects: The electricity demand can change on public holidays, weekends, or

bridging holidays due to altered work and leisure schedules.

1.3 Electricity Load Profile

Load profiles, typically visualized using line graphs or histograms, provide a
comprehensive overview of electricity consumption patterns over a defined period.
Analyzing load profiles is essential for understanding load usage dynamics, identifying
peak demand periods, and assessing load variability. This process involves examining
load profile trends to uncover patterns and variations in electricity consumption,
enabling a deeper understanding of load characteristics and the factors influencing

them.

1.3.1 Relationship between Peak Load and Seasonal Trends

The historical datasets used in this study were obtained from the Electricity
Generating Authority of Thailand (EGAT) and the French Transmission System
Operator (ENTSO-E). The Thailand dataset comprises net load measured at 30-minute
intervals, with 48 periods per day, from 2019 to 2021. In contrast, the French dataset
provides hourly load measurements with 24 periods per day for the same three-year
period. Peak load represents the maximum electricity demand recorded within each
daily cycle and is closely tied to climatic conditions, economic activity, and behavioral
patterns.

Seasonal analysis reveals distinct differences between the two countries.
Thailand, located in a tropical climate zone, exhibits substantial temperature-driven
variability, especially during the hot season when cooling demand intensifies.

Conversely, France, in a temperate climate, experiences peak loads primarily in winter
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due to heating demand, with lower consumption during summer. Exploratory data
analysis (EDA) of both datasets by examining daily load patterns (Monday-Sunday),
seasonal quarters, and yearly behavior (2019-2021), which highlights how climate,
working schedules, and cultural events shape electricity consumption. Thailand
demonstrates pronounced summer-driven peaks, whereas France shows winter-

dominant high loads with apparent seasonal shifts.

1.3.2 Daily Load Profile

Daily load curves for both Thailand and France, as illustrated in Fig. 1.1, show
consistent day-of-week patterns but differ in their intensity and timing. In Thailand,
weekdays exhibit higher, more stable daytime loads, driven by commercial, industrial,
and government operations. These loads typically peak in the late afternoon due to the
combined effects of heat and business-hour consumption. Weekends, particularly
Sundays, show significantly lower overall demand due to reduced economic activity.

In France, weekday load patterns also reflect standard working schedules, with
clear morning and evening peaks associated with commuting, heating, and household
activities. Weekend loads, especially on Sundays, drop noticeably as commercial
activities diminish. However, compared with Thailand, France’s curves display
stronger morning peaks and smoother midday consumption, reflecting climate

differences and different patterns of residential and heating use.
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1.3.3 Seasonal Load Profile

Seasonal load variations reveal contrasting consumption behaviors between
Thailand and France, reflecting their distinct climatic conditions. As shown in Fig. 1.2,
Thailand’s load is highest during the hot season (April-June), when temperatures peak,
and cooling demand intensifies. The rainy season (July-September) sustains high
consumption due to persistent humidity, while cooler months (January-March) show
comparatively lower loads except for short holiday-driven spikes. Electricity demand
gradually declines toward the end of the year, though festive activities in December
create noticeable increases.

In France, the seasonal trend follows an opposite pattern. Electricity demand is
highest during winter (January-March and October-December), driven by heating
requirements. As temperatures rise in late spring and summer, overall consumption
drops significantly due to reduced heating needs and limited reliance on air-
conditioning. Unlike Thailand, France does not experience substantial summer peaks.
These contrasting profiles underscore how climate conditions shape national load
behavior. Thailand peaks in the hottest months due to cooling demand, while France

peaks in the coldest months due to heating demand.
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Figure 1.2 Seasonal Peak Load Variation in (i) Thailand and (ii) France

1.3.4 Yearly Lod Profile

Figure 1.3 illustrates the annual load patterns for Thailand and France,
highlighting the influence of various factors, including climate conditions and socio-
economic disruptions such as the COVID-19 pandemic. In Thailand, the load exhibits

typical peaks in the morning and evening, reflecting the workday routine in 2019.
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However, the implementation of work-from-home measures in 2020 led to a decrease
in morning peaks and an increase in midday loads. By 2021, traditional load patterns
began to re-emerge.

In France, similar pandemic-related effects were observed, but with more
pronounced trends during the winter months. Heating demand emerged as the primary
driver, leading to significant winter peaks in almost all individual years. Notably, there
were considerable reductions in load during the 2020 lockdowns, followed by a
recovery in 2021. Overall, these trends underscore the responsiveness of long-term load

behavior to both climatic seasonality and societal changes.
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Figure 1.3 Annual Peak Load Trend for (i) Thailand and (ii) France (2019-2021)

1.4 Electricity Load Forecasting

Load forecasting is essential for effective planning and development of an
electric power system. Essentially, it involves predicting future electricity load based
on a variety of factors. This process requires analyzing historical data, identifying
patterns, and considering external influences that affect electricity consumption.

The load forecasting can cover a wide range of timeframes, from a few hours to
several years ahead. To achieve accurate predictions, load forecasting involves several
key steps. First, data must be collected and preprocessed. Then, appropriate models are
selected and trained using the gathered information. Finally, the performance of these
models is evaluated using metrics such as the Mean Absolute Percentage Error (MAPE)
and Root Mean Square Error (RMSE), which help determine how accurately the

forecasts align with actual demand.
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1.4.1 Types of Load Forecasting

Load forecasting is the process of predicting the volume and frequency of
electricity demand over extended periods, as well as its distribution. It can be
categorized by time frames, purposes, and methodologies into Short-Term Load
Forecasting (STLF), Medium-Term Load Forecasting (MTLF), and Long-Term Load
Forecasting (LTLF).

STLF predicts electricity demand over short time intervals, typically ranging
from a few hours to a few days. Peak load represents the highest electricity demand
during a specific period. Temperature is a critical feature influencing electricity
demand, especially for cooling or heating. It is an independent variable that captures
the effects of seasonal and daily temperature on load patterns. Hour of Day represents
the specific time of day (e.g., 0:00, 1:00). Weekdays indicate whether a day is a
weekday (e.g., Monday-Friday). It helps to distinguish between typical working days
and other days. Weekend is a feature indicating whether a day is a weekend (e.g.,
Saturday and Sunday). It captures variations in electricity usage patterns during non-
working days. Holiday is a feature that indicates whether a day is a public holiday. It
captures special consumption patterns during holidays. Bridging Holiday indicates
whether a day falls between a holiday and a weekend, or between two holidays. These
variables are commonly used in machine learning models to improve the accuracy of
electricity demand forecasting. By employing predictive models such as machine
learning algorithms or statistical regressions, these variables can be analyzed to
determine their relationships. The anticipated outcome is a reliable forecast of
electricity demand at specific points in time, enabling energy companies to plan their

energy supply effectively.

1.4.2 Load Forecasting Models

Load forecasting models are predictive tools used to estimate electricity load
over a specified time horizon. They can be classified into two main categories:
traditional statistical models and artificial intelligence-based models.

Traditional statistical models, such as Linear Regression, Time Series Models

(ARIMA, SARIMA), and Exponential Smoothing, rely on simpler methods to forecast
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load based on historical data. Linear regression predicts load based on linear
relationships with variables such as temperature or time of day, while time-series
models like ARIMA and SARIMA capture trends and seasonality in the data.
Exponential smoothing assigns exponentially decreasing weights to past observations,
making it helpful in forecasting data with trends or seasonal patterns.

Al-based models, including Machine Learning (ML) Models and Deep
Learning (DL) Models, handle more complex, non-linear patterns in large datasets.
Machine learning models such as Support Vector Regression (SVR), Artificial Neural
Networks (ANN), Random Forest (RF), and Gradient Boosting (XGBoost, CatBoost,
LightGBM) excel in capturing intricate relationships and patterns in data. Deep learning
models such as Recurrent Neural Networks (RNNs), Long Short-Term Memory
(LSTMs), Convolutional Neural Networks (CNNs), and Transformer Models are
particularly effective at modeling sequential data and long-range dependencies,
achieving high accuracy in forecasting. While traditional models are more
straightforward, more interpretable, and work well with smaller datasets, Al-based
models require larger datasets. Still, they are more flexible, offering higher accuracy

and the ability to manage complex, non-linear relationships in the data.

1.5 Research Problem

Despite considerable progress in ML-based short-term load forecasting,
accuracy remains limited by three persistent challenges. First, forecast errors remain
large during holidays and bridging holidays, as these days exhibit irregular,
unpredictable consumption patterns that differ sharply from those on regular weekdays
and weekends. Second, many existing models fail to incorporate calendar-aware
segmentation before training and therefore assume that the relationship between input
features and electricity demand is consistent across all days, even though actual
consumption varies by calendar type. Third, holidays and bridging holidays occur only
a few times per year, resulting in insufficient training samples that prevent models from
effectively learning their unique behavior.

As aresult, models trained on aggregated data often struggle during special days
or high-variability periods, particularly in months like April and December, ultimately

reducing forecasting reliability and increasing operational and generation planning
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costs. This research aims to develop accurate and reliable forecasting models to predict
peak load under varying patterns. This helps with better planning and management of

power systems.

1.6 Research Objectives
This study aims to improve the accuracy of daily peak load forecasting in

Thailand by developing a two-stage hybrid framework. The specific objectives are:

1. To develop five calendar-based classification approaches: Everyday, Rule-based,
CART, and Random Forest (RF) Classification.

2. To apply three forecasting models: Multiple Linear Regression (MLR), Support
Vector Regression (SVR), and Random Forest Regression (RF) within each
classified subset.

3. To propose fallback strategies for handling days with insufficient training samples.

4. To evaluate and compare forecasting performance across models and classification
strategies using MAPE and RMSE.

5. To analyze performance across months and calendar types, highlighting high-error

periods and model robustness.

1.7 Research Contribution

This research makes a practical contribution to both Thailand and France,
showing that even minor improvements in short-term forecasting accuracy can lead to
substantial benefits across the entire system. For instance, in Thailand, where annual
electricity consumption is projected to reach 214,469 GWh in 2024, a mere 1%
improvement in the Mean Absolute Percentage Error (MAPE) could result in about
2,144 GWh per year of better-scheduled energy production. This would lead to a
reduction of 214 GWh per year in reserve dispatch, translating to nearly 900 million
THB in annual savings on operating costs.

Similarly, in France, which consumes over 450,000 GWh annually and
experiences significant load fluctuations mainly due to electric heating, a 1% increase
in forecasting accuracy could yield approximately 4,500 GWh per year in more precise
scheduling. This improvement could save between 315 and 405 million EUR per year

in balancing costs.
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Across both countries, the proposed Random Forest-based classification and
forecasting framework not only enhances accuracy, particularly on challenging
calendar days, but also improves economic dispatch, reduces system stress, and

supports the long-term reliability of the power grid.
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CHAPTER 2
REVIEW OF LITERATURE

2.1 Related Works and Models
2.1.1 Random Forest and Ensemble-Based Machine Learning Models

Alquthami et al. conduct a rigorous comparative analysis of various machine
learning algorithms for STLF using a real-world dataset from a Saudi Arabian
utility(Alquthami et al., 2022). The study evaluates the performance of Support Vector
Machines (SVM), Random Forests (RF), Artificial Neural Networks (ANN), and deep
learning models, including Gated Recurrent Units (GRU) and standard Recurrent
Neural Networks (RNN). Their key finding is that the Random Forest algorithm and
the GRU deep learning model consistently provide the highest accuracy, demonstrating
the lowest Mean Absolute Percentage Error (MAPE) and Root Mean Square Error
(RMSE), thereby validating the robustness of both ensemble and advanced neural
network methods for this task.

Dudek provides a comprehensive and systematic study dedicated entirely to the
Random Forest (RF) algorithm for STLF. Rather than hybridizing, this paper offers a
deep dive into the model's architecture and parameters, including the number of trees,
input variable configurations, and tree depth. The study rigorously analyzes how these
parameters affect forecasting accuracy (Dudek, 2022). It concludes that a well-tuned
RF is a highly effective, robust, and simple-to-implement standalone solution for STLF,
often outperforming more complex models.

Fan et al. explores a novel application of Random Forests to construct a
multivariable response surface for STLF (Fan et al., 2022). Instead of using RF for
direct time-series prediction, they use it to model the complex, non-linear relationships
among multiple input variables (such as temperature, humidity, and time of day) and
the resulting load. This RF-generated surface serves as a sophisticated regression tool
that accurately maps inputs into outputs, providing a new framework for using

ensemble methods in forecasting.
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Gao et al. focus on improving the standard Random Forest algorithm
specifically for ultra-short-term electricity load forecasting (e.g., 15-minute or 30-
minute intervals) (Gao et al., 2023). Their improved random forest model optimizes
hyperparameters and feature selection using a metaheuristic algorithm. The goal is to
create a model that is not only accurate but also computationally efficient, which is a
critical requirement for high-frequency, real-time forecasting.

Khan et al. address the dual challenges of multiple load types (e.g., residential,
commercial, industrial) and limited sampling data. They propose an effective ensemble
learning model that trains distinct machine learning models (e.g., SVM, RF, k-NN,
ANN) and combines their predictions using weighted voting. This ensemble method
proves more stable and accurate than any single model, particularly in sparse-data
environments(Khan et al., 2024).

Magalhaes et al. focus on enhancing the Random Forest model through a dual-
optimization process (Magalhaes et al., 2024). Their paper proposes an STLF model
based on an optimized Random Forest, in which both the model's internal
hyperparameters and the optimal feature subset are tuned simultaneously, often using a
genetic algorithm or similar methodology. This approach systematically explores the
configuration space to identify high-performing combinations of features and
parameters.

Srivastava et al. present a hybrid model that places strong emphasis on feature
selection. The core of their methodology is a hybrid feature selection process that
combines an elitist genetic algorithm with Random Forest(Srivastava, 2020). This two-
step process aggressively removes irrelevant or redundant features, and the resulting
feature set is then fed into an M5P machine learning algorithm, a model tree that uses
linear regression at its leaves for the final day-ahead forecast.

Wai-Keung Yiu et al. introduce a novel ensemble model based on Regularized
Greedy Forest (RGF). RGF is a tree-based ensemble algorithm, similar to Gradient
Boosting or Random Forest, but it grows trees using a greedy optimization process with
built-in regularization to prevent overfitting. The paper proposes an ensemble of RGF
models and shows that this approach achieves higher accuracy and better generalization

than more common ensemble methods, such as XGBoost (Wai-Keung Yiu et al., 2024).
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Sankalpa et al. propose an ensemble-based STLF model that combines
predictions from multiple individual models to produce a more accurate and stable final
forecast (Sankalpa et al., 2022). A key aspect of their work is the emphasis on rigorous
validation and cross-validation, ensuring that the ensemble’s superior performance is

statistically significant and not merely due to overfitting to a particular test set.

2.1.2 Hybrid Deep Learning and Machine Learning Models

Chen et al. argue that forecasting accuracy is heavily dependent on the quality
of input data and features. They propose a combination forecasting method that begins
with advanced feature extraction, using techniques like Kernel Principal Component
Analysis (KPCA) and Singular Spectrum Analysis (SSA) to decompose the original
load data and remove noise (Chen et al., 2024). This cleaned and feature-enhanced data
is then fed into a hybrid deep learning model (e.g., GRU-TCN), demonstrating that
sophisticated data pre-processing can significantly improve the predictive power of
subsequent forecasting models.

Cui et al. present a sophisticated multi-stage hybrid model for STLF. The
methodology first addresses feature engineering by employing a combined XGBoost—
RF feature selection technique to identify and isolate the most influential input
variables. The optimized feature set is then fed into a deep learning architecture
combining a Convolutional Neural Network (CNN) and a Gated Recurrent Unit (GRU)
(Cui et al., 2024). The CNN layer extracts spatial features from the inputs, while the
GRU layer models the temporal dependencies, creating a potent hybrid that captures
complex temporal patterns.

Fang et al. propose a hybrid model for ultra-short-term load prediction that
combines LSTM and Random Forest (LSTM—RF). In this architecture, the LSTM
network is used to model the primary time-series component and capture the main trend
of the load data(Fang et al., 2022). The Random Forest model is then employed to
predict residual error, i.e., the element of the forecast that the LSTM failed to capture.
The final, more accurate prediction is the sum of the LSTM's forecast and the RF's
residual correction.

Fan et al. introduce a complex, multi-stage hybrid model designed for high-

accuracy STLF (Fan et al., 2021). Their model integrates Support Vector Regression
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(SVR), known for its ability to handle non-linear data, with Grey Catastrophe modeling,
which addresses data uncertainty, and Random Forests. In this framework, RF is used
to refine predictions or select features, complementing the SVR model. This three-part
hybridization aims to leverage the strengths of each method to produce a final forecast
that is more robust and accurate than any single model.

Liu et al. propose a highly structured, three-stage hybrid model. First, the
historical load data are clustered using an improved fuzzy C-means algorithm to
automatically group days into distinct patterns (e.g., high-load weekdays, low-load
weekends). Second, Random Forest is used to select features within each cluster.
Finally, a separate Deep Neural Network (DNN) is trained for each data cluster,
yielding a set of specialized models that together produce a more accurate final forecast
(F. Liu et al.,, 2021).

Liu et al. leverage state-of-the-art deep learning architectures by proposing a
model combining time-series clustering with a Transformer network. Similar to other
clustering-based methods, their approach first groups days with identical load profiles.
It then applies to a Transformer model with a self-attention mechanism to generate the
forecast (Y. Liu et al., 2025). This allows the model to capture long-range and complex
temporal dependencies in the data that simpler RNNs or LSTMs might miss.

Veeramsetty et al. propose a hybrid deep learning model that combines Random
Forest (RF) and a Gated Recurrent Unit (GRU). In this architecture, RF handles static,
non-temporal features (e.g., day of week or weather) and performs feature importance
analysis, while the GRU models complex time-series dependencies (Veeramsetty et al.,
2022). The outputs of both models are combined to exploit the feature-handling strength
of RF and the temporal-modeling strength of GRU.

Yamasaki et al. focus on optimized hybrid ensemble learning approaches for
very short-term load forecasting (VSTLF). Their framework combines predictions from
multiple models (e.g., RF, SVR, ANN) and uses a metaheuristic optimization algorithm
to find the optimal weights for blending their forecasts. This automated weighting
process produces a custom-tuned ensemble that outperforms its individual components

for high-frequency (e.g., 5S-minute) predictions (Yamasaki et al., 2024).
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2.1.3 Probabilistic and Risk-Aware Forecasting

Aprillia et al. shift the focus from traditional point forecasting to probabilistic
forecasting, which is critical for risk assessment. They propose an Optimal Quantile
Regression Random Forest (QRRF) model (Aprillia et al., 2021). This method not only
predicts the expected load but also generates a range of outcomes (quantiles), creating
a prediction interval. This approach allows grid operators to quantify the risk and
uncertainty associated with their forecasts, representing a significant improvement over
the deterministic method.

Zhang et al. contribute to probabilistic load forecasting by proposing a hybrid
LSTM-based Twin Support Vector Regression (TWSVR) model (Zhang et al., 2025).
The LSTM component is used to extract and model temporal patterns in the time-series
data, and the processed information is fed into a TWSVR model, an advanced variant
of SVR. The method is particularly effective at generating both point forecasts and
predictive intervals (upper and lower bounds), thereby enabling practical risk

assessment.

2.1.4 Meta-Learning, Clustering, and Transferability

He et al. tackle the challenging problem of household load forecasting, where
training data for a new house are minimal. They propose a transferable Model-Agnostic
Meta-Learning (MAML) approach (He et al., 2022). This technique involves training a
meta-model on a large set of households, which can then be rapidly and accurately
adapted to a new household with only a few data points, thereby overcoming the cold-
start problem that often affects individualized forecasting.

Pinheiro et al. (Pinheiro et al., 2023)present a systematic literature review (SLR)
that maps the STLF research field. Rather than proposing a new model, they synthesize
and organize existing literature. Their systematic approach categorizes studies by
forecasting target, ranging from the entire grid (system level) to individual secondary
substations (neighborhood level). This analysis identifies trends, popular
methodologies (such as RF and LSTM), and remaining research gaps across different
levels of the power grid.

Madhukumar et al. present a case study on STLF for a university campus. This

type of institutional load is unique, as it is driven by factors (e.g., academic calendars,
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class schedules, laboratory usage) that differ significantly from typical residential or
commercial patterns. The paper evaluates various regression models to identify the best
fit for this specific and challenging load profile, highlighting the need for tailored
models rather than a one-size-fits-all approach (Madhukumar et al., 2022).

2.1.5 Calendar, Holiday, and Special-Day Aware Forecasting

Lahouar and Slama(Lahouar & Ben Hadj Slama, 2015), an earlier but
foundational paper in this list, demonstrates the power of combining machine learning
with domain knowledge. They propose a day-ahead forecast model that combines
Random Forest with expert input selection. This two-stage process involves, first, using
human expertise to identify a set of potentially relevant features such as weather and
calendar data, and second, using the built-in feature importance mechanism of Random
Forest to select the optimal feature subset. This yields a simple yet highly effective
model.

Lee provides a focused analysis on forecasting daily peak load in South Korea,
a metric that is often more critical for grid stability than the complete 24-hour profile.
The study evaluates a suite of regression-based methods, ranging from classical
multiple linear regression to more advanced machine learning models such as SVR and
RF(Lee, 2022). It serves as a practical case study for comparing the efficacy of these
approaches in predicting maximum daily load.

Loépez et al. directly address the special-day or holiday problem, which is a key
gap in many STLF studies. Using a Spanish dataset, their work focuses exclusively on
classifying special days (e.g., national holidays, regional holidays, bridging holidays).
They argue that accurately identifying these days before forecasting is a critical
prerequisite (Lopez et al., 2019). Once they are classified, specialized models or
similar-day methods can be applied, but the classification step itself remains a
significant, unsolved challenge for forecasters.

Son et al.(Son et al., 2022), similar to Lopez et al. (Lopez et al., 2019), directly
tackle the holiday forecasting problem. Their proposed method is based on modifying
the load profiles of identical days. When forecasting a holiday, the model first identifies
similar past days (e.g., previous occurrences of the same holiday or other holidays with

similar characteristics) and then modifies these historical profiles, such as scaling them
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up or down based on recent trends, before combining them to create the final day-ahead
forecast.

Thu Tun et al. focus on the critical pre-processing step of data cleaning. They
propose a rule-based classification method and an outlier-replacement approach to
improve data quality before forecasting. This involves creating a set of rules to
automatically identify anomalous data points, such as measurement errors or special
days like holidays (Thu Tun et al., 2023). Once identified, these outliers are replaced
with more representative values, leading to a cleaner dataset that improves the accuracy
of subsequent forecasting models.

Zhou et al. address the dual problem of forecasting both the daily maximum
load and its time of occurrence. Their model first uses the Hausdorff distance, a metric
for measuring the distance between two sets of points, to identify similar days in the
past (Zhou et al., 2021). Once these similar days are found, an Elastic Net regression
model (a linear regression variant that combines L1 and L2 regularization) is trained on

this subset to predict both the peak load and its timing.
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CHAPTER 3
METHODOLOGY

In this research, two historical electricity load datasets are used: Thailand’s load
dataset from the Electricity Generating Authority of Thailand (EGAT) and France’s
national load dataset obtained from ENTSO-E. The Thailand dataset covers five
regions: the Central area, Bangkok, the South, the North, and the North-East. It provides
highly granular insights into consumption behavior, differentiated by day type such as
weekday, weekend, holiday, and bridging holiday, and influenced by Thailand’s
tropical climate, which drives pronounced seasonal peaks during hot months.

In contrast, the French dataset comprises hourly national load values, with 24
periods per day, for the same three-year timeframe. It reflects demand patterns shaped
by a temperate climate, strong winter heating needs, and clear weekday-weekend
distinctions. By integrating the datasets from Thailand and France, we can compare
climate-driven load characteristics and enhance the robustness and generalizability of
our forecasting framework across different power systems. We derive two-dimensional
quantitative features, including load, lagged load variables, and calendar indicators,
using traditional statistical methods and modern machine learning models. Model
performance is assessed using the Mean Absolute Percentage Error (MAPE) and Root
Mean Squared Error (RMSE), providing reliable and comprehensive metrics for short-
term load forecasting. The overall forecasting methodology comprises four key
components: data preprocessing, calendar-based classification, model development,

and performance evaluation.

3.1 Overview of the Proposed Framework

The proposed forecasting framework employs a two-stage hybrid architecture
designed to enhance the accuracy of short-term load forecasting in both Thailand and
France. In the initial preprocessing stage, we address missing data and gather relevant
features, including the Month of Year, Day of Week, Holiday indicators, Bridging

Holiday indicators, and lagged load data. These processed datasets are then partitioned
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into training and testing sets by day type to account for behavioral differences across
calendar patterns.

This step is essential because Thailand and France show different behavioral
load patterns. In Thailand, load trends are primarily driven by cooling demand, with
pronounced afternoon peaks and high sensitivity to holidays. In contrast, France's load
is largely heating-driven, characterized by a strong winter peak and notable variations

between weekdays and weekends.

3.2 Calendar-Based Classification Methods
3.2.1 Everyday Classification

The Everyday Classification approach serves as the baseline classification
method, in which each test day is forecasted using a fixed number of previous training
days, regardless of their calendar type. In this study, behavioral shifts in demand driven
by social or economic factors, such as reduced activity during holidays or increased
demand, exhibit strong short-term temporal continuity, meaning recent load behavior
provides valuable information for near-future predictions. While this approach is
straightforward to implement, it does not differentiate between day types such as
weekdays, weekends, or holidays. Consequently, it may not fully capture behavioral
shifts in demand driven by social or economic factors, such as reduced activity during
holidays or increased demand on workdays. Nonetheless, Everyday Classification
provides a valuable benchmark against which the effectiveness of more advanced

classification methods can be compared.
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3.2.2 Rule-Based Classification
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Figure 3.1 Forecasting Framework with Rule-Based Classification

The Rule-Based Classification method extends the Everyday approach by
explicitly incorporating day-type segmentation. This classification ensures that the
training data used for forecasting possess similar load patterns, reflecting both
countries’ unique calendar dynamics and cultural events. For example, national
holidays in Thailand, such as Songkran or New Year’s Eve, typically exhibit
significantly lower electricity demand due to reduced industrial and commercial
operations. By training forecasting models on samples of the same-day type, Rule-
Based Classification enhances the contextual relevance of the training dataset. It

reduces forecasting bias caused by mismatched temporal patterns.
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3.2.3 CART Classification
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Figure 3.2 CART-Based Classification and Forecasting Model Framework

The Classification and Regression Tree (CART) method introduces a data-
driven approach to segmenting the training dataset. Unlike the Rule-Based
classification, which relies on predefined calendar rules, the CART classification model
automatically identifies optimal splitting thresholds based on the predictor variables,
Month of Year (MoY), Day of Week (DoW), Holiday, and Bridging Holiday. Through
recursive binary partitioning, the CART algorithm divides the dataset into leaf nodes,
where each node represents a subset of days with similar load behaviors. Separate
forecasting models are trained at each leaf node using only the data belonging to that
node. During testing, each test day is assigned to a corresponding leaf node, and its

forecast 1s generated using the model trained on that node’s data.
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3.2.4 Random Forest Classification
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Figure 3.3 Random Forest Classification and Forecasting Framework

The Random Forest Classification represents the most advanced approach used
in this study and forms the foundation of the proposed hybrid forecasting model. RF is
an ensemble of multiple decision trees, each trained using randomly selected subsets of
the training data and input features, including Month of Year (MoY), Day of Week
(DoW), Holidays (Hol), and Bridging Holidays (B-Hol). For each test day, the model
determines the leaf node in each tree where it falls, and the corresponding subset of

training data in that leaf is used to train an individual forecasting model.
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Figure 3.4 Structure of a Decision Tree
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Figure 3.4 illustrates how the Decision Tree splits the training data based on

classification features. The tree starts from the root node, divides samples at decision

nodes, and ends at leaf nodes (I, [,, [3) containing similar load patterns. Each leaf node

represents a group of days with comparable characteristics and serves as the training

subset for forecasting models.

Table 3.1 Sample of Training Data for Tree-Based Classification.

Independent Variables for Classification Target Variable
No. Type Date (Features) (Peak Load)
MoY DoW Hol B Hol Liq
1 Train  14-10-19 10 1 1 0 18832.4
2 Train  15-10-19 10 2 0 0 19546.8
3 Train  16-10-19 10 3 0 0 22190.8
4 Train  17-10-19 10 4 0 0 22817.2
5 Train  18-10-19 10 5 0 0 22601.3
6 Train  19-10-19 10 6 0 0 22395.6
7 Train  20-10-19 10 7 0 0 22142.6
8 Train  21-10-19 10 1 0 0 20544.0
9 Train  22-10-19 10 2 0 0 22737.9
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In the Tree-Based Classification model, the splitting process is guided by the
Mean Squared Error (MSE) at each node, resulting in training sample groups with
homogeneous load characteristics. At each decision node, the algorithm evaluates
potential splits across all available independent features. It calculates the resulting MSE

for each possible split calculates the resulting MSE for each possible division.

left Right

Sn Sn
MSE spyi¢ = stotal MSEleft"‘WMSEright (3.1

The feature and threshold that minimize the post-split MSE are selected as the
optimal partitioning criterion. This ensures that each subsequent data subset, as well as
each child node, contains samples with similar calendar attributes and load patterns,
thereby reducing variability and improving model interpretability.

In Random Forest (RF) Classification, this process is further enhanced by
random feature selection, which, together, improves generalization and reduces
overfitting. Instead of evaluating all input features at every split, the Random Forest
algorithm randomly selects a subset of features for each tree, commonly defined by the
parameter max-features = sqrt. This randomness ensures that individual trees capture
different aspects of the calendar-load relationship, promoting diversity within the
ensemble. Each tree in the forest independently identifies the feature splits that
minimize its node-level MSE, producing multiple classification trees that collectively

form a robust ensemble model.

Step 1: Computing Root Node MSE

In the first step of tree construction, all training samples are centralized into a
single root node. The CART algorithm evaluates the heterogeneity of this node using
the Mean Squared Error (MSE), which measures the variation of target load values
around the mean of the node. This MSE acts as a baseline for impurity that will be
reduced through subsequent splits. A high MSE suggests that the node contains samples
with diverse load characteristics, indicating that data partitioning will improve

homogeneity and, consequently, enhance the reliability of subsequent forecasting steps.
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Number of samples innoden =s, =9 (3.2)
n d
Average Load in Node n = Li,g = Zd:;Lt“ = 193‘208'6 =21,534.28 (3.3)

18,006,947.15

1 2
MSE poor =5 Xa=1(Li-1 — Lavg)” = = 2,000,771.9 (3.4)

Step 2: Identifying Candidate Split Features

After assessing the impurity of the root node, the algorithm examines each
feature in the dataset as a potential splitting variable. For categorical calendar indicators
such as Holiday and Bridging Holiday, binary splits are considered, whereas ordinal
features such as Day of Week and Holiday are evaluated using meaningful threshold
values. At this stage, all potential splits remain candidates, so the algorithm
enumerates the feasible splits that could lead to a more homogeneous data group

in subsequent steps.

Step 3: Computing MSE for Decision Node

For each candidate feature, CART simulates a split and measures the resulting
reduction in impurity. The data are divided into left- and right-child nodes based on the
feature threshold, and the MSE for each child node is calculated. The weighted post-
split MSE is then obtained by combining the impurities of the child nodes in proportion
to their weights. This step quantifies how effectively each feature partitions the data

into subsets with reduced load variability, forming the basis for selecting the optimal

split.
For Holiday,
Number of samples innoden =s, =1 (3.5
n LY, 188324
Average Load in Noden = Lg,, = d_; =1 1 = 18,832.4 (3.6)
n

1 2 0
MSE yo; :;Z(lizl(l‘?zl - L%lvg) =1 0 (3.7)
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For non-Holiday,

Number of samples innoden =s,, = 8

n d
_ Yd=1Lt=1 174,976.2

Average Load in Node n = Li,g = . === 21,872.02
MSEnon—Hol 2522=1(L?=1 - L}wg)z = w = 1,224,277.26
8
For Weekday,
Number of samples innoden =s, =7
n d
Average Load in Node n = L, , = Zd:;Lt“ = 149?70'4 =21,324.34

16,586.506.56

1 2
MSE weekday :;ZZ=1(L?=1 - szg) = = 2,369,500.93

For Weekend,

Number of samples innoden = s, = 2

n d
Average Load in Node n = L7, = Zazilim1 44’5238'2 =22,269.1

Sn

32,004.5

1 2
MSE goor =5 Lg=1(Li=1 — Lavg)” = = 16,002.25

Step 4: Evaluating and Comparing Impurity Reduction
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(3.8)

(3.9)

(3.10)

3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

CART compares the weighted impurity values across all calendar features to

determine which split yields the most significant improvement. A feature is considered

more informative when it leads to child nodes with lower variability than the parent

node. This comparison ensures that the selected split meaningfully enhances

homogeneity in the training data, thereby improving the interpretability and predictive

usefulness of downstream leaf nodes.

Step 5: Selecting the Best Split for the Decision Node

The feature associated with the lowest post-split impurity is selected as the

optimal splitting rule for the decision node. This ensures that each dataset division

maximizes the reduction in heterogeneity. The chosen feature becomes the decision
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boundary at the node, and the dataset is partitioned accordingly. This step formally
establishes the first layer of structure in the CART model and serves as the foundation

for all subsequent splits.
MSE for split variable Hol =1,088,246.459 (3.17)
MSE for split variable DoW =1,846,501. 229 (3.18)

Between the two candidate splits, the split using the Holiday (Hol) feature
produces a lower weighted MSE than the split using the Day of Week (DoW) feature.
In the CART algorithm, the criterion for selecting a split at each node is to choose the
feature that yields the most significant reduction in impurity. A lower post-split MSE
indicates that the resulting child nodes are more homogeneous and that the feature is
more effective in separating days with similar load patterns. Since the MSE obtained
from the Holiday split is smaller than the MSE obtained from the Day-of-Week split,
the Holiday feature provides a clearer division of the data at this stage. For this reason,
the Holiday split is chosen as the decision rule for the node, because it yields the most
accurate and meaningful separation according to the CART splitting criterion.

Although the Holiday split produces a branch containing only a single holiday
sample, this does not affect the splitting logic. A one-sample node naturally has zero
impurity because there is no variation within the group, and it is treated as a terminal
node without further partitioning.

Root Node
(Daw, Ma¥, Hol, ELHDI)
DoW,MoY, Hol, B_Hol

DoW
Decision Node

et Nt
:(now. Mo¥, Hol, B_Hol 1
MoY, Hol, B_Hol :

]

1

]

1

MoY MoY

Branches

DoW, MoV, Hol, H_Ho!)

Hol ( Hol, B_Hol

Hol

B_hol B hol (DUW, MoY, Hol, B_Hol)

B_Hol

Figure 3.5 Example of Feature Splitting from the Root Node
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Step 6: Recursive Splitting of Child Nodes

Following the first split, CART applies the same impurity-based evaluation
process recursively to each child node. For each subset, the algorithm recalculates the
node-level MSE, explores all potential splits on the remaining features, and measures
the improvement in homogeneity. Through this recursive procedure, the decision tree
grows branch by branch, progressively refining the grouping of days according to their

calendar and load characteristics.

Step 7: Evaluating Secondary Splits

Within each child node, CART continues assessing candidate features in the
same manner as at the root. Some features may no longer provide meaningful separation
if the node contains limited or uniform values for that variable. Others may achieve
substantial impurity reduction by distinguishing among different behavioral patterns
within the remaining subset. At this stage, CART identifies which feature provides the

most apparent differentiation in the context of the node’s current composition.

Step 8: Selecting the Best Split at Deeper Levels

After computing impurity reductions for all secondary candidates, the algorithm
selects the feature that produces the most homogeneous partitions. This ensures that the
tree continues to grow in a direction that preserves interpretability and predictive
quality. By consistently selecting the feature that minimizes impurity at each depth,
CART constructs a hierarchical structure that mirrors the underlying relationships

between calendar factors and electricity load behavior.

Step 9: Constructing the Decision Path

As splits accumulate through successive levels, a hierarchical decision structure
forms. Each decision node corresponds to a feature threshold, and the path from the
root to a given leaf node represents a sequence of calendar-based conditions defining a
specific type of day. These decision paths group days with similar load characteristics,
resulting in leaf nodes that contain the most behaviorally consistent subsets of the

dataset.
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Step 10: Stopping the Splitting Process

CART continues splitting nodes recursively until a stopping criterion is met,
such as reaching a maximum tree depth, achieving minimal impurity reduction, or
encountering nodes with insufficient sample size to justify further division. Once no
further meaningful improvement is possible, the node is designated as a leaf. These leaf
nodes then serve as the training subsets for the forecasting models, ensuring that
predictions are based on groups of days sharing highly similar structural and behavioral

attributes.

MSE = 2,000,771
Samples=9
Average =21,534

‘ Non-Holiday(Hol=0)

Holiday(Hol=1) | Date Hol Load
Date | Hol | Load 15-10-19] 0 19546.8
14-10-19] 1 [ 188324 — 16-10°1917 0.k 22190.8
Decision Node | [77.10-19| 0 | 228172
MSE= 0
Samples 1 MSE— 1224277 18-10-19| 0 22601.3
Leaf node I4 Average =18,832.4 Samples = 8§ 19-10-19| 0 22395.6
& Average = 21,872 20-10-19 0 22142.6
DoW < 4 (Mon-Thu) 21-10-19] 0 20544
T T 22-10-19] 0 22737.9
15-10-19 | 2 19546.8 DoW > 4 (Fri-Sun)
16-10-19 | 3 | 22190.8 Date  |DoW| Load
17-10-19 [ 4 | 228172 18-10-19 | 5 | 226013
21-10-19 | 1 20544 19-10-19 | 6 | 22395.6
22-10-19 | 2 | 227379 20-10-19 | 7 | 221426
MSE = 1,690,173.9 MSE = 35,191.91
Leaf node I, | Samples =5 Samplesics3, Leaf node I5

Average =21,567.34 Average =22,379.83

Figure 3.6 Illustration of Node Splitting in Tree-Based Classification

We tuned the Random Forest classifier’s hyperparameter by sweeping the
number of trees. Negtimators € {1, -..,100} with fixed settings (criterion = squared error,
max_features = v/-, max_depth = None, bootstrap = False). The best validation MAPE
was obtained at N,gtimators = 10, which is therefore used in all reported experiments.

Increasing forest size beyond 10 produced little to no reduction in MAPE and,
in several cases, even slightly worsened it. In our two-stage design, each tree partitions
days into fine-grained leaves, and the forecasting model is trained within the leaf to
which the test day belongs. Adding too many trees increases segmentation granularity
and can fragment the training data per leaf, leading to data sparsity and higher variance

in downstream forecasts.
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Figure 3.7 Effect of Number of Trees on RF Classification Accuracy

3.2.6 Feature Importance in CART and Random Forest Classification

Analysis of the importance of nature provides insight into how strongly each
calendar attribute contributes to the tree-based models' classification decisions. In this
study, feature importance for both CART and Random Forest classifiers is computed
based on the total reduction in Mean Squared Error (MSE) attributed to each feature
across all splitting nodes. The underlying principle corresponds to the splitting
mechanism described earlier in Section 3.2.5, in which a feature is selected at each node
if it yields the most significant reduction in impurity.

In the CART model, all available features are evaluated at each decision node,
and the feature that yields the most significant reduction in MSE is selected. Because
the root node split influences the most important proportion of the dataset, CART
feature importance is highly sensitive to this initial decision. As a result, one dominant
feature, typically the Month of the Year, receives disproportionately high importance.
This behavior is consistent with the seasonal load variability illustrated earlier in
Figures 1.2 and 1.3. Consequently, CART values tend to be less stable and more biased
toward early splits.

In contrast, the Random Forest classifier introduces randomness by
subsampling features at each node. Although all trees are trained on the same dataset,
the random subset of candidate features forces different trees to consider alternative
splitting variables. This promotes structural diversity among trees and reduces the

dominance of any single feature. The final importance values, obtained by averaging
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impurity reductions across all trees, provide a more balanced and generalizable estimate

of each feature’s predictive role.

Feature Importance

Month
Day
Day_Type
Year
Holiday

Feature

Bridging_Holiday

0.0 0.1 0.2 0.3 0.4
Importance

Figure 3.8 Feature Importance of Calendar Attributes in Tree-based Classifier

The resulting feature-importance ranking is presented in Figure 3.8, which
shows that seasonal and weekly patterns are the strongest determinants of day-type
classification. Meanwhile, holiday-related features exhibit much lower importance due
to their infrequent occurrence and heterogeneous load behavior. These findings
reinforce the rationale for using Random Forest classification as the foundation of the

proposed hybrid forecasting framework.

3.3 Forecasting Models

The forecasting stage is performed after each classification module identifies
the test day for its corresponding group. Three forecasting models, Multiple Linear
Regression (MLR), Support Vector Regression (SVR), and Random Forest Regression
(RF), are then used to estimate the load profile using five lagged inputs as independent
variables, such as the load from the previous day, two days prior, three days prior, one
week prior, and two weeks prior. In contrast, the target variable is the actual load of

that day.

3.3.1 Multiple Linear Regression (MLR)
Multiple Linear Regression is a fundamental statistical method for modeling the
relationship between a target variable and multiple independent variables. It assumes a

linear relationship between the actual and the forecasted load.
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ES(d)=al +al 19(d—14) +aJ, LI(d—7)+a?, L7(d - 3) + a9
al, LI(d—2)+al, L7(d-1)

where F7(d) is forecasted load on day d at period ¢, LI (d — k) is actual load of the

same period ton day d—k(with k=1,23,7,14), agt is intercept term,
al, a3, a3, a3, al, areregression coefficients representing the influence of past loads

on the current forecasted load.

3.3.2 Support Vector Regression (SVR)

Support Vector Regression is a machine learning method derived from Support
Vector Machines (SVM) that can capture both linear and nonlinear relationships
between input features and target variables. SVR works by finding a regression function
f(x). That deviates from the actual data points by no more than a specified margin €,
while keeping the model as flat as possible.

For a given input feature vector:

xt(d) = [L9(d - 1),19(d — 2),19(d — 3),19(d — 7),19(d — 14)]" (3.20)
F7(d) =Z(ai —a)) K (xf,x5(d)) + b (3.21)

where N is number of support vectors, «;,a; is Lagrange multipliers (learned
coefficients), K (x;g, x‘tg (d)) is kernel function measuring similarity between the

training sample and the test input, b is bias term.

3.3.3 Random Forest Regression (RF)

Random Forest is an ensemble learning technique that combines multiple
decision trees to produce a more accurate and stable prediction. Each decision tree in
the forest is trained on a random subset of data and a random subset of features,

introducing diversity among trees and reducing overfitting.
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(3.22)

where T'is total number of trees in the forest, Ft’gn (d) is the forecasted load from the

ntMregression tree,

DT1 DT2 DT3

7

______________ -

DTn
1)

—— ¥
Train Forecasting Train Forecasting Train Forecasting
Model M1 Model M1 Model M1

C ]

Train Forecasting
Model M1

Trained Trained Trained Trainefi
Forecasting Forecasting Forecasting Forecasting
Model M1 Model M1 Model M1 Model M1
Predict Load { Predict Load J Predict Load ] Predict Load
\ [
)
[ Weighted Average Load Forecasting ]

Figure 3.9 Averaging Predictions Across Trees in RF Regression
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CHAPTER 4
DESIGN OF EXPERIMENTS

4.1 Dataset Description

The data we used in this study consist of two historical electricity load profiles
for Thailand and France, obtained from EGAT and ENTSO-E, respectively, and both
cover the three years from 2019 to 2021. The Thailand dataset comprises 48 half-hourly
measurements per day, representing the net peak load recorded at 30-minute intervals,
whereas French data contain 24 periods per day. Each record includes the date, time,
day of week, month of year, holiday indicator, bridging-holiday indicator, and any
additional notes identifying special calendar events.

The dataset captures a wide range of load behaviors influenced by seasonal
weather patterns, weekday and weekend differences, and holiday structure. To ensure
proper model evaluation, the data are divided chronologically: load profiles from 2019
to 2020 are used for model training, while 2021 serves as the testing year. This results
in a training-to-testing ratio of approximately 67% to 33%, which is a standard practice
in short-term load forecasting, where multi-year training data are required to capture
seasonality and yearly trends.

France’s electricity demand is strongly influenced by its temperate climate, with
winter heating demand contributing to substantial load peaks, in contrast to Thailand’s
summer-driven peaks. The inclusion of France enables cross-country comparison,
allowing the proposed methodology to be assessed under two distinct climatic and
behavioral load regimes. Together, the Thai and French datasets provide
complementary perspectives for evaluating the robustness and generalizability of
calendar-aware classification and forecasting models, offering insights into how

climatic and cultural differences shape short-term load patterns.

4.2 Data Preprocessing
Before model development, the raw load data are cleaned to ensure temporal
consistency and analytical readiness. Basic preprocessing steps are applied to address

missing entries and minor reporting irregularities. In addition, calendar features were
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constructed for both Thailand and France to capture systematic variations in electricity
demand. For both countries, day-type labels were assigned using official public holiday
announcements, with bridging holidays identified when a day fell between a weekend
and a public holiday or between two consecutive holidays. Remaining days were
categorized as weekdays or weekends.

This preprocessing stage ensured that the dataset was complete, chronologically
aligned, and equipped with accurate calendar-event information for subsequent

classification and forecasting.

4.3 Data Arrangement for Classification Approaches

Table 4.1 presents the structure of the training and testing datasets used in the
tree-based classification models. The classification stage relies exclusively on calendar
features to group days with similar load characteristics before applying forecasting
models. Four input features are used: Day of Week (DoW), Month of Year (MoY),
Holiday (Hol), and Bridging Holiday (B-Hol). These features capture the calendar-
driven behavior of electricity consumption, where DoW represents weekday-weekend
effects, MoY reflects seasonal demand changes, Hol identifies official public holidays
with irregular load patterns, and B-Hol distinguishes transitional days that fall between
holidays and weekends. The target variable for classification is the day index
th (d), which assigns each date to a specific leaf or class generated by the tree-based

algorithm.
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Table 4.1 Train and Test Data Partition for Tree-Based Classification

. . . Target
No. Input Variables for Classification Variable
DoW MoY Hol B_Hol E9(d)
2019/01/01
1 ) 1 1 0 019/01/0
(Tues)
2019/01/02
2 3 1 0 0
. (Wed)
Training
Dataset
2020/12/31
731 4 12 1 0
(Thu)
Testing 1 5 | | 0 2021/91/01
Dataset (Fr1)

4.4 Data Arrangement for Forecasting Models

The forecasting stage uses a consistent regression structure based on five lagged
load variables: L{(d —14), LI(d—7), L{(d—-3), L{(d—2), and L{(d —1)
representing the load values from two weeks, one week, three days, two days, and one
day before the predicted day. The target variable F;7 (d)is the actual load of the test day.
Although the regression inputs remain the same across all forecasting methods, the
arrangement of training samples differs depending on the classification scheme used in
Stage 1. The following subsections explain how forecasting data were selected under

each classification method.

Ref. code: 25686622040142SXF



41

Table 4.2 Data Arrangement of Forecasting Models with Everyday Classification

Approach
. . Target
No. Input Variables for Regression Variable
L{d—-14) 1{d-7) Lid=3) Li@d=-2) Lid-1) F@d)
2020/12/03  2020/12/10  2020/12/14  2020/12/15  2020/12/16  2020/12/17
(Thurs) (Thurs) (Mon) (Tues) (Wed) (Thurs)
2020/12/04  2020/12/11  2020/12/15  2020/12/16 ~ 2020/12/17  2020/12/18
. (Fri) (Fri) (Tues) (Wed) (Thurs) (Fri)
Training
Dataset
20 2020/10/22  2020/12/29  2020/01/02  2020/01/03  2020/01/04 2020/01/05
(Tues) (Tues) (Sat) (Sun) (Mon) (Tues)
Testing 2020/10/23  2020/12/30  2020/01/03 ~ 2020/01/04  2020/01/05 2021/01/06
Dataset (Wed) (Wed) (Sun) (Mon) (Tue) (Wed)

Under the Everyday Classification approach, forecasting models do not
distinguish between weekdays, weekends, holidays, or bridging holidays. All days are
treated uniformly, and each forecasting model uses the twenty most recent previous
days as the training set for each test day. This sliding-window strategy ensures that
forecasting always relies on the latest load trends without considering calendar context.
Table 4.2 shows that each training instance comprises the five lagged input variables
and the corresponding load for the target day. The test day in 2021 is then predicted to

use the relationship learned from the most recent twenty days in 2019 and 2020.

Ref. code: 25686622040142SXF



42

Table 4.3 Data Arrangement of Forecasting Models with Rule-Based Classification

Approach
Input Variables for Regression Target
No. p g Variable
Li(d -14) L{d~-7) 1{d-3) L{d-2) L{d-1) FE@d)
1 2020/10/14 2020/10/21  2020/10/25  2020/10/26  2020/10/27 2020/10/28
(Wed) (Wed) (Sun) (Mon) (Tue) (Wed)
) 2020/10/21  2020/10/28 2020/11/01  2020/11/02  2020/11/03 2020/11/04
.. (Wed) (Wed) (Sun) (Mon) (Tue) (Wed)
Training
Dataset
20 2020/12/16  2020/12/23  2020/12/27  2020/12/28  2020/12/29 2020/12/30
(Wed) (Wed) (Sun) (Mon) (Tue) (Wed)
Testing 2020/10/23  2020/12/30 2020/01/03  2020/01/04  2020/01/05 2021/01/06
Dataset (Wed) (Wed) (Sun) (Mon) (Tue) (Wed)

In the Rule-Based Classification approach, days are grouped into the categories

of weekday, weekend, and holiday. Each forecasting model is trained on the twenty

most recent historical samples of the same-day type as the test day. For example, to

forecast a Wednesday in 2021, the model uses the previous twenty Wednesdays from

the training period. This ensures that the regression model learns load behavior specific

to each category,

improving contextual consistency compared to Everyday

Classification. Table 4.3 shows the data arrangement, in which all training rows share

the same day type as the test sample. While this improves homogeneity, rare categories

such as holidays and bridging holidays may have fewer available samples.
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Table 4.4 Data Arrangement of Forecasting Models with Tree-Based Classification

Approaches
Input Variables for Regression Target
No. p g Variable
L{(d—-14) L{(d-7) 1{(d-3) L[{d-2) LJ{d-1) F’d)
1 2020/10/14 2020/10/21  2020/10/25  2020/10/26  2020/10/27 2020/10/28
(Wed) (Wed) (Sun) (Mon) (Tue) (Wed)
) 2020/10/21  2020/10/28 2020/11/01  2020/11/02  2020/11/03 2020/11/04
.. (Wed) (Wed) (Sun) (Mon) (Tue) (Wed)
Training
Dataset
N 2020/12/16  2020/12/23  2020/12/27  2020/12/28  2020/12/29 2020/12/30
(Wed) (Wed) (Sun) (Mon) (Tue) (Wed)
Testing 2020/10/23  2020/12/30 2020/01/03  2020/01/04  2020/01/05 2021/01/06
Dataset (Wed) (Wed) (Sun) (Mon) (Tue) (Wed)

For Tree-Based Classification methods, including CART and RF Classification,
the assignment of training data is leaf-dependent rather than fixed. Each day is
classified into a leaf node based on the combination of calendar features: Month of Year
(MoY), Day of Week (DoW), Holiday indicator, and Bridging-Holiday indicator. After
the classification step, the forecasting model for a test day uses only the historical
samples that fall into the same leaf. As a result, the number of training samples is not
constant; common combinations (e.g., mid-week working days) yield leaves with many
samples, while rare combinations (e.g., holidays near weekends) produce leaves with
fewer samples. Table 4.4 illustrates this dynamic structure, in which the set of training
samples varies with the leaf assignment generated by the CART or RF classifier. This
approach enhances segmentation precision but also necessitates fallback methods when

leaf samples are insufficient.

4.5 Handling Insufficient Training Samples Using Naive and Linear Interpolation
Methods
When a test day’s corresponding leaf has insufficient training data for model

training, two fallback strategies, such as the Naive Method and the Linear Interpolation
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Method, are used to maintain data continuity and forecasting reliability. These methods
are introduced to handle scenarios in which certain calendar types, such as rare holidays
or unique bridging holiday combinations, have very few or no historical samples in the
classification tree. This section explains (i) the naive methods, (ii) their limitations, (iii)
the proposed fallback strategy, and (iv) the holiday mapping and interpolation

mechanism used in this study.

4.5.1 Naive Method

The Naive Method is a simple yet effective approach that assumes the load
pattern of the most recent day is similar to that of the following day. In this study, if the
test day was a typical day with insufficient training data, the Naive approach used the
load from the previous day (d — 1) as the proxy value for model training. This
assumption is grounded in the short-term temporal stability of Thailand’s daily load
profiles, particularly in industrial and urban areas where electricity demand changes
gradually from one day to the next. By referencing the previous day’s actual load, the
Naive Method maintains short-term consumption continuity and prevents abrupt

deviations in the model’s learning.

The Naive Method can be mathematically expressed as:

F''d)= Ly'(d-1) (4.1)

Other naive alternatives, such as using the previous week’s load L(d — 7)The
last observed load within the leaf node was evaluated for comparison. However, they
are not used as the primary benchmark for forecasting:

e L(d — 1) performs best overall and preserves short-term temporal behavior.

e L(d — 7) maintains weekday alignment but is unsuitable for holidays because last
week is almost always a typical day.

e Leaf-node naive load may come from a different month or holiday subtype due to
RF’s random feature splits (e.g., Month-of-Year), causing mismatched seasonal

patterns even if both points are formally holidays.
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Thus, L(d — 1) is adopted as the official naive method for benchmark models.

Table 4.5 Performance Comparison of Naive and Fallback Methods

Fall Back
N N MR Ol e
Month (Using L(d-7))  (Using L(d-1)) node load L Interi)olztion usliE; laas(t)
year's holiday
MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE
January 62.37 61.65 13.66 13.79 1253 12.68 38.02 37.22 13.89 14.40
February 6.41 7.18 4.75 5.67 7.91 8.36 11.12  11.61 4.09 4.83
March - - - - - - - - - -
April 2531 26.16 4.64 5.66 7.06 7.56 1473 1533 10.79 12.28
May 8.04 8.87 9.81 1122 1453 1505 4.33 5.17 6.96 8.09
June 8.61 9.42 7.88 9.69 43.09 4375 543 6.43 8.61 9.42
July 10.27 11.28 10.80 11.80  8.88 9.66 11.88 12.55 7.86 8.92
August 10.44 1247 13.76 1537  7.18 7.78 3.76 4.90 5.26 5.83
September  1.39 1.92 1.46 1.70 5.13 6.43 3.93 4.76 2.09 2.39
October 4.71 5.92 6.01 7.13 5.29 5.49 3.40 4.40 4.01 4.63
November - - - - - - - - - -
December 20.72 2149 11.12 11.68  6.30 725  21.66 21.89 4.12 4.82
Average 1583 16.64  8.39 9.37 11.79 1240 11.83 1243 6.77 7.56

4.5.2 Limitations of Naive Methods for Holidays and Bridging Holidays

Although L(d — 1) on typical days, naive methods perform well. However, on
holiday-related cases, they fail for several reasons. Holidays do not exhibit normal daily
or weekly patterns, instead, their loads are shaped by cultural behavior, national travel
flows, seasonal timing, and industrial shutdown schedules. Using either L(d — 1)or
L(d — 7)often maps a holiday to a regular weekday, resulting in a significant mismatch.
Furthermore, the RF leaf-node load may be misleading because leaf splits may occur
based on Month-of-Year or other features, combining holidays from different seasons
or contexts into the same leaf. This leads to poor estimates even if both samples are
technically holidays.

Bridging holidays also cannot be handled by naive assumptions because their
behavior lies between a weekday and a holiday, requiring a blended, not direct,

representation.
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4.5.3 Fallback Linear Interpolation Method

To address the limitations above, the fallback Linear Interpolation Method uses
a calendar-aware fallback mechanism that reflects the behavior of each day type.
(1) Normal days: If training samples are insufficient, the model uses the load from the
same weekday of the previous week, L(d — 7). Weekly patterns remain stable for

regular days, making this sound approximation.
F,(d)=L{d-7) (4.2)

(2) Holidays: For insufficient training samples, the model uses the load from the same
holiday name in the previous year. Holiday-to-holiday repetition is high in Thailand,

and last-year substitution yields much lower error than interpolation.

__ s(same name,previous year)
Fe(d) = Lygiiqay (4.3)
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Table 4.6 Mapping of 2021 Thailand Public Holidays to Same-Name Holidays in
2020

2021 Date Holiday Name 2020 Date (Same Holiday)
2021-01-01 New Year’s Day 2020-01-01
2021-02-12 Chinese New Year 2020-01-25
2021-02-26 Makha Bucha Day 2020-02-10
2021-04-06 Chakri Day 2020-04-06
2021-04-12 Songkran Holiday 2020-04-13
2021-04-13 Songkran Day 2020-04-14
2021-04-14 Songkran Day 2020-04-15
2021-04-15 Songkran Day 2020-04-15
2021-05-03 Labour Day (sub.) 2020-05-01
2021-05-04 Coronation Day 2020-05-04
2021-05-10 Royal Ploughing Ceremony 2020-05-11
2021-05-26 Visakha Bucha Day 2020-05-06
2021-06-03 H.M. Queen Suthida's Birthday 2020-06-03
2021-07-25 Buddhist Lent 2020-07-06
2021-07-26 Asahna Bucha (obs.) 2020-07-07
2021-07-28 King’s Birthday 2020-07-28
2021-08-12 Mother’s Day 2020-08-12
2021-09-24 Prince Mahidol Day 2020-09-24
2021-10-13 King Rama IX Memorial Day 2020-10-13
2021-10-22 King Chulalongkorn (sub.) 2020-10-23
2021-12-05 Father’s Day 2020-12-05
2021-12-06 King Bhumibol’s Birthday 2020-12-07
2021-12-10 Constitution Day 2020-12-10
2021-12-31 New Year’s Eve 2020-12-31

Table 4.7 Mapping of 2021 France Public Holidays to Same-Name Holidays in

2020
2021 Date Holiday Name 2020 Date (Same Holiday)
2021-01-01 New Years's Day 2020-01-01
2021-04-05 Easter Monday 2020-04-13
2021-05-01 Labor Day 2020-05-01
2021-05-08 WWII Victory Day 2020-05-08
2021-05-13 Ascension Day 2020-05-21
2021-05-24 Whit Monday 2020-06-01
2021-07-14 Bastille Day 2020-07-14
2021-08-15 Assumption of Mary 2020-08-15
2021-11-01 All Saint's Day 2020-11-01
2021-11-11 Armistice Day 2020-11-11
2021-12-25 Christmas Day 2020-12-25
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(3) Bridging holidays: These days reflect partial working activity and partial holiday
behavior. Thus, the fallback uses a weighted linear interpolation between a weekday
load and the nearest holiday load. This method estimates the missing load by taking a
weighted average of the adjacent weekday and holiday loads. This produces a realistic
intermediate value that reflects the partial working activity typically observed during
such periods. Mathematically, if L{'l(d — 7)represents the weekday load and
L{'l (d*) is the holiday load, the forecasted bridging-holiday load FtT’l (d)was computed

as:

Fid)= ali'(d-7)+(1—-a) Li'(d) (4.4)

where 0 < a < 1represents the relative influence of the weekday and holiday

patterns.
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CHAPTER 5
RESULTS AND DISCUSSION

5.1 Mean Absolute Percentage Error (MAPE)
MAPE measures the average percentage difference between the predicted and
actual values. It shows how accurate your forecasting model is, expressed as a

percentage.

L9(d) — F*(d)
L7(d)

1009 5.1
e X 100% (5.1)

t=1

N
1
MAPE9(d) in % = —Z ‘

where,
N = Number of periods
LI(d) = the actual load for group g at period t for day d,
th (d) = the forecast load for group g at period for day d,
t =1,2,3,,...,48 periods

5.2 Root Mean Square Error (RMSE)
RMSE measures the average magnitude of errors between predicted and actual

values. It tells how much the predictions deviate, in the same units as the data.

N (@-FJ(a))?

1
S2tLy L@

x 100% (5.2)

1
Ly
RMSEY(d) in % = ‘/”

where,
N = Number of periods
L7(d) = the actual load for group g at period t for day d,
F?(d) = the forecast load for group g at period for day d,
t =1,2,3,...,48 periods
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5.3 Monthly Forecasting Performance

The monthly evaluation of forecasting performance provides insights into how
seasonal and calendar-driven variations affect short-term load-forecasting accuracy in
Thailand and France. Tables 5.1 and 5.2 summarize the monthly Mean Absolute
Percentage Error (MAPE) and Root Mean Square Error (RMSE) for Thailand, while
Tables 5.3 and 5.4 report the corresponding results for France. In both cases, three
forecasting models, such as Multiple Linear Regression (MLR), Support Vector
Regression (SVR), and Random Forest (RF), are evaluated under five classification
frameworks: Everyday, Rule-based, CART-based, Generalized RF-based, and the

proposed RF classification.
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Table 5.1 Monthly MAPE Comparison of Forecasting Models (Thailand)

With Everyday With Rule-based With CART With RF The Proposed RF
Month Classification Day Type Classification|Day Type Classification|Day Type Classification Classification

MLR | SVR | RF | MLR | SVR | RF | MLR | SVR | RF | MLR | SVR | RF | MLR | SVR | RF
Jan 8.62 | 1130 | 9.66 | 599 | 1495 | 10.02 | 11.24 | 14.72 | 1148 | 6.67 | 10.20 | 6.75 | 8.69 | 12.35 | 8.73
Feb 486 | 640 | 5.10 | 3.14 | 4.02 | 391 | 4.10 | 566 | 439 | 443 | 593 | 468 | 400 | 526 | 4.14
Mar 3.18 | 6.03 | 3.70 | 294 | 13.57 | 489 | 3.02 | 3.27 | 2.71 | 3.56 | 348 | 2.85 | 3.56 | 348 | 2.93
Apr 841 | 11.73 | 9.16 | 547 | 981 | 588 | 9.66 | 7.09 | 5.68 | 828 | 6.52 | 553 | 996 | 6.11 | 5.06
May 6.70 | 7.62 | 7.21 | 5.62 | 982 | 527 | 576 | 577 | 482 | 696 | 6.71 | 575 | 6.43 | 533 | 4.44
Jun 498 | 537 | 540 | 3.06 | 553 | 572 | 497 | 6.06 | 496 | 461 | 492 | 415 | 428 | 439 | 3.60
Jul 485 | 647 | 529 | 452 | 6.04 | 462 | 564 | 471 | 432 | 6.21 | 533 | 5.13 | 883 | 440 | 3.72
Aug 578 | 553 | 688 | 445 | 488 | 442 | 427 | 438 | 413 | 5.13 | 480 | 441 | 427 | 3.80 | 3.29
Sep 3.66 | 393 | 385 | 2.83 | 469 | 3.06 | 3.72 | 338 | 3.08 | 3.11 | 2.86 | 246 | 3.43 | 293 | 2.54
Oct 507 | 551 | 530 | 298 | 3.25 | 330 | 444 | 355 | 3.55 | 420 | 390 | 3.65 | 435 | 3.55 | 3.12
Nov 441 | 5.09 | 459 | 222 | 400 | 3.21 | 3.04 | 3.75 | 3.04 | 273 | 3.78 | 2.78 | 2.86 | 3.81 | 2.88
Dec 876 | 9.02 | 797 | 6.40 | 12.01 | 794 | 892 | 7.65 | 7.10 | 478 | 548 | 4.65 | 426 | 4.68 | 4.06
Avg MAPE | 5.77 | 7.00 | 6.18 | 414 | 7.71 | 5.19 | 573 | 583 | 494 | 5.06 | 533 | 440 | 541 | 501 | 4.03
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Table 5.2 Monthly RMSE Comparison of Forecasting Models (Thailand)

With Everyday With Rule-based With CART With RF The Proposed RF
Month Classification Day Type Classification|Day Type Classification|Day Type Classification Classification

MLR | SVR | RF | MLR | SVR | RF | MLR | SVR | RF | MLR | SVR | RF | MLR | SVR | RF
Jan 975 | 11.82 | 11.88 | 6.98 | 1455 | 9.87 | 883 | 12.18 | 897 | 8.17 | 11.35| 7.63 | 10.53 | 12.63 | 9.10
Feb 554 | 7.00 | 6.04 | 3.68 | 404 | 390 | 342 | 502 | 3.73 | 564 | 6.85 | 546 | 5.10 | 576 | 4.57
Mar 377 | 6.52 | 449 | 338 | 13.61 | 490 | 3.03 | 3.27 | 2.71 | 441 | 3.78 | 3.27 | 437 | 3.76 | 3.32
Apr 976 | 1232 | 11.53 | 6.73 | 1059 | 6.60 | 8.07 | 582 | 493 | 10.83 | 7.69 | 6.73 | 1499 | 6.88 | 5.87
May 7.59 | 839 | 889 | 6.63 | 994 | 533 | 497 | 497 | 400 | 842 | 7.56 | 6.74 | 848 | 596 | 5.09
Jun 581 | 6.13 | 670 | 3.40 | 544 | 559 | 424 | 536 | 425 | 5.64 | 549 | 486 | 527 | 497 | 4.19
Jul 555 | 7.17 | 638 | 592 | 6.73 | 530 | 527 | 440 | 402 | 7.62 | 635 | 6.07 | 9.06 | 5.02 | 4.34
Aug 6.63 | 631 | 840 | 493 | 469 | 423 | 379 | 396 | 3.68 | 634 | 576 | 538 | 5.16 | 439 | 3.87
Sep 420 | 457 | 468 | 346 | 471 | 3.08 | 291 | 258 | 228 | 3.92 | 348 | 299 | 425 | 3.48 | 2.98
Oct 598 | 6.16 | 6.62 | 3.61 | 3.25 | 331 | 443 | 355 | 356 | 534 | 465 | 441 | 575 | 4.08 | 3.66
Nov 503 | 572 | 576 | 2.68 | 401 | 322 | 295 | 3.61 | 2.89 | 3.54 | 430 | 324 | 3.61 | 422 | 3.26
Dec 953 | 9.62 | 958 | 731 | 11.80 | 7.83 | 7.23 | 6.11 | 559 | 575 | 6.07 | 532 | 5.19 | 5.11 | 4.56
AvgRMSE | 659 | 7.64 | 7.58 | 489 | 7.78 | 526 | 493 | 507 | 458 | 630 | 6.11 | 5.18 | 6.81 | 552 | 447
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With Everyday With Rule-based With CART With RF The Proposed RF
Month Classification Day Type Classification|Day Type Classification|Day Type Classification Classification

MLR | SVR | RF | MLR | SVR | RF | MLR | SVR | RF | MLR | SVR | RF | MLR | SVR | RF
Jan 5.45 6.63 5.95 546 | 2898 | 9.32 4.87 10.29 | 5.62 5.24 9.88 5.56 5.24 9.88 4.56
Feb 8.20 7.01 7.86 5.11 19.28 6.75 5.15 7.23 5.55 5.21 8.08 5.83 5.21 8.08 4.83
Mar 4.88 4.49 4.65 3.33 13.83 | 4.75 3.37 4.10 3.86 3.39 4.62 3.69 3.39 4.62 3.69
Apr 6.28 5.83 5.45 4.36 8.35 5.57 4.00 541 4.55 3.85 5.61 4.49 3.85 5.61 3.49
May 4.93 4.54 5.05 4.19 7.68 4.58 3.79 3.95 4.17 3.23 3.79 3.45 3.23 3.79 345
Jun 3.55 2.67 2.10 1.59 | 13.92 | 2.87 1.98 2.68 1.70 1.88 3.33 1.63 1.88 3.33 1.63
Jul 4.16 3.22 3.03 1.99 | 1345 | 2.73 2.67 3.02 2.37 2.08 3.13 1.77 2.08 3.13 1.77
Aug 3.30 3.54 2.63 213 | 20.79 | 3.79 2.04 4.53 2.09 2.17 5.07 2.15 2.17 5.07 2.15
Sep 3.09 2.14 1.67 1.17 12.58 | 2.37 1.65 2.11 1.40 1.52 2.40 1.23 1.52 2.40 1.23
Oct 3.78 3.61 3.11 2.25 4.64 3.32 2.38 2.85 2.77 2.26 2.93 2.53 2.26 2.93 2.53
Nov 5.76 5.29 5.59 3.50 17.01 4.40 4.12 5.34 4.39 3.37 6.94 4.21 3.37 6.94 3.21
Dec 5.84 5.27 5.96 4.81 21.69 5.14 4.40 5.62 4.75 4.29 8.17 4.60 4.29 8.17 3.60
Avg MAPE | 4.94 4.52 4.42 3.33 15.18 | 4.63 3.37 4.76 3.60 3.21 5.33 3.43 3.21 5.33 3.01
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With Everyday With Rule-based With CART With RF The Proposed RF
Classification Day Type Classification|Day Type Classification|Day Type Classification Classification

Month MLR | SVR | RF | MLR | SVR | RF | MLR | SVR | RF | MLR | SVR | RF | MLR | SVR | RF
Jan 6.71 8.75 7.83 6.89 | 2997 | 11.26 | 6.51 1342 | 6.98 7.00 12.48 6.90 7.00 12.48 | 6.90
Feb 9.68 9.17 9.85 6.47 | 2391 9.67 6.65 10.74 | 7.24 6.72 11.30 | 7.62 6.72 11.30 | 7.62
Mar 5.93 5.56 5.90 426 | 15.53 5.74 4.25 5.04 4.89 4.32 5.56 4.64 432 5.56 4.64
Apr 7.87 7.37 7.22 6.53 10.27 | 7.01 5.61 6.79 6.31 5.29 7.44 6.24 5.29 7.44 6.24
May 6.44 6.06 6.62 5.73 8.92 5.51 5.16 5.32 5.62 4.34 4.97 4.50 4.34 4.97 4.50
Jun 4.88 3.47 2.77 2.00 14.39 3.73 2.57 3.21 2.21 2.40 4.24 2.11 2.40 4.24 2.11
Jul 5.62 4.49 4.59 2.72 14.23 3.45 4.04 4.18 3.92 2.93 4.15 2.51 2.93 4.15 2.51
Aug 4.49 4.27 3.34 2.86 | 21.80 | 5.29 2.64 5.63 2.82 2.82 6.32 2.86 2.82 6.32 2.86
Sep 4.42 2.88 2.18 1.46 12.86 | 2.95 2.22 2.61 1.95 2.02 3.10 1.67 2.02 3.10 1.67
Oct 4.93 4.41 4.09 2.93 5.49 4.32 3.05 3.45 3.57 2.96 3.64 3.24 2.96 3.64 3.24
Nov 7.19 6.96 7.25 4.62 19.23 5.46 5.32 6.56 5.75 4.49 9.63 5.69 4.49 9.63 5.69
Dec 7.09 6.29 7.36 6.10 | 24.19 6.33 5.37 6.84 6.03 5.33 10.13 5.85 5.33 10.13 5.85
Avg RMSE | 6.27 5.81 5.75 438 | 16.73 5.89 4.45 6.15 4.77 422 6.91 4.49 4.22 6.91 4.49
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5.3.1 Monthly MAPE Behavior

The monthly MAPE patterns closely follow the climatic and calendar
characteristics of each country. For Thailand, higher MAPE values are observed in the
hot season, especially April and May, which correspond to the peak summer period and
include major holidays such as Songkran. During these months, rapid temperature
increases, widespread air-conditioning use, and overlapping public holidays lead to
sharp, irregular changes in load. Despite this, the proposed RF-RF model maintains
low error levels, for example, around 5-6% in the most volatile months, clearly
outperforming the Everyday and Rule-based approaches, which show much larger
deviations. Elevated errors also appear in December and January, which coincide with
Thailand’s tourism season and New Year festivities. Load during this period is shaped
by a combination of reduced industrial activity, increased travel, and higher residential
and commercial usage in urban areas. Even under these conditions, the proposed model
tracks the trend more accurately than competing methods.

In contrast, France exhibits a different seasonal error pattern that aligns with its
temperate climate and heating-driven demand. Higher MAPE values tend to occur in
winter and early spring (e.g., January, February, and occasionally November-
December), when heating demand is high and sensitive to short-term temperature
fluctuations. Rule-based SVR models show substantial errors in several winter months,
reflecting their limited ability to adapt to complex interactions between temperature
and calendar effects. The proposed RF-RF framework, however, significantly reduces
these winter errors and achieves the lowest average MAPE throughout the year, around
3.0%, indicating strong robustness in handling heating-driven peak loads. During
summer months, when French demand is lower and more stable, MAPE values drop
further for all methods, but the RF-based approaches remain the most accurate.

Across both countries, Everyday and Rule-based classification strategies
systematically yield higher MAPE. Everyday classification ignores day-type structure,
while Rule-based classification relies on fixed, manually defined groups that can
misrepresent irregular holidays or rare calendar combinations. CART-based
segmentation improves performance by introducing data-driven splits, yet the single-
tree structure may overfit or fail to capture all relevant seasonal regimes. RF-based

classification and the proposed hybrid model, by aggregating multiple trees, learn a
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more diverse and nuanced calendar, which explains their consistently lower monthly

MAPE in both Thailand and France.

5.3.2 Monthly RMSE Behavior

The RMSE analysis complements the MAPE analysis by emphasizing the
magnitude of significant prediction errors, particularly during peak-demand periods. In
Thailand, the proposed RF-RF framework achieves the lowest average RMSE among
all models, indicating that it effectively limits large residuals even during extreme
conditions. As with MAPE, RMSE is slightly higher in April and May, when sudden
temperature spikes and holiday effects drive strong demand surges, and in December
and January, when tourism and festive activities alter standard load patterns.
Nevertheless, the proposed RF-RF model consistently records lower RMSE than MLR
and SVR models with Everyday, Rule-based, or single-tree CART classification.
During the rainy season from June to October, when temperature and economic activity
are more stable, RMSE values are typically in the 3-4% range, and the proposed model
attains its best performance, reflecting its ability to exploit predictable calendar and
seasonal structures.

For France, the RMSE results in Table 5.4 show a similar trend: the proposed
RF-RF method delivers the most stable and lowest average RMSE across all months.
Winter months, especially January, February, and December, naturally exhibit higher
RMSE due to substantial, highly weather-sensitive heating loads. Rule-based SVR
models often produce very large RMSE in these periods, indicating vulnerability to
mis-specified day-type segmentation and sensitivity to outliers. In contrast, the RF
models, particularly the proposed hybrid framework, smooth out such extremes by
aggregating multiple calendar-aware trees, thereby improving generalization under
rapidly changing winter conditions. In spring and summer, when French demand is
lower and less volatile, RMSE values decrease for all methods. Still, the proposed RF-
RF model maintains a clear advantage and demonstrates less month-to-month
fluctuation than the CART-SVR combination.

Taken together, the monthly MAPE and RMSE analyses for both Thailand and

France confirm that:
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Seasonal and calendar effects are critical: error peaks align with hot season cooling and
festive periods in Thailand, and with winter heating in France.

Simple temporal or rule-based classification is insufficient: Everyday and Rule-based
strategies struggle in months with irregular holidays or strong weather sensitivity.
Ensemble classification with RF is more robust: the proposed RF-RF framework
consistently achieves the lowest or near-lowest errors across all months and both
countries, demonstrating that a calendar-aware ensemble architecture generalizes well

across contrasting climatic and load regimes.

5.4 Predicted vs. Actual Load Pattern Comparison

This section compares the predicted and actual load profiles generated by the
proposed RF-RF framework for both Thailand and France across different day types.
The prediction-curve figures highlight the model’s ability to reproduce daily demand
dynamics under diverse climatic, cultural, and operational conditions. Overall, the
close alignment between the actual and estimated curves demonstrates that the model
effectively captures short-term load behavior in two fundamentally different power

systems.

5.4.1 Weekday Load Pattern

For weekdays, the predicted curves in both Thailand and France closely follow
the actual load trajectories. In Thailand, the model accurately replicates the
characteristic morning ramp-up, midday plateau, and evening stabilization typical of
commercial and industrial activity. Minor deviations occur at midweek intervals, yet
the error margins remain narrow, confirming that weekday load is highly regular and
strongly dependent on work-hour demand patterns well learned from lagged features
within the model.

France exhibits similarly strong weekday performance. Despite differences in
climate and daily routines, such as more pronounced winter morning peaks driven by
heating usage, the predicted curves maintain close correspondence with the observed
profiles. The model successfully reproduces France’s sharper weekday morning rise

and evening secondary peak. Overall, the near-overlap of the two curves across most

Ref. code: 25686622040142SXF



58

weekdays indicates that the classification—forecasting pipeline generalizes effectively

across regions with different demand drivers.
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Figure 5.1 Predicted vs Actual Monday Load Profile (i) Thailand and (ii) France
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Figure 5.2 Predicted vs Actual Tuesday Load Profile (i) Thailand and (ii) France
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Figure 5.3 Predicted vs Actual Wednesday Load Profile (i) Thailand and (ii) France
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Figure 5.4 Predicted vs Actual Thursday Load Profile (i) Thailand and (ii) France
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Figure 5.5 Predicted vs Actual Friday Load Profile (i) Thailand and (ii) France

5.4.2 Weekend Load Pattern

Weekend behavior introduces greater variability in both countries due to
reductions in industrial activity and more heterogeneous residential usage. In Thailand,
the predicted series remains directionally consistent with the actual curve but exhibits
slightly wider oscillations, reflecting the less-structured consumption typical of

weekends. Similarly, in France, weekend profiles are flatter and more temperature-
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dependent, yet the model still tracks primary turning points and maintains a stable error
band. Despite these variations, the differences between actual and predicted values
remain modest, indicating that Random Forest regression captures non-linear shifts in

residential behavior without overfitting to weekday patterns.
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Figure 5.6 Predicted vs Actual Saturday Load Profile (i) Thailand and (i1) France
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Figure 5.7 Predicted vs Actual Sunday Load Profile (i) Thailand and (ii) France

5.4.3 Holiday Load Pattern

Forecasting accuracy decreases modestly during holidays because both
Thailand and France experience irregular consumption influenced by travel, events,
and reductions in commercial load. In Thailand, holiday curves often contain abrupt

drops and post-celebration rebounds. The model follows these fluctuations but may
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slightly overshoot during rapid declines due to the small number of holiday training
samples.

In France, holidays similarly exhibit lower-than-normal load levels, but the
pattern is shaped more by heating needs in winter or reduced activity in summer.
Despite these structural differences, the predicted curves for both countries capture the
overall shape and magnitude of holiday demand. The interpolation strategy applied for

data-sparse leaf nodes ensures smoothness and prevents disruptive forecasting gaps.
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Figure 5.8 Predicted vs Actual Holiday Load Profile (i) Thailand and (ii) France

5.4.4 Bridging Holiday Load Pattern

The bridging-holiday case in Figure 5.9 illustrates one of the most challenging

forecasting scenarios. These transitional days display load levels between weekday and

holiday behavior. The actual curve fluctuates sharply over a short time frame, yet the

predicted series still tracks its overall direction and approximates its magnitude. The

differences seen around the third day, where the actual load spikes more strongly than

expected, highlight the hybrid nature of such days; even so, the model’s adaptive

interpolation effectively smooths the transition. This indicates that while complete

accuracy for rare patterns remains difficult, the framework’s two-stage design still

provides reliable estimates for operational planning.
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Figure 5.9 Predicted vs Actual Bridging Holiday Load Profile (i) Thailand and (ii)

France

Overall, the comparison between actual and predicted curves across all nine
figures demonstrates that the proposed hybrid Random Forest-classification and
Random Forest-forecasting model can accurately predict actual load patterns. The close
alignment of the curves, particularly on weekdays, confirms that the ensemble method
captures both cyclical regularities and moderate irregularities in both datasets. Even
under irregular conditions such as holidays and bridging holidays, the model preserves
realistic trend behavior and avoids systematic bias. These results verify that the model’s
predictive performance is not only numerically strong but also visually consistent with

real-world load dynamics.

5.5 Discussion in Relation to Thailand’s Load Characteristics

The monthly forecasting performance reveals clear relationships between
model accuracy and the underlying load characteristics of both Thailand and France.
In Thailand, the variations in MAPE and RMSE correspond strongly to the country’s
climatic and socio-economic cycles. The summer months, from March to May, produce
the highest national electricity demand due to intensive air-conditioning use, resulting

in greater volatility and increased forecasting difficulty. The cool season from
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November to February introduces additional uncertainty driven by tourism, extended
festive periods, and irregular holiday schedules. By contrast, the rainy season from June
to October exhibits the most stable load behavior, reflected in consistently low
forecasting errors across all models. These findings confirm that Thailand’s load profile
is highly temperature-sensitive and strongly influenced by calendar events.

In France, a different pattern emerges, aligning with its temperate climate. The
winter months from December to February generate the highest forecasting errors due
to pronounced heating demand and strong morning and evening peaks. The transition
seasons, spring from March to May and autumn from September to November, display
moderate demand levels and more predictable load shapes, resulting in lower MAPE
and RMSE values. Summer months in France exhibit the lowest overall errors,
reflecting relatively stable load patterns and weaker cooling demand than in Thailand.
These results demonstrate that, unlike Thailand’s heat-driven consumption, France’s
load system is predominantly shaped by heating cycles and socio-economic rhythms
tied to commuting and working hours.

Across both countries, the proposed calendar-aware Random Forest (RF)
classification combined with RF forecasting delivers the most consistent performance.
For Thailand, the hybrid approach achieves an annual average MAPE of 4.03% and
RMSE of 4.57%, outperforming all baseline classification strategies. A similar trend is
observed in France, where the proposed model achieves an MAPE of 3.31% and an

RMSE of 3.85%, the lowest among all forecasting configurations.
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Table 5.5 Overall Forecasting Performance under Different Classification Methods

Thailand France
Forecasting  Classification
Models Approach
PP MAPE (%) RI\O/ISE MAPE RMSE

(%) (%) (%)

Everyday 6.02 6.89 491 5.42

Rule-Based 4.52 5.42 3.65 5.55

MLR CART 6.78 6.26 3.94 5.56
RF 5.45 6.81 3.38 5.04

Proposed 5.77 7.18 3.36 5.02

Everyday 7.25 7.85 4.52 5.81
Rule-Based 7.78 7.99 15.18 16.73

SVR CART 5.31 4.96 4.76 6.14
RF 5.55 6.46 5.19 6.00

Proposed 4.97 5.50 5.31 6.15

Everyday 6.47 7.90 4.42 5.75

Rule-Based 5.57 5.78 4.63 5.89

RF CART 4.38 4.58 3.59 4.21
RF 4.71 5.60 3.37 3.90

Proposed 4.03 4.47 3.31 3.85

Compared to simpler classification schemes, such as Everyday or Rule-Based
grouping, the Random Forest-based classification demonstrates superior adaptability
to atypical calendar patterns and climate-induced variability. While CART
classification improves performance through feature-driven segmentation, its single-
tree structure is inherently prone to overfitting, resulting in less stable monthly
accuracy. In contrast, the proposed RF-RF framework leverages the diversity of
multiple trees to develop more generalizable partitions and forecasts.

Overall, the monthly MAPE and RMSE results for Thailand and France
underscore the robustness and cross-country applicability of the proposed method. The
model consistently provides accurate forecasts across diverse climatic conditions, from
Thailand’s high-temperature seasonal peaks to France’s winter-driven load cycles.
These outcomes reinforce the value of integrating calendar-awareness with ensemble
learning, offering a scalable and operationally practical forecasting solution for both

tropical and temperate electricity systems.
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Figure 5.11 Average RMSE of Forecasting Models under Different Classification
Methods

Figures 5.10 and 5.11 summarize the forecast performance of the proposed
model and benchmark models. These figures provide a high-level understanding of

how day-type variability and classification structure affect the accuracy of short-term

load forecasting.
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Figure 5.17 Cross-Country RMSE Comparison of RF Forecasting Models

The Average MAPE results reveal that forecasting errors are lowest on
weekdays and weekends, and consistently higher on holidays and bridging holidays.
This pattern occurs in both Thailand and France, reflecting the inherently irregular load
behavior associated with non-working days. The proposed RF-based classification
produces the lowest MAPE across all day types, indicating its superior ability to
segment training data into behaviorally consistent groups. Traditional schemes such as

Everyday and Rule-Based classification perform noticeably worse, as shown by their
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higher bars in Figure 5.10 and the cross-country comparisons in Figures 5.12-5.14. For
example, MLR and SVR suffer substantial accuracy degradation when paired with
these simpler classification methods, particularly for France during the CART and
Rule-Based cases, where load volatility differs sharply between seasons. Figure 5.11,
which depicts Average RMSE, reinforces the MAPE findings but with an emphasis on
the absolute size of prediction errors.

The proposed model again records the smallest RMSE values across all day
types, demonstrating that it not only reduces MAPE but also suppresses large
deviations between actual and predicted loads. This improvement is noticeable when
compared with the RMSE profiles shown in Figures 5.15-5.17. In both Thailand and
France, the proposed RF-RF framework achieves the lowest RMSE among all model
classification combinations.

Simpler classification strategies, such as Everyday and Rule-Based, exhibit
substantially higher RMSE during holidays and bridging holidays, reflecting their
limited ability to capture abrupt shifts caused by national events, travel patterns, and
seasonal anomalies. CART and RF classification improve stability by incorporating
feature-based splits. Still, the RF classification approach consistently outperforms
CART because its ensemble structure generalizes across multiple calendar variables
more effectively than a single decision tree.

The results collectively show that the proposed RF classification, combined
with RF forecasting, consistently provides the most balanced accuracy across all day
types, outperforming traditional classification schemes and alternative models. This
confirms the importance of calendar-aware segmentation and ensemble learning for

robust short-term load forecasting in both countries.
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CHAPTER 6
CONCLUSION

This research introduced a unified short-term load forecasting (STLF)
framework that integrates calendar-aware classification with machine-learning
regression to enhance predictive accuracy under diverse operating conditions. Using
two national datasets, Thailand’s EGAT half-hourly load profiles and France’s
ENTSO-E hourly load data. The study evaluated Multiple Linear Regression (MLR),
Support Vector Regression (SVR), and Random Forest (RF) under five classification
strategies: Everyday, Rule-based, CART, RF, and the proposed hybrid RF-classified
RF-forecasting model.

Across both countries, results consistently show that calendar segmentation
markedly improves forecasting accuracy compared to approaches that ignore day-type
variation. Traditional baselines, particularly Everyday and Rule-based classifications,
experience sharp accuracy degradation during holidays and bridging-holidays,
reflecting their limited ability to model irregular and event-driven consumption
behaviors. France and Thailand both exhibit this challenge, but for different underlying
reasons—holiday-related reductions and tourism impacts in Thailand, versus heating-
driven fluctuations and working-day variability in France’s temperate climate.

The proposed hybrid model demonstrated the most stable and accurate
performance across all day types in both countries. RF classification effectively
grouped days with similar load signatures, while RF regression captured nonlinear
dependencies using lagged load features. The interpolation mechanism for sparse leaf
nodes further improved robustness under rare-event conditions, particularly in holiday
and bridging-holiday scenarios where training samples are limited. As a result, the
hybrid RF-RF framework achieved the lowest average MAPE and RMSE in Thailand.
It consistently ranked among the best in France, outperforming MLR and SVR across
all classification schemes.

These findings confirm the benefits of integrating ensemble-based
segmentation with ensemble regression in a unified forecasting pipeline. Moreover,

cross-country results demonstrate the generalizability of the framework: despite
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substantial climatic and behavioral differences between Thailand, which is cooling-
dominated, tropical, and France, which is heating-dominated, temperate, the proposed
method adapts effectively to both systems. This versatility highlights its value for
operational forecasting, generation scheduling, demand-response planning, and
regional energy management.

In conclusion, the hybrid RF-classification -RF-forecasting model offers a
robust, scalable, and interpretable STLF solution capable of handling complex calendar
effects and irregular demand patterns across diverse national contexts. It represents a
practical advancement for power utilities seeking reliable short-term forecasts under

increasingly dynamic electricity consumption conditions.
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APPENDIX A
PYTHON CODE: RF CLASSIFICATION + LEAF-BASED RF
FORECASTING

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor

from sklearn.metrics import mean absolute percentage error, mean squared error

# Load dataset

data = pd.read_excel('RF_Data.xlIsx")
data['Date'] = pd.to_datetime(data['Date'])
data['Year'] = data['Date'].dt.year
data['Month'] = data['Date'].dt.month

# Train — Test Data
train = data[(data['Year'] ==2019) | (data['Year'] == 2020)]
test = data[(data['Year'] ==2021)]

# RF Classification (Calendar Inputs)
X train_cal = train[['MoY','DoW','Hol','BHol']]

y_train_cal = train['Group_true']

X test cal =test[['MoY', DoW','Hol','BHol"]]
y_test cal = test['Group_true']

clf = RandomForestClassifier(

n_estimators = 10,

max_features = 'sqrt',
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min_samples leaf =6,
bootstrap = False,

random_state = 42)

clf.fit(X train cal, y train cal)

# Predicted group
test['Group_pred'] = clf.predict(X_test cal)

# Convert RF leaf nodes — leaf ID string
def leaf to key(arr):

nmn

return "_".join(map(str, arr))

train['Leaf ID'] = np.apply along axis(leaf to key, 1, clf.apply(X train_cal))
test['Leaf ID'"] =np.apply along axis(leaf to key, 1, clf.apply(X test cal))

# Train RF Forecasting Models Per Leaf
feature cols = ['X1','X2','X3",'X4','X5']
leaf models = {}

for leaf id, group in train.groupby('Leaf ID'):
if len(group) < 6:  # skip small leaves
continue

Xg = group|feature cols]
yg = group['Y']

reg = RandomForestRegressor(
n_estimators = 10,
max_features = 'sqrt’,
min_samples_leaf = 6,
bootstrap = False,

random_state = 42)
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reg fit(Xg, yg)
leaf models[leaf id] = reg

# Global model for fallback

global reg = RandomForestRegressor(
n_estimators = 10,
max_features = 'sqrt',
min_samples_leaf = 6,
bootstrap = False,

random_state = 42)

global reg. fit(train[feature cols], train['Y"])

# Forecast for each test day
pred list =[]

true_list =[]

month_list =[]

group true list =]

for i, row in test.iterrows():
leaf = row['Leaf ID']

x = row[feature cols].values.reshape(1,-1)

if leaf in leaf models:
y_hat = leaf models[leaf].predict(x)[0]
else:

y_hat = global reg.predict(x)[0]

pred_list.append(y_hat)
true_list.append(row['Y'])
month_list.append(row['Month'])
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group true_list.append(row['Group _true'])
# Evaluation Metrics
overall mape = mean_absolute percentage error(true_list, pred list)*100

overall rmse = np.sqrt(mean_squared error(true list, pred_list))

print("MAPE:", overall mape)
print("RMSE:", overall rmse)

# Monthly accuracy
res = pd.DataFrame({
'Month': month_list,
'Y _true': true_list,
'Y pred': pred list,
'Group _true': group_true list

1)

monthly = res.groupby('‘Month').apply(
lambda g: mean_absolute percentage error(g['Y true'], g['Y pred'])*100

group_acc = res.groupby('Group _true').apply(
lambda g: mean_absolute percentage error(g['Y true'], g['Y_pred'])*100

)

# Plot Monthly MAPE

plt.figure(figsize=(8,4))

plt.plot(monthly.index, monthly.values, marker='0")

plt.title("Monthly MAPE (2021)")

plt.xlabel("Month")

plt.ylabel("MAPE (%)")

plt.grid(True)

plt.show()
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# Plot Load-Group MAPE
plt.figure(figsize=(7,4))
plt.bar(group_acc.index, group acc.values)
plt.title("Load Group MAPE (2021)")
plt.ylabel("MAPE (%)")

plt.grid(axis="y")

plt.show()
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