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ABSTRACT 

 

Short-term load forecasting plays a critical role in power system planning, 

operational scheduling, and economic dispatch. However, forecasting accuracy often 

deteriorates under irregular calendar conditions, such as weekends, public holidays, and 

bridging holidays, when load behavior deviates from typical daily patterns. This study 

proposes a two-stage hybrid forecasting framework that integrates calendar-aware 

classification with machine learning regression to improve day-ahead load prediction 

across diverse operating conditions. The methodology incorporates Random Forest 

(RF) classification to segment historical data using Month of Year (MoY), Day of Week 

(DoW), holiday, and bridging-holiday indicators, followed by RF regression to predict 

the 48 half-hourly loads for Thailand and the 24-hourly loads for France from 2019 to 

2021. A linear interpolation mechanism is introduced to address insufficient samples in 

rare calendar categories. 

Experimental results demonstrate that the proposed RF-RF framework 

consistently outperforms baseline methods, including Multiple Linear Regression 

(MLR), Support Vector Regression (SVR), Everyday classification, and Rule-based 
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classification across both countries. For Thailand, the hybrid model achieves the lowest 

average MAPE of 4.03% and RMSE of 4.47%, effectively capturing nonlinear seasonal 

and calendar-driven variations. For France, characterized by strong winter heating 

demand, the proposed method also yields superior performance, with MAPE 3.01% 

and RMSE 4.49%, confirming its generalizability across different climatic and load-

profile regimes. The improvements are most pronounced on holidays and bridging 

holidays, where traditional models typically suffer from instability due to irregular 

consumption patterns.  

Overall, this research demonstrates that integrating calendar-based 

segmentation with ensemble learning enhances pattern recognition, model robustness, 

and prediction accuracy. The proposed framework offers a scalable, interpretable 

solution for system operators seeking reliable short-term forecasting across diverse 

climatic contexts and complex calendar effects. 

 

Keywords: Classification, Short-Term Load Forecasting, Machine Learning, Random 

Forest Classification, Calendar-Based Segmentation 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Electricity Load Forecasting 

Electric load refers to any electrical device or component within an electric 

circuit that requires power to perform essential functions, such as lighting, heating, or 

operating machinery. It indicates the demand for electrical supply and is typically 

measured in watts (W) or kilowatts (kW). 

Electricity load forecasting is the process of estimating future electricity 

demand based on historical load trends, weather conditions, and socioeconomic factors. 

This forecasting plays a crucial role in modern power system management. Accurate 

forecasts enable system operators to optimize generation scheduling, reduce operating 

costs, prevent blackouts, and enhance the overall efficiency and reliability of the power 

system. 

Load forecasting can be categorized by prediction time frame into long-term, 

medium-term, and short-term forecasts. Among these, Short-Term Load Forecasting 

(STLF) focuses on predicting demand over a period ranging from a few hours to several 

days. For instance, STLF is vital for real-time operations, load dispatching, and market 

decision-making. 

.                                                      

1.1.1 Electricity Load in the Power System 

In a power system, the electricity load is the total electrical power demand from 

consumers, including residential, commercial, industrial, and other applications. 

1. Residential loads are electricity requirements from residences, originating from 

lighting, appliances, and heating or cooling systems. In residential load, there are 

daily cycles where there is greater demand in the morning and then in the evening, 

and seasonal fluctuations based on heating/cooling needs 

2. Commercial loads include businesses, offices, and malls that have demand for 

lighting, HVAC systems, and equipment like elevators. These loads follow business 

hours, with higher consumption during the day, but may also extend into evenings 

or nights, depending on the type of business. 
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3. Industrial loads are typically high and continuous, with peaks during production 

changes in factories and plants where they use large machinery, motors, and high-

energy equipment like furnaces. These loads are less influenced by time of day but 

depend on operational schedules and machinery use. 

 

1.2 Nature of Load 

The nature of the electricity load refers to the pattern of electricity load 

consumption over time, which changes due to various factors. Understanding these 

patterns is key to predicting load. This is a simplified explanation of the key aspects: 

1) Changes Over Time 

● Daily Variations: Electricity use fluctuates during the day. There are typically higher 

demands in the morning and evening, when people use appliances for heating, cooling, 

or cooking. 

● Seasonal Variations: Demand is higher during hot summers (due to air conditioning) or 

cold winters (due to heating). 

● Weekly Variations: Electricity use is usually lower on weekends compared to 

weekdays, except in industries that operate every day. 

● Holidays and Special Days: National holidays, weekends, and bridging holidays (days 

between weekends and holidays) can cause unusual shifts in demand, as people's work 

and leisure patterns change. 

2) Peak and Off-Peak Times 

● Peak Load: This is the highest demand for electricity during a specific time, usually 

during high-use periods (e.g., summer afternoons or winter mornings). 

● Off-Peak Load: This is the lower demand during periods when fewer people are using 

electricity, such as late at night or early in the morning. 

3) Load Patterns 

● Base Load: This is the steady minimum level of electricity needed throughout the day, 

usually for essential activities like lighting and refrigeration. 

● Peak Load: These are the sharp increases in demand during certain times of the day or 

special events, which require extra power generation capacity. 

● Load Factor: This is a measure of how steady or variable electricity use is. A high load 

factor means electricity is used consistently, while a low load factor indicates 
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significant demand fluctuations. 

4) Factors that Influence Load 

● Weather: Extreme temperatures (hot or cold) can cause spikes in electricity demand 

due to heating or cooling needs. 

● Economic and Social Factors: Changes in population, economic activity, and lifestyle 

can also affect electricity demand. Special events, such as festivals or public holidays, 

can cause unexpected surges in demand. 

● Calendar Effects: The electricity demand can change on public holidays, weekends, or 

bridging holidays due to altered work and leisure schedules. 

 

1.3 Electricity Load Profile 

Load profiles, typically visualized using line graphs or histograms, provide a 

comprehensive overview of electricity consumption patterns over a defined period. 

Analyzing load profiles is essential for understanding load usage dynamics, identifying 

peak demand periods, and assessing load variability. This process involves examining 

load profile trends to uncover patterns and variations in electricity consumption, 

enabling a deeper understanding of load characteristics and the factors influencing 

them. 

 

1.3.1 Relationship between Peak Load and Seasonal Trends 

The historical datasets used in this study were obtained from the Electricity 

Generating Authority of Thailand (EGAT) and the French Transmission System 

Operator (ENTSO-E). The Thailand dataset comprises net load measured at 30-minute 

intervals, with 48 periods per day, from 2019 to 2021. In contrast, the French dataset 

provides hourly load measurements with 24 periods per day for the same three-year 

period. Peak load represents the maximum electricity demand recorded within each 

daily cycle and is closely tied to climatic conditions, economic activity, and behavioral 

patterns. 

Seasonal analysis reveals distinct differences between the two countries. 

Thailand, located in a tropical climate zone, exhibits substantial temperature-driven 

variability, especially during the hot season when cooling demand intensifies. 

Conversely, France, in a temperate climate, experiences peak loads primarily in winter 
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due to heating demand, with lower consumption during summer. Exploratory data 

analysis (EDA) of both datasets by examining daily load patterns (Monday-Sunday), 

seasonal quarters, and yearly behavior (2019-2021), which highlights how climate, 

working schedules, and cultural events shape electricity consumption. Thailand 

demonstrates pronounced summer-driven peaks, whereas France shows winter-

dominant high loads with apparent seasonal shifts. 

 

1.3.2 Daily Load Profile 

Daily load curves for both Thailand and France, as illustrated in Fig. 1.1, show 

consistent day-of-week patterns but differ in their intensity and timing. In Thailand, 

weekdays exhibit higher, more stable daytime loads, driven by commercial, industrial, 

and government operations. These loads typically peak in the late afternoon due to the 

combined effects of heat and business-hour consumption. Weekends, particularly 

Sundays, show significantly lower overall demand due to reduced economic activity. 

In France, weekday load patterns also reflect standard working schedules, with 

clear morning and evening peaks associated with commuting, heating, and household 

activities. Weekend loads, especially on Sundays, drop noticeably as commercial 

activities diminish. However, compared with Thailand, France’s curves display 

stronger morning peaks and smoother midday consumption, reflecting climate 

differences and different patterns of residential and heating use. 

 

 

(i) (ii) 

Figure 1.1 Average Daily Load Profile by Day of Week for (i) Thailand and (ii) 

France 
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1.3.3 Seasonal Load Profile 

Seasonal load variations reveal contrasting consumption behaviors between 

Thailand and France, reflecting their distinct climatic conditions. As shown in Fig. 1.2, 

Thailand’s load is highest during the hot season (April-June), when temperatures peak, 

and cooling demand intensifies. The rainy season (July-September) sustains high 

consumption due to persistent humidity, while cooler months (January-March) show 

comparatively lower loads except for short holiday-driven spikes. Electricity demand 

gradually declines toward the end of the year, though festive activities in December 

create noticeable increases. 

In France, the seasonal trend follows an opposite pattern. Electricity demand is 

highest during winter (January-March and October-December), driven by heating 

requirements. As temperatures rise in late spring and summer, overall consumption 

drops significantly due to reduced heating needs and limited reliance on air-

conditioning. Unlike Thailand, France does not experience substantial summer peaks. 

These contrasting profiles underscore how climate conditions shape national load 

behavior. Thailand peaks in the hottest months due to cooling demand, while France 

peaks in the coldest months due to heating demand. 

 

 

(i) (ii) 

Figure 1.2 Seasonal Peak Load Variation in (i) Thailand and (ii) France 

 

1.3.4 Yearly Lod Profile 

Figure 1.3 illustrates the annual load patterns for Thailand and France, 

highlighting the influence of various factors, including climate conditions and socio-

economic disruptions such as the COVID-19 pandemic. In Thailand, the load exhibits 

typical peaks in the morning and evening, reflecting the workday routine in 2019. 
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However, the implementation of work-from-home measures in 2020 led to a decrease 

in morning peaks and an increase in midday loads. By 2021, traditional load patterns 

began to re-emerge. 

In France, similar pandemic-related effects were observed, but with more 

pronounced trends during the winter months. Heating demand emerged as the primary 

driver, leading to significant winter peaks in almost all individual years. Notably, there 

were considerable reductions in load during the 2020 lockdowns, followed by a 

recovery in 2021. Overall, these trends underscore the responsiveness of long-term load 

behavior to both climatic seasonality and societal changes. 

 

 

(i) (ii) 

Figure 1.3 Annual Peak Load Trend for (i) Thailand and (ii) France (2019-2021) 

 

1.4 Electricity Load Forecasting 

Load forecasting is essential for effective planning and development of an 

electric power system. Essentially, it involves predicting future electricity load based 

on a variety of factors. This process requires analyzing historical data, identifying 

patterns, and considering external influences that affect electricity consumption. 

The load forecasting can cover a wide range of timeframes, from a few hours to 

several years ahead. To achieve accurate predictions, load forecasting involves several 

key steps. First, data must be collected and preprocessed. Then, appropriate models are 

selected and trained using the gathered information. Finally, the performance of these 

models is evaluated using metrics such as the Mean Absolute Percentage Error (MAPE) 

and Root Mean Square Error (RMSE), which help determine how accurately the 

forecasts align with actual demand. 
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1.4.1 Types of Load Forecasting 

Load forecasting is the process of predicting the volume and frequency of 

electricity demand over extended periods, as well as its distribution. It can be 

categorized by time frames, purposes, and methodologies into Short-Term Load 

Forecasting (STLF), Medium-Term Load Forecasting (MTLF), and Long-Term Load 

Forecasting (LTLF). 

STLF predicts electricity demand over short time intervals, typically ranging 

from a few hours to a few days. Peak load represents the highest electricity demand 

during a specific period. Temperature is a critical feature influencing electricity 

demand, especially for cooling or heating. It is an independent variable that captures 

the effects of seasonal and daily temperature on load patterns. Hour of Day represents 

the specific time of day (e.g., 0:00, 1:00). Weekdays indicate whether a day is a 

weekday (e.g., Monday-Friday). It helps to distinguish between typical working days 

and other days. Weekend is a feature indicating whether a day is a weekend (e.g., 

Saturday and Sunday). It captures variations in electricity usage patterns during non-

working days. Holiday is a feature that indicates whether a day is a public holiday. It 

captures special consumption patterns during holidays. Bridging Holiday indicates 

whether a day falls between a holiday and a weekend, or between two holidays. These 

variables are commonly used in machine learning models to improve the accuracy of 

electricity demand forecasting. By employing predictive models such as machine 

learning algorithms or statistical regressions, these variables can be analyzed to 

determine their relationships. The anticipated outcome is a reliable forecast of 

electricity demand at specific points in time, enabling energy companies to plan their 

energy supply effectively. 

 

1.4.2 Load Forecasting Models 

Load forecasting models are predictive tools used to estimate electricity load 

over a specified time horizon. They can be classified into two main categories: 

traditional statistical models and artificial intelligence-based models. 

Traditional statistical models, such as Linear Regression, Time Series Models 

(ARIMA, SARIMA), and Exponential Smoothing, rely on simpler methods to forecast 
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load based on historical data. Linear regression predicts load based on linear 

relationships with variables such as temperature or time of day, while time-series 

models like ARIMA and SARIMA capture trends and seasonality in the data. 

Exponential smoothing assigns exponentially decreasing weights to past observations, 

making it helpful in forecasting data with trends or seasonal patterns. 

AI-based models, including Machine Learning (ML) Models and Deep 

Learning (DL) Models, handle more complex, non-linear patterns in large datasets. 

Machine learning models such as Support Vector Regression (SVR), Artificial Neural 

Networks (ANN), Random Forest (RF), and Gradient Boosting (XGBoost, CatBoost, 

LightGBM) excel in capturing intricate relationships and patterns in data. Deep learning 

models such as Recurrent Neural Networks (RNNs), Long Short-Term Memory 

(LSTMs), Convolutional Neural Networks (CNNs), and Transformer Models are 

particularly effective at modeling sequential data and long-range dependencies, 

achieving high accuracy in forecasting. While traditional models are more 

straightforward, more interpretable, and work well with smaller datasets, AI-based 

models require larger datasets. Still, they are more flexible, offering higher accuracy 

and the ability to manage complex, non-linear relationships in the data. 

 

1.5 Research Problem 

Despite considerable progress in ML-based short-term load forecasting, 

accuracy remains limited by three persistent challenges. First, forecast errors remain 

large during holidays and bridging holidays, as these days exhibit irregular, 

unpredictable consumption patterns that differ sharply from those on regular weekdays 

and weekends. Second, many existing models fail to incorporate calendar-aware 

segmentation before training and therefore assume that the relationship between input 

features and electricity demand is consistent across all days, even though actual 

consumption varies by calendar type. Third, holidays and bridging holidays occur only 

a few times per year, resulting in insufficient training samples that prevent models from 

effectively learning their unique behavior.  

As a result, models trained on aggregated data often struggle during special days 

or high-variability periods, particularly in months like April and December, ultimately 

reducing forecasting reliability and increasing operational and generation planning 
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costs. This research aims to develop accurate and reliable forecasting models to predict 

peak load under varying patterns. This helps with better planning and management of 

power systems. 

 

1.6 Research Objectives 

 This study aims to improve the accuracy of daily peak load forecasting in 

Thailand by developing a two-stage hybrid framework. The specific objectives are: 

1. To develop five calendar-based classification approaches: Everyday, Rule-based, 

CART, and Random Forest (RF) Classification. 

2. To apply three forecasting models: Multiple Linear Regression (MLR), Support 

Vector Regression (SVR), and Random Forest Regression (RF) within each 

classified subset. 

3. To propose fallback strategies for handling days with insufficient training samples. 

4. To evaluate and compare forecasting performance across models and classification 

strategies using MAPE and RMSE. 

5. To analyze performance across months and calendar types, highlighting high-error 

periods and model robustness. 

 

1.7 Research Contribution 

 This research makes a practical contribution to both Thailand and France, 

showing that even minor improvements in short-term forecasting accuracy can lead to 

substantial benefits across the entire system. For instance, in Thailand, where annual 

electricity consumption is projected to reach 214,469 GWh in 2024, a mere 1% 

improvement in the Mean Absolute Percentage Error (MAPE) could result in about 

2,144 GWh per year of better-scheduled energy production. This would lead to a 

reduction of 214 GWh per year in reserve dispatch, translating to nearly 900 million 

THB in annual savings on operating costs. 

 Similarly, in France, which consumes over 450,000 GWh annually and 

experiences significant load fluctuations mainly due to electric heating, a 1% increase 

in forecasting accuracy could yield approximately 4,500 GWh per year in more precise 

scheduling. This improvement could save between 315 and 405 million EUR per year 

in balancing costs. 
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 Across both countries, the proposed Random Forest-based classification and 

forecasting framework not only enhances accuracy, particularly on challenging 

calendar days, but also improves economic dispatch, reduces system stress, and 

supports the long-term reliability of the power grid. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 Related Works and Models 

2.1.1 Random Forest and Ensemble-Based Machine Learning Models 

Alquthami et al. conduct a rigorous comparative analysis of various machine 

learning algorithms for STLF using a real-world dataset from a Saudi Arabian 

utility(Alquthami et al., 2022). The study evaluates the performance of Support Vector 

Machines (SVM), Random Forests (RF), Artificial Neural Networks (ANN), and deep 

learning models, including Gated Recurrent Units (GRU) and standard Recurrent 

Neural Networks (RNN). Their key finding is that the Random Forest algorithm and 

the GRU deep learning model consistently provide the highest accuracy, demonstrating 

the lowest Mean Absolute Percentage Error (MAPE) and Root Mean Square Error 

(RMSE), thereby validating the robustness of both ensemble and advanced neural 

network methods for this task. 

Dudek provides a comprehensive and systematic study dedicated entirely to the 

Random Forest (RF) algorithm for STLF. Rather than hybridizing, this paper offers a 

deep dive into the model's architecture and parameters, including the number of trees, 

input variable configurations, and tree depth. The study rigorously analyzes how these 

parameters affect forecasting accuracy (Dudek, 2022). It concludes that a well-tuned 

RF is a highly effective, robust, and simple-to-implement standalone solution for STLF, 

often outperforming more complex models. 

Fan et al. explores a novel application of Random Forests to construct a 

multivariable response surface for STLF (Fan et al., 2022). Instead of using RF for 

direct time-series prediction, they use it to model the complex, non-linear relationships 

among multiple input variables (such as temperature, humidity, and time of day) and 

the resulting load. This RF-generated surface serves as a sophisticated regression tool 

that accurately maps inputs into outputs, providing a new framework for using 

ensemble methods in forecasting. 
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Gao et al. focus on improving the standard Random Forest algorithm 

specifically for ultra-short-term electricity load forecasting (e.g., 15-minute or 30-

minute intervals) (Gao et al., 2023). Their improved random forest model optimizes 

hyperparameters and feature selection using a metaheuristic algorithm. The goal is to 

create a model that is not only accurate but also computationally efficient, which is a 

critical requirement for high-frequency, real-time forecasting. 

Khan et al. address the dual challenges of multiple load types (e.g., residential, 

commercial, industrial) and limited sampling data. They propose an effective ensemble 

learning model that trains distinct machine learning models (e.g., SVM, RF, k-NN, 

ANN) and combines their predictions using weighted voting. This ensemble method 

proves more stable and accurate than any single model, particularly in sparse-data 

environments(Khan et al., 2024). 

Magalhães et al. focus on enhancing the Random Forest model through a dual-

optimization process (Magalhães et al., 2024). Their paper proposes an STLF model 

based on an optimized Random Forest, in which both the model's internal 

hyperparameters and the optimal feature subset are tuned simultaneously, often using a 

genetic algorithm or similar methodology. This approach systematically explores the 

configuration space to identify high-performing combinations of features and 

parameters. 

Srivastava et al. present a hybrid model that places strong emphasis on feature 

selection. The core of their methodology is a hybrid feature selection process that 

combines an elitist genetic algorithm with Random Forest(Srivastava, 2020). This two-

step process aggressively removes irrelevant or redundant features, and the resulting 

feature set is then fed into an M5P machine learning algorithm, a model tree that uses 

linear regression at its leaves for the final day-ahead forecast. 

Wai-Keung Yiu et al. introduce a novel ensemble model based on Regularized 

Greedy Forest (RGF). RGF is a tree-based ensemble algorithm, similar to Gradient 

Boosting or Random Forest, but it grows trees using a greedy optimization process with 

built-in regularization to prevent overfitting. The paper proposes an ensemble of RGF 

models and shows that this approach achieves higher accuracy and better generalization 

than more common ensemble methods, such as XGBoost (Wai-Keung Yiu et al., 2024). 
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Sankalpa et al. propose an ensemble-based STLF model that combines 

predictions from multiple individual models to produce a more accurate and stable final 

forecast (Sankalpa et al., 2022). A key aspect of their work is the emphasis on rigorous 

validation and cross-validation, ensuring that the ensemble’s superior performance is 

statistically significant and not merely due to overfitting to a particular test set. 

 

2.1.2 Hybrid Deep Learning and Machine Learning Models 

Chen et al. argue that forecasting accuracy is heavily dependent on the quality 

of input data and features. They propose a combination forecasting method that begins 

with advanced feature extraction, using techniques like Kernel Principal Component 

Analysis (KPCA) and Singular Spectrum Analysis (SSA) to decompose the original 

load data and remove noise (Chen et al., 2024). This cleaned and feature-enhanced data 

is then fed into a hybrid deep learning model (e.g., GRU-TCN), demonstrating that 

sophisticated data pre-processing can significantly improve the predictive power of 

subsequent forecasting models. 

Cui et al. present a sophisticated multi-stage hybrid model for STLF. The 

methodology first addresses feature engineering by employing a combined XGBoost–

RF feature selection technique to identify and isolate the most influential input 

variables. The optimized feature set is then fed into a deep learning architecture 

combining a Convolutional Neural Network (CNN) and a Gated Recurrent Unit (GRU) 

(Cui et al., 2024). The CNN layer extracts spatial features from the inputs, while the 

GRU layer models the temporal dependencies, creating a potent hybrid that captures 

complex temporal patterns. 

Fang et al. propose a hybrid model for ultra-short-term load prediction that 

combines LSTM and Random Forest (LSTM–RF). In this architecture, the LSTM 

network is used to model the primary time-series component and capture the main trend 

of the load data(Fang et al., 2022). The Random Forest model is then employed to 

predict residual error, i.e., the element of the forecast that the LSTM failed to capture. 

The final, more accurate prediction is the sum of the LSTM's forecast and the RF's 

residual correction. 

Fan et al. introduce a complex, multi-stage hybrid model designed for high-

accuracy STLF (Fan et al., 2021). Their model integrates Support Vector Regression 

Ref. code: 25686622040142SXF



14 
 

 

(SVR), known for its ability to handle non-linear data, with Grey Catastrophe modeling, 

which addresses data uncertainty, and Random Forests. In this framework, RF is used 

to refine predictions or select features, complementing the SVR model. This three-part 

hybridization aims to leverage the strengths of each method to produce a final forecast 

that is more robust and accurate than any single model. 

Liu et al. propose a highly structured, three-stage hybrid model. First, the 

historical load data are clustered using an improved fuzzy C-means algorithm to 

automatically group days into distinct patterns (e.g., high-load weekdays, low-load 

weekends). Second, Random Forest is used to select features within each cluster. 

Finally, a separate Deep Neural Network (DNN) is trained for each data cluster, 

yielding a set of specialized models that together produce a more accurate final forecast 

(F. Liu et al., 2021). 

Liu et al. leverage state-of-the-art deep learning architectures by proposing a 

model combining time-series clustering with a Transformer network. Similar to other 

clustering-based methods, their approach first groups days with identical load profiles. 

It then applies to a Transformer model with a self-attention mechanism to generate the 

forecast (Y. Liu et al., 2025). This allows the model to capture long-range and complex 

temporal dependencies in the data that simpler RNNs or LSTMs might miss. 

Veeramsetty et al. propose a hybrid deep learning model that combines Random 

Forest (RF) and a Gated Recurrent Unit (GRU). In this architecture, RF handles static, 

non-temporal features (e.g., day of week or weather) and performs feature importance 

analysis, while the GRU models complex time-series dependencies (Veeramsetty et al., 

2022). The outputs of both models are combined to exploit the feature-handling strength 

of RF and the temporal-modeling strength of GRU. 

Yamasaki et al. focus on optimized hybrid ensemble learning approaches for 

very short-term load forecasting (VSTLF). Their framework combines predictions from 

multiple models (e.g., RF, SVR, ANN) and uses a metaheuristic optimization algorithm 

to find the optimal weights for blending their forecasts. This automated weighting 

process produces a custom-tuned ensemble that outperforms its individual components 

for high-frequency (e.g., 5-minute) predictions (Yamasaki et al., 2024). 

 

Ref. code: 25686622040142SXF



15 
 

 

2.1.3 Probabilistic and Risk-Aware Forecasting 

Aprillia et al. shift the focus from traditional point forecasting to probabilistic 

forecasting, which is critical for risk assessment. They propose an Optimal Quantile 

Regression Random Forest (QRRF) model (Aprillia et al., 2021). This method not only 

predicts the expected load but also generates a range of outcomes (quantiles), creating 

a prediction interval. This approach allows grid operators to quantify the risk and 

uncertainty associated with their forecasts, representing a significant improvement over 

the deterministic method. 

Zhang et al. contribute to probabilistic load forecasting by proposing a hybrid 

LSTM-based Twin Support Vector Regression (TWSVR) model (Zhang et al., 2025). 

The LSTM component is used to extract and model temporal patterns in the time-series 

data, and the processed information is fed into a TWSVR model, an advanced variant 

of SVR. The method is particularly effective at generating both point forecasts and 

predictive intervals (upper and lower bounds), thereby enabling practical risk 

assessment. 

 

2.1.4 Meta-Learning, Clustering, and Transferability 

He et al. tackle the challenging problem of household load forecasting, where 

training data for a new house are minimal. They propose a transferable Model-Agnostic 

Meta-Learning (MAML) approach (He et al., 2022). This technique involves training a 

meta-model on a large set of households, which can then be rapidly and accurately 

adapted to a new household with only a few data points, thereby overcoming the cold-

start problem that often affects individualized forecasting. 

Pinheiro et al. (Pinheiro et al., 2023)present a systematic literature review (SLR) 

that maps the STLF research field. Rather than proposing a new model, they synthesize 

and organize existing literature. Their systematic approach categorizes studies by 

forecasting target, ranging from the entire grid (system level) to individual secondary 

substations (neighborhood level). This analysis identifies trends, popular 

methodologies (such as RF and LSTM), and remaining research gaps across different 

levels of the power grid. 

Madhukumar et al. present a case study on STLF for a university campus. This 

type of institutional load is unique, as it is driven by factors (e.g., academic calendars, 
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class schedules, laboratory usage) that differ significantly from typical residential or 

commercial patterns. The paper evaluates various regression models to identify the best 

fit for this specific and challenging load profile, highlighting the need for tailored 

models rather than a one-size-fits-all approach (Madhukumar et al., 2022). 

 

2.1.5 Calendar, Holiday, and Special-Day Aware Forecasting 

Lahouar and Slama(Lahouar & Ben Hadj Slama, 2015), an earlier but 

foundational paper in this list, demonstrates the power of combining machine learning 

with domain knowledge. They propose a day-ahead forecast model that combines 

Random Forest with expert input selection. This two-stage process involves, first, using 

human expertise to identify a set of potentially relevant features such as weather and 

calendar data, and second, using the built-in feature importance mechanism of Random 

Forest to select the optimal feature subset. This yields a simple yet highly effective 

model. 

Lee provides a focused analysis on forecasting daily peak load in South Korea, 

a metric that is often more critical for grid stability than the complete 24-hour profile. 

The study evaluates a suite of regression-based methods, ranging from classical 

multiple linear regression to more advanced machine learning models such as SVR and 

RF(Lee, 2022). It serves as a practical case study for comparing the efficacy of these 

approaches in predicting maximum daily load. 

López et al. directly address the special-day or holiday problem, which is a key 

gap in many STLF studies. Using a Spanish dataset, their work focuses exclusively on 

classifying special days (e.g., national holidays, regional holidays, bridging holidays). 

They argue that accurately identifying these days before forecasting is a critical 

prerequisite (López et al., 2019). Once they are classified, specialized models or 

similar-day methods can be applied, but the classification step itself remains a 

significant, unsolved challenge for forecasters. 

Son et al.(Son et al., 2022), similar to López et al. (López et al., 2019), directly 

tackle the holiday forecasting problem. Their proposed method is based on modifying 

the load profiles of identical days. When forecasting a holiday, the model first identifies 

similar past days (e.g., previous occurrences of the same holiday or other holidays with 

similar characteristics) and then modifies these historical profiles, such as scaling them 
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up or down based on recent trends, before combining them to create the final day-ahead 

forecast. 

Thu Tun et al. focus on the critical pre-processing step of data cleaning. They 

propose a rule-based classification method and an outlier-replacement approach to 

improve data quality before forecasting. This involves creating a set of rules to 

automatically identify anomalous data points, such as measurement errors or special 

days like holidays (Thu Tun et al., 2023). Once identified, these outliers are replaced 

with more representative values, leading to a cleaner dataset that improves the accuracy 

of subsequent forecasting models. 

Zhou et al. address the dual problem of forecasting both the daily maximum 

load and its time of occurrence. Their model first uses the Hausdorff distance, a metric 

for measuring the distance between two sets of points, to identify similar days in the 

past (Zhou et al., 2021). Once these similar days are found, an Elastic Net regression 

model (a linear regression variant that combines L1 and L2 regularization) is trained on 

this subset to predict both the peak load and its timing.
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Table 2.1 Summary of Related Short-Term Load Forecasting Literature 

Author (Year) Journal Q 
Forecasting 

Period 

Data 

Resolution 

Forecast 

Horizon  

Classification 

Model 

Forecasting 

Model  
Inputs Used 

Accuracy 

Metrics 
Research Gap 

Alquthami et 

al. (2022) 
IEEE Access Q1 STLF 

Not 

specified 

1-hour 

ahead 
None 

RF, SVR, 

ANN, Linear 

Regression 

Load, 

temperature 

MAPE, 

RMSE 

No 

calendar/day-

type 

classification 

Aprillia et al. 

(2021) 

IEEE Trans 

Smart Grid 
Q1 STLF 

Hourly (24 

periods) 
Day-ahead None QRF 

Load, 

temperature 

Pinball 

loss, 

MAPE 

No special-day 

or B-Hol 

classification 

Chen et al. 

(2024) 
IEEE Access Q1 STLF 

Not 

specified 

1-hour 

ahead 
None 

RF (feature 

extraction) 

Load 

features 

RMSE, 

MAPE 

No day-type 

classification 

Cui et al. 

(2024) 
Processes Q1 STLF 

Not 

specified 

30-min 

ahead 
None 

CNN–GRU + 

XGBoost + RF 

Load, 

weather 

MAPE, 

RMSE 

Deep models do 

not segment 

days 

Dudek (2022) Energies Q1 STLF 
Hourly (24 

periods) 

1-hour 

ahead 
None RF Lag load 

MAPE, 

RMSE 

RF not used as a 

classifier 

Fang et al. 

(2022) 

J Phys Conf 

Ser 
Q2 U-STLF 

Not 

specified 

15-min 

ahead 
None LSTM + RF Load RMSE 

No calendar 

segmentation 

Fan et al. 

(2021) 

Utilities 

Policy 
Q1 STLF 

Hourly (24 

periods) 

1-hour 

ahead 
None 

SVR + Grey 

System + RF 

Load, 

weather 

MAPE, 

RMSE 

No holiday/B-

Hol 

segmentation 

Fan et al. 

(2022) 
IJEPES Q1 STLF 

Not 

specified 

1-hour 

ahead 
None RF 

Load, time 

features 
RMSE 

No 

classification 
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Gao et al. 

(2023) 
AIP Advances Q1 U-STLF 

Not 

specified 

5 min 

ahead 
None IRF Load RMSE 

No calendar 

features 

He et al. 

(2022) 
IEEE TPS Q1 STLF 

Not 

specified 

1-hour 

ahead 
None MAML Load 

MAE, 

RMSE 

No calendar 

awareness 

Khan et al. 

(2024) 
IEEE Access Q1 STLF 

Not 

specified 

1-hour 

ahead 

Cluster 

segmentation 

Voting 

Ensemble (RF, 

SVM, KNN, 

ANN) 

Load, 

cluster ID 

RMSE, 

MAE 

Not calendar-

based 

Lahouar & 

Slama (2015) 
ECM Q1 STLF 

Hourly (24 

periods) 
Day-ahead None RF 

Load, 

weather 
MAPE 

No day-type 

segmentation 

Lee (2022) Sustainability Q1 STLF Daily Day-ahead None MLR 
Load, 

weather 
MAPE 

No ML 

classification 

Liu et al. 

(2021) 
IEEE Access Q1 STLF 

Hourly (24 

periods) 

1-hour 

ahead 
FCM RF + DNN 

Load, 

weather 
MAPE 

Clustering not 

calendar-based 

Liu et al. 

(2025) 
Electronics Q1 STLF 

Not 

specified 

1-hour 

ahead 

K-Shape 

Clustering 

Transformer 

NN 

Load 

clusters 
RMSE 

No holiday/B-

Hol 

López et al. 

(2019) 
Energies Q1 STLF 

Hourly (24 

periods) 
Day-ahead 

Manual 

Holiday 

Classification 

Linear 

Regression 

Load, 

calendar 
MAPE 

No ML 

classifier 

Magalhães et 

al. (2024) 
Energies Q1 STLF 

Not 

specified 

1-hour 

ahead 
None Optimized RF Load RMSE 

RF only; no 

two-stage 

approach 
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Madhukumar 

et al. (2022) 
IEEE Access Q1 

Campus 

STLF 

15-min (96 

periods) 

15 min 

ahead 
None MLR, SVR, RF Load MAPE 

No calendar 

segmentation 

Pinheiro et al. 

(2023) 

Applied 

Energy 
Q1 STLF 

Not 

specified 

1-hour 

ahead 

Hierarchical 

Clustering 
RF, SVR, ANN Load RMSE 

No calendar 

grouping 

Sankalpa et al. 

(2022) 
Energies Q1 STLF 

Hourly (24 

periods) 

1-hour 

ahead 
Simple manual 

Ensemble (RF 

+ GBM + 

ANN) 

Load MAPE 
No ML-based 

classification 

Son et al. 

(2022) 
IEEE Access Q1 

STLF 

(holidays) 

Hourly (24 

periods) 

Day-ahead 

(holidays) 
Similar day MLR/SVR 

Load 

profiles 
RMSE 

No ML 

classifier; no B-

Hol 

Srivastava et 

al. (2023) 
Energies Q1 STLF 

Hourly (24 

periods) 
Day-ahead None 

M5P + GA + 

RF 
Load MAPE 

No day-type 

grouping 

Thu Tun et al. 

(2023) 
APPEEC Q2 STLF 

30 mins (48 

periods) 
Day-ahead Rule-based 

MLR, SVR, 

XGB, NN 

Load, 

calendar 
MAPE 

Not ML 

classification 

Veeramsetty et 

al. (2022) 

Electrical 

Engineering 
Q1 STLF 

Not 

specified 

1-hour 

ahead 
None RF + GRU Load RMSE 

No calendar 

segmentation 

Yiu et al. 

(2024) 
IEEE Access Q1 STLF 

Not 

specified 

30-min 

ahead 
None RGF Load 

MAPE, 

RMSE 

Uniform for all 

days 

Yamasaki et 

al. (2024) 
IJEPES Q1 VSTLF 

30 mins (48 

periods) 

30-min 

ahead 
None 

Hybrid 

Ensemble 

(GBM + RF + 

DL) 

Load RMSE 
No day-type 

modeling 
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Zhang et al. 

(2025) 
IEEE TNNLS Q1 STLF 

Not 

specified 

1-hour 

ahead 
None 

Twin SVR + 

LSTM 

Load, 

weather 

CRPS, 

RMSE 

No calendar 

segmentation 

Zhou et al. 

(2021) 
AEEES Q2 STLF Daily Day-ahead  None Elastic Net Load RMSE 

No 

classification 
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CHAPTER 3 

METHODOLOGY 

 

In this research, two historical electricity load datasets are used: Thailand’s load 

dataset from the Electricity Generating Authority of Thailand (EGAT) and France’s 

national load dataset obtained from ENTSO-E. The Thailand dataset covers five 

regions: the Central area, Bangkok, the South, the North, and the North-East. It provides 

highly granular insights into consumption behavior, differentiated by day type such as 

weekday, weekend, holiday, and bridging holiday, and influenced by Thailand’s 

tropical climate, which drives pronounced seasonal peaks during hot months.  

In contrast, the French dataset comprises hourly national load values, with 24 

periods per day, for the same three-year timeframe. It reflects demand patterns shaped 

by a temperate climate, strong winter heating needs, and clear weekday-weekend 

distinctions. By integrating the datasets from Thailand and France, we can compare 

climate-driven load characteristics and enhance the robustness and generalizability of 

our forecasting framework across different power systems. We derive two-dimensional 

quantitative features, including load, lagged load variables, and calendar indicators, 

using traditional statistical methods and modern machine learning models. Model 

performance is assessed using the Mean Absolute Percentage Error (MAPE) and Root 

Mean Squared Error (RMSE), providing reliable and comprehensive metrics for short-

term load forecasting. The overall forecasting methodology comprises four key 

components: data preprocessing, calendar-based classification, model development, 

and performance evaluation. 

 

3.1 Overview of the Proposed Framework 

The proposed forecasting framework employs a two-stage hybrid architecture 

designed to enhance the accuracy of short-term load forecasting in both Thailand and 

France. In the initial preprocessing stage, we address missing data and gather relevant 

features, including the Month of Year, Day of Week, Holiday indicators, Bridging 

Holiday indicators, and lagged load data. These processed datasets are then partitioned 
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into training and testing sets by day type to account for behavioral differences across 

calendar patterns.  

This step is essential because Thailand and France show different behavioral 

load patterns. In Thailand, load trends are primarily driven by cooling demand, with 

pronounced afternoon peaks and high sensitivity to holidays. In contrast, France's load 

is largely heating-driven, characterized by a strong winter peak and notable variations 

between weekdays and weekends. 

 

3.2 Calendar-Based Classification Methods 

3.2.1 Everyday Classification  

The Everyday Classification approach serves as the baseline classification 

method, in which each test day is forecasted using a fixed number of previous training 

days, regardless of their calendar type. In this study, behavioral shifts in demand driven 

by social or economic factors, such as reduced activity during holidays or increased 

demand, exhibit strong short-term temporal continuity, meaning recent load behavior 

provides valuable information for near-future predictions. While this approach is 

straightforward to implement, it does not differentiate between day types such as 

weekdays, weekends, or holidays. Consequently, it may not fully capture behavioral 

shifts in demand driven by social or economic factors, such as reduced activity during 

holidays or increased demand on workdays. Nonetheless, Everyday Classification 

provides a valuable benchmark against which the effectiveness of more advanced 

classification methods can be compared. 
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3.2.2 Rule-Based Classification  

 

 

Figure 3.1 Forecasting Framework with Rule-Based Classification 

The Rule-Based Classification method extends the Everyday approach by 

explicitly incorporating day-type segmentation. This classification ensures that the 

training data used for forecasting possess similar load patterns, reflecting both 

countries’ unique calendar dynamics and cultural events. For example, national 

holidays in Thailand, such as Songkran or New Year’s Eve, typically exhibit 

significantly lower electricity demand due to reduced industrial and commercial 

operations. By training forecasting models on samples of the same-day type, Rule-

Based Classification enhances the contextual relevance of the training dataset. It 

reduces forecasting bias caused by mismatched temporal patterns. 
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3.2.3 CART Classification  

 

Figure 3.2 CART-Based Classification and Forecasting Model Framework 

The Classification and Regression Tree (CART) method introduces a data-

driven approach to segmenting the training dataset. Unlike the Rule-Based 

classification, which relies on predefined calendar rules, the CART classification model 

automatically identifies optimal splitting thresholds based on the predictor variables, 

Month of Year (MoY), Day of Week (DoW), Holiday, and Bridging Holiday. Through 

recursive binary partitioning, the CART algorithm divides the dataset into leaf nodes, 

where each node represents a subset of days with similar load behaviors. Separate 

forecasting models are trained at each leaf node using only the data belonging to that 

node. During testing, each test day is assigned to a corresponding leaf node, and its 

forecast is generated using the model trained on that node’s data.  
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3.2.4 Random Forest Classification  

 

Figure 3.3 Random Forest Classification and Forecasting Framework 

 

The Random Forest Classification represents the most advanced approach used 

in this study and forms the foundation of the proposed hybrid forecasting model. RF is 

an ensemble of multiple decision trees, each trained using randomly selected subsets of 

the training data and input features, including Month of Year (MoY), Day of Week 

(DoW), Holidays (Hol), and Bridging Holidays (B-Hol). For each test day, the model 

determines the leaf node in each tree where it falls, and the corresponding subset of 

training data in that leaf is used to train an individual forecasting model.  
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3.2.5 Node Splitting in Tree-Based Methods 

 

Figure 3.4 Structure of a Decision Tree 

 

Figure 3.4 illustrates how the Decision Tree splits the training data based on 

classification features. The tree starts from the root node, divides samples at decision 

nodes, and ends at leaf nodes (𝑙1, 𝑙2, 𝑙3) containing similar load patterns. Each leaf node 

represents a group of days with comparable characteristics and serves as the training 

subset for forecasting models.  

 

Table 3.1 Sample of Training Data for Tree-Based Classification. 

No. Type Date 

Independent Variables for Classification 

(Features) 

Target Variable 

(Peak Load) 

MoY DoW Hol B_Hol 𝐿𝑡1 

1 Train 14-10-19 10 1 1 0 18832.4 

2 Train 15-10-19 10 2 0 0 19546.8 

3 Train 16-10-19 10 3 0 0 22190.8 

4 Train 17-10-19 10 4 0 0 22817.2 

5 Train 18-10-19 10 5 0 0 22601.3 

6 Train 19-10-19 10 6 0 0 22395.6 

7 Train 20-10-19 10 7 0 0 22142.6 

8 Train 21-10-19 10 1 0 0 20544.0 

9 Train 22-10-19 10 2 0 0 22737.9 
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In the Tree-Based Classification model, the splitting process is guided by the 

Mean Squared Error (MSE) at each node, resulting in training sample groups with 

homogeneous load characteristics. At each decision node, the algorithm evaluates 

potential splits across all available independent features. It calculates the resulting MSE 

for each possible split calculates the resulting MSE for each possible division.  

 

𝑀𝑆𝐸 𝑠𝑝𝑙𝑖𝑡 =
𝑆𝑛

𝑙𝑒𝑓𝑡

𝑆𝑛
𝑡𝑜𝑡𝑎𝑙 𝑀𝑆𝐸𝑙𝑒𝑓𝑡+ 

𝑆𝑛
𝑅𝑖𝑔ℎ𝑡

𝑆𝑛
𝑡𝑜𝑡𝑎𝑙  𝑀𝑆𝐸𝑟𝑖𝑔ℎ𝑡 (3.1) 

 

The feature and threshold that minimize the post-split MSE are selected as the 

optimal partitioning criterion. This ensures that each subsequent data subset, as well as 

each child node, contains samples with similar calendar attributes and load patterns, 

thereby reducing variability and improving model interpretability. 

In Random Forest (RF) Classification, this process is further enhanced by 

random feature selection, which, together, improves generalization and reduces 

overfitting. Instead of evaluating all input features at every split, the Random Forest 

algorithm randomly selects a subset of features for each tree, commonly defined by the 

parameter max-features = sqrt. This randomness ensures that individual trees capture 

different aspects of the calendar-load relationship, promoting diversity within the 

ensemble. Each tree in the forest independently identifies the feature splits that 

minimize its node-level MSE, producing multiple classification trees that collectively 

form a robust ensemble model.  

 

Step 1: Computing Root Node MSE 

In the first step of tree construction, all training samples are centralized into a 

single root node. The CART algorithm evaluates the heterogeneity of this node using 

the Mean Squared Error (MSE), which measures the variation of target load values 

around the mean of the node. This MSE acts as a baseline for impurity that will be 

reduced through subsequent splits. A high MSE suggests that the node contains samples 

with diverse load characteristics, indicating that data partitioning will improve 

homogeneity and, consequently, enhance the reliability of subsequent forecasting steps. 
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𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑛 = 𝑠𝑛 = 9 (3.2) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑 𝑖𝑛 𝑁𝑜𝑑𝑒 𝑛 = 𝐿𝑎𝑣𝑔
𝑛 =

∑ 𝐿𝑡=1
𝑑𝑛

𝑑=1  

𝑠𝑛
=

193,808.6

9
= 21,534.28 (3.3) 

𝑀𝑆𝐸 𝑅𝑜𝑜𝑡 =
1

𝑠9
∑ (𝐿𝑡=1

𝑑 − 𝐿𝑎𝑣𝑔
9 )

29
𝑑=1 =  

18,006,947.15

9
= 2,000,771.9 (3.4) 

 

Step 2: Identifying Candidate Split Features 

After assessing the impurity of the root node, the algorithm examines each 

feature in the dataset as a potential splitting variable. For categorical calendar indicators 

such as Holiday and Bridging Holiday, binary splits are considered, whereas ordinal 

features such as Day of Week and Holiday are evaluated using meaningful threshold 

values. At this stage, all potential splits remain candidates, so the algorithm 

enumerates the feasible splits that could lead to a more homogeneous data group 

in subsequent steps. 

 

Step 3: Computing MSE for Decision Node 

For each candidate feature, CART simulates a split and measures the resulting 

reduction in impurity. The data are divided into left- and right-child nodes based on the 

feature threshold, and the MSE for each child node is calculated. The weighted post-

split MSE is then obtained by combining the impurities of the child nodes in proportion 

to their weights. This step quantifies how effectively each feature partitions the data 

into subsets with reduced load variability, forming the basis for selecting the optimal 

split. 

 

For Holiday, 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑛 = 𝑠𝑛 = 1 (3.5) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑 𝑖𝑛 𝑁𝑜𝑑𝑒 𝑛 = 𝐿𝑎𝑣𝑔
𝑛 =

∑ 𝐿𝑡=1
𝑑𝑛

𝑑=1  

𝑠𝑛
=

18,832.4

1
=  18,832.4 (3.6) 

𝑀𝑆𝐸 𝐻𝑜𝑙 =
1

𝑠1
∑ (𝐿𝑡=1

𝑑 − 𝐿𝑎𝑣𝑔
1 )

21
𝑑=1 =  

0

1
= 0 (3.7) 
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For non-Holiday, 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑛 = 𝑠𝑛 = 8 (3.8) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑 𝑖𝑛 𝑁𝑜𝑑𝑒 𝑛 = 𝐿𝑎𝑣𝑔
𝑛 =

∑ 𝐿𝑡=1
𝑑𝑛

𝑑=1  

𝑠𝑛
=

174,976.2

8
= 21,872.02 (3.9) 

𝑀𝑆𝐸 𝑛𝑜𝑛−𝐻𝑜𝑙 =
1

𝑠8
∑ (𝐿𝑡=1

𝑑 − 𝐿𝑎𝑣𝑔
1 )

28
𝑑=1 =  

9,794,216.13

9
= 1,224,277.26 (3.10) 

 

For Weekday, 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑛 = 𝑠𝑛 = 7 (3.11) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑 𝑖𝑛 𝑁𝑜𝑑𝑒 𝑛 = 𝐿𝑎𝑣𝑔
𝑛 =

∑ 𝐿𝑡=1
𝑑𝑛

𝑑=1  

𝑠𝑛
=

149,270.4

7
= 21,324.34 (3.12) 

𝑀𝑆𝐸 𝑊𝑒𝑒𝑘𝑑𝑎𝑦 =
1

𝑠7
∑ (𝐿𝑡=1

𝑑 − 𝐿𝑎𝑣𝑔
7 )

27
𝑑=1 =  

16,586.506.56

7
= 2,369,500.93 (3.13) 

 

For Weekend, 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑛 = 𝑠𝑛 = 2 (3.14) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑 𝑖𝑛 𝑁𝑜𝑑𝑒 𝑛 = 𝐿𝑎𝑣𝑔
𝑛 =

∑ 𝐿𝑡=1
𝑑𝑛

𝑑=1  

𝑠𝑛
=

44,538.2

2
= 22,269.1 (3.15) 

𝑀𝑆𝐸 𝑅𝑜𝑜𝑡 =
1

𝑠2
∑ (𝐿𝑡=1

𝑑 − 𝐿𝑎𝑣𝑔
7 )

22
𝑑=1 =  

32,004.5

9
= 16,002.25 (3.16) 

 

Step 4: Evaluating and Comparing Impurity Reduction 

CART compares the weighted impurity values across all calendar features to 

determine which split yields the most significant improvement. A feature is considered 

more informative when it leads to child nodes with lower variability than the parent 

node. This comparison ensures that the selected split meaningfully enhances 

homogeneity in the training data, thereby improving the interpretability and predictive 

usefulness of downstream leaf nodes. 

 

Step 5: Selecting the Best Split for the Decision Node 

The feature associated with the lowest post-split impurity is selected as the 

optimal splitting rule for the decision node. This ensures that each dataset division 

maximizes the reduction in heterogeneity. The chosen feature becomes the decision 
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boundary at the node, and the dataset is partitioned accordingly. This step formally 

establishes the first layer of structure in the CART model and serves as the foundation 

for all subsequent splits. 

 

𝑀𝑆𝐸 𝑓𝑜𝑟 𝑠𝑝𝑙𝑖𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐻𝑜𝑙 =1,088,246.459 (3.17) 

 

𝑀𝑆𝐸 𝑓𝑜𝑟 𝑠𝑝𝑙𝑖𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐷𝑜𝑊 =1,846,501. 229 (3.18) 

 

Between the two candidate splits, the split using the Holiday (Hol) feature 

produces a lower weighted MSE than the split using the Day of Week (DoW) feature. 

In the CART algorithm, the criterion for selecting a split at each node is to choose the 

feature that yields the most significant reduction in impurity. A lower post-split MSE 

indicates that the resulting child nodes are more homogeneous and that the feature is 

more effective in separating days with similar load patterns. Since the MSE obtained 

from the Holiday split is smaller than the MSE obtained from the Day-of-Week split, 

the Holiday feature provides a clearer division of the data at this stage. For this reason, 

the Holiday split is chosen as the decision rule for the node, because it yields the most 

accurate and meaningful separation according to the CART splitting criterion. 

Although the Holiday split produces a branch containing only a single holiday 

sample, this does not affect the splitting logic. A one-sample node naturally has zero 

impurity because there is no variation within the group, and it is treated as a terminal 

node without further partitioning. 

 

Figure 3.5 Example of Feature Splitting from the Root Node 
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Step 6: Recursive Splitting of Child Nodes 

Following the first split, CART applies the same impurity-based evaluation 

process recursively to each child node. For each subset, the algorithm recalculates the 

node-level MSE, explores all potential splits on the remaining features, and measures 

the improvement in homogeneity. Through this recursive procedure, the decision tree 

grows branch by branch, progressively refining the grouping of days according to their 

calendar and load characteristics. 

 

Step 7: Evaluating Secondary Splits 

Within each child node, CART continues assessing candidate features in the 

same manner as at the root. Some features may no longer provide meaningful separation 

if the node contains limited or uniform values for that variable. Others may achieve 

substantial impurity reduction by distinguishing among different behavioral patterns 

within the remaining subset. At this stage, CART identifies which feature provides the 

most apparent differentiation in the context of the node’s current composition. 

 

Step 8: Selecting the Best Split at Deeper Levels 

After computing impurity reductions for all secondary candidates, the algorithm 

selects the feature that produces the most homogeneous partitions. This ensures that the 

tree continues to grow in a direction that preserves interpretability and predictive 

quality. By consistently selecting the feature that minimizes impurity at each depth, 

CART constructs a hierarchical structure that mirrors the underlying relationships 

between calendar factors and electricity load behavior. 

 

Step 9: Constructing the Decision Path 

As splits accumulate through successive levels, a hierarchical decision structure 

forms. Each decision node corresponds to a feature threshold, and the path from the 

root to a given leaf node represents a sequence of calendar-based conditions defining a 

specific type of day. These decision paths group days with similar load characteristics, 

resulting in leaf nodes that contain the most behaviorally consistent subsets of the 

dataset. 
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Step 10: Stopping the Splitting Process 

CART continues splitting nodes recursively until a stopping criterion is met, 

such as reaching a maximum tree depth, achieving minimal impurity reduction, or 

encountering nodes with insufficient sample size to justify further division. Once no 

further meaningful improvement is possible, the node is designated as a leaf. These leaf 

nodes then serve as the training subsets for the forecasting models, ensuring that 

predictions are based on groups of days sharing highly similar structural and behavioral 

attributes. 

 

 

Figure 3.6 Illustration of Node Splitting in Tree-Based Classification 

 

We tuned the Random Forest classifier’s hyperparameter by sweeping the 

number of trees. 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ∈ {1, … ,100} with fixed settings (criterion = squared error, 

max_features = √⋅, max_depth = None, bootstrap = False). The best validation MAPE 

was obtained at 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 10, which is therefore used in all reported experiments. 

 Increasing forest size beyond 10 produced little to no reduction in MAPE and, 

in several cases, even slightly worsened it. In our two-stage design, each tree partitions 

days into fine-grained leaves, and the forecasting model is trained within the leaf to 

which the test day belongs. Adding too many trees increases segmentation granularity 

and can fragment the training data per leaf, leading to data sparsity and higher variance 

in downstream forecasts.  
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Figure 3.7 Effect of Number of Trees on RF Classification Accuracy 

 

3.2.6 Feature Importance in CART and Random Forest Classification 

Analysis of the importance of nature provides insight into how strongly each 

calendar attribute contributes to the tree-based models' classification decisions. In this 

study, feature importance for both CART and Random Forest classifiers is computed 

based on the total reduction in Mean Squared Error (MSE) attributed to each feature 

across all splitting nodes. The underlying principle corresponds to the splitting 

mechanism described earlier in Section 3.2.5, in which a feature is selected at each node 

if it yields the most significant reduction in impurity. 

In the CART model, all available features are evaluated at each decision node, 

and the feature that yields the most significant reduction in MSE is selected. Because 

the root node split influences the most important proportion of the dataset, CART 

feature importance is highly sensitive to this initial decision. As a result, one dominant 

feature, typically the Month of the Year, receives disproportionately high importance. 

This behavior is consistent with the seasonal load variability illustrated earlier in 

Figures 1.2 and 1.3. Consequently, CART values tend to be less stable and more biased 

toward early splits. 

In contrast, the Random Forest classifier introduces randomness by 

subsampling features at each node. Although all trees are trained on the same dataset, 

the random subset of candidate features forces different trees to consider alternative 

splitting variables. This promotes structural diversity among trees and reduces the 

dominance of any single feature. The final importance values, obtained by averaging 
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impurity reductions across all trees, provide a more balanced and generalizable estimate 

of each feature’s predictive role. 

 

 

Figure 3.8 Feature Importance of Calendar Attributes in Tree-based Classifier 

 

The resulting feature-importance ranking is presented in Figure 3.8, which 

shows that seasonal and weekly patterns are the strongest determinants of day-type 

classification. Meanwhile, holiday-related features exhibit much lower importance due 

to their infrequent occurrence and heterogeneous load behavior. These findings 

reinforce the rationale for using Random Forest classification as the foundation of the 

proposed hybrid forecasting framework. 

 

3.3 Forecasting Models 

The forecasting stage is performed after each classification module identifies 

the test day for its corresponding group. Three forecasting models, Multiple Linear 

Regression (MLR), Support Vector Regression (SVR), and Random Forest Regression 

(RF), are then used to estimate the load profile using five lagged inputs as independent 

variables, such as the load from the previous day, two days prior, three days prior, one 

week prior, and two weeks prior. In contrast, the target variable is the actual load of 

that day. 

 

3.3.1 Multiple Linear Regression (MLR) 

Multiple Linear Regression is a fundamental statistical method for modeling the 

relationship between a target variable and multiple independent variables. It assumes a 

linear relationship between the actual and the forecasted load. 
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𝐹𝑡
𝑔(𝑑)= 𝑎0𝑡

𝑔
+ 𝑎1𝑡

𝑔  𝐿𝑡
𝑔(𝑑 − 14) + 𝑎2𝑡

𝑔
 𝐿𝑡

𝑔(𝑑 − 7) + 𝑎3𝑡
𝑔

 𝐿𝑡
𝑔(𝑑 − 3) +

𝑎4𝑡
𝑔

 𝐿𝑡
𝑔(𝑑 − 2) + 𝑎5𝑡

𝑔
 𝐿𝑡

𝑔(𝑑 − 1) 
(3.19) 

 

where 𝐹𝑡
𝑔(𝑑) is forecasted load on day 𝑑 at period t, 𝐿𝑡

𝑔
(𝑑 − 𝑘) is actual load of the 

same period 𝑡 on day 𝑑 − 𝑘(with 𝑘 = 1,2,3,7,14), 𝑎0𝑡
𝑔

 is intercept term, 

𝑎1𝑡
𝑔

, 𝑎2𝑡
𝑔

, 𝑎3𝑡
𝑔

, 𝑎4𝑡
𝑔

, 𝑎5𝑡  
𝑔

are regression coefficients representing the influence of past loads 

on the current forecasted load. 

 

3.3.2 Support Vector Regression (SVR) 

Support Vector Regression is a machine learning method derived from Support 

Vector Machines (SVM) that can capture both linear and nonlinear relationships 

between input features and target variables. SVR works by finding a regression function 

𝑓(𝑥). That deviates from the actual data points by no more than a specified margin 𝜖, 

while keeping the model as flat as possible. 

For a given input feature vector: 

𝑥𝑔
𝑡 (𝑑) = [𝐿𝑡

𝑔(𝑑 − 1), 𝐿𝑡
𝑔(𝑑 − 2), 𝐿𝑡

𝑔(𝑑 − 3), 𝐿𝑡
𝑔(𝑑 − 7), 𝐿𝑡

𝑔(𝑑 − 14)]
𝑇

 (3.20) 

 

𝐹𝑡
𝑔(𝑑) = ∑(𝛼𝑖 − 𝛼𝑖

∗) 𝐾 (𝑥𝑖
𝑔

, 𝑥𝑔
𝑡 (𝑑)) + 𝑏

𝑁

𝑖=1

 (3.21) 

where N is number of support vectors, 𝛼𝑖 , 𝛼𝑖
∗ is Lagrange multipliers (learned 

coefficients), 𝐾(𝑥𝑖
𝑔

,  𝑥𝑡
𝑔

(𝑑)) is kernel function measuring similarity between the 

training sample and the test input, 𝑏 is bias term. 

 

3.3.3 Random Forest Regression (RF) 

Random Forest is an ensemble learning technique that combines multiple 

decision trees to produce a more accurate and stable prediction. Each decision tree in 

the forest is trained on a random subset of data and a random subset of features, 

introducing diversity among trees and reducing overfitting. 
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𝐹𝑡
𝑔(𝑑) =

1

𝑇
∑ 𝐹𝑡,𝑛

𝑔 (𝑑)

𝑇

𝑛=1

 (𝑥𝑔
𝑡 (𝑑)) 𝑥𝑔

𝑡 (𝑑) (3.22) 

 

where T is total number of trees in the forest, 𝐹𝑡,𝑛
𝑔 (𝑑) is the forecasted load from the 

𝑛𝑡ℎregression tree, 

 

 

Figure 3.9 Averaging Predictions Across Trees in RF Regression
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CHAPTER 4 

DESIGN OF EXPERIMENTS 

 

4.1 Dataset Description 

The data we used in this study consist of two historical electricity load profiles 

for Thailand and France, obtained from EGAT and ENTSO-E, respectively, and both 

cover the three years from 2019 to 2021. The Thailand dataset comprises 48 half-hourly 

measurements per day, representing the net peak load recorded at 30-minute intervals, 

whereas French data contain 24 periods per day. Each record includes the date, time, 

day of week, month of year, holiday indicator, bridging-holiday indicator, and any 

additional notes identifying special calendar events. 

The dataset captures a wide range of load behaviors influenced by seasonal 

weather patterns, weekday and weekend differences, and holiday structure. To ensure 

proper model evaluation, the data are divided chronologically: load profiles from 2019 

to 2020 are used for model training, while 2021 serves as the testing year. This results 

in a training-to-testing ratio of approximately 67% to 33%, which is a standard practice 

in short-term load forecasting, where multi-year training data are required to capture 

seasonality and yearly trends. 

France’s electricity demand is strongly influenced by its temperate climate, with 

winter heating demand contributing to substantial load peaks, in contrast to Thailand’s 

summer-driven peaks. The inclusion of France enables cross-country comparison, 

allowing the proposed methodology to be assessed under two distinct climatic and 

behavioral load regimes. Together, the Thai and French datasets provide 

complementary perspectives for evaluating the robustness and generalizability of 

calendar-aware classification and forecasting models, offering insights into how 

climatic and cultural differences shape short-term load patterns. 

 

4.2 Data Preprocessing 

Before model development, the raw load data are cleaned to ensure temporal 

consistency and analytical readiness. Basic preprocessing steps are applied to address 

missing entries and minor reporting irregularities. In addition, calendar features were 
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constructed for both Thailand and France to capture systematic variations in electricity 

demand. For both countries, day-type labels were assigned using official public holiday 

announcements, with bridging holidays identified when a day fell between a weekend 

and a public holiday or between two consecutive holidays. Remaining days were 

categorized as weekdays or weekends.  

This preprocessing stage ensured that the dataset was complete, chronologically 

aligned, and equipped with accurate calendar-event information for subsequent 

classification and forecasting. 

 

4.3 Data Arrangement for Classification Approaches 

Table 4.1 presents the structure of the training and testing datasets used in the 

tree-based classification models. The classification stage relies exclusively on calendar 

features to group days with similar load characteristics before applying forecasting 

models. Four input features are used: Day of Week (DoW), Month of Year (MoY), 

Holiday (Hol), and Bridging Holiday (B-Hol). These features capture the calendar-

driven behavior of electricity consumption, where DoW represents weekday-weekend 

effects, MoY reflects seasonal demand changes, Hol identifies official public holidays 

with irregular load patterns, and B-Hol distinguishes transitional days that fall between 

holidays and weekends. The target variable for classification is the day index  

𝐹𝑡
𝑔(𝑑 ), which assigns each date to a specific leaf or class generated by the tree-based 

algorithm. 
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Table 4.1 Train and Test Data Partition for Tree-Based Classification  

 No. Input Variables for Classification 
Target 

Variable 

DoW 𝑀𝑜𝑌 𝐻𝑜𝑙 𝐵_𝐻𝑜𝑙 𝐹𝑡
𝑔(𝑑 ) 

Training 

Dataset 

1 2 1 1 0 
2019/01/01 

(Tues) 

2 3 1 0 0 
2019/01/02 

(Wed) 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

731 4 12 1 0 
2020/12/31 

(Thu) 

Testing 

Dataset 
1 5 1 1 0 

2021/01/01 

(Fri) 

 

4.4 Data Arrangement for Forecasting Models 

The forecasting stage uses a consistent regression structure based on five lagged 

load variables: 𝐿𝑡
𝑔

(𝑑 − 14), 𝐿𝑡
𝑔

(𝑑 − 7), 𝐿𝑡
𝑔

(𝑑 − 3), 𝐿𝑡
𝑔

(𝑑 − 2), and 𝐿𝑡
𝑔

(𝑑 − 1) 

representing the load values from two weeks, one week, three days, two days, and one 

day before the predicted day. The target variable 𝐹𝑡
𝑔

(𝑑)is the actual load of the test day. 

Although the regression inputs remain the same across all forecasting methods, the 

arrangement of training samples differs depending on the classification scheme used in 

Stage 1. The following subsections explain how forecasting data were selected under 

each classification method. 
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Table 4.2 Data Arrangement of Forecasting Models with Everyday Classification 

Approach 

 No. Input Variables for Regression 
Target 

Variable 

𝐿𝑡
𝑔(𝑑 − 14) 𝐿𝑡

𝑔(𝑑 − 7) 𝐿𝑡
𝑔(𝑑 − 3) 𝐿𝑡

𝑔(𝑑 − 2) 𝐿𝑡
𝑔(𝑑 − 1) 𝐹𝑡

𝑔(𝑑 ) 

Training 

Dataset 

1 
2020/12/03 

(Thurs) 

2020/12/10 

(Thurs) 

2020/12/14 

(Mon) 

2020/12/15 

(Tues) 

2020/12/16 

(Wed) 

2020/12/17 

(Thurs) 

2 
2020/12/04 

(Fri) 

2020/12/11 

(Fri) 

2020/12/15 

(Tues) 

2020/12/16 

(Wed) 

2020/12/17 

(Thurs) 

2020/12/18 

(Fri) 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

20 
2020/10/22 

(Tues) 

2020/12/29 

(Tues) 

2020/01/02 

(Sat) 

2020/01/03 

(Sun) 

2020/01/04 

(Mon) 

2020/01/05 

(Tues) 

Testing 

Dataset 
1 

2020/10/23 

(Wed) 

2020/12/30 

(Wed) 

2020/01/03 

(Sun) 

2020/01/04 

(Mon) 

2020/01/05 

(Tue) 

2021/01/06 

(Wed) 

 

Under the Everyday Classification approach, forecasting models do not 

distinguish between weekdays, weekends, holidays, or bridging holidays. All days are 

treated uniformly, and each forecasting model uses the twenty most recent previous 

days as the training set for each test day. This sliding-window strategy ensures that 

forecasting always relies on the latest load trends without considering calendar context. 

Table 4.2 shows that each training instance comprises the five lagged input variables 

and the corresponding load for the target day. The test day in 2021 is then predicted to 

use the relationship learned from the most recent twenty days in 2019 and 2020. 
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Table 4.3 Data Arrangement of Forecasting Models with Rule-Based Classification 

Approach 

 No. Input Variables for Regression 
Target 

Variable 

𝐿𝑡
𝑔(𝑑 − 14) 𝐿𝑡

𝑔(𝑑 − 7) 𝐿𝑡
𝑔(𝑑 − 3) 𝐿𝑡

𝑔(𝑑 − 2) 𝐿𝑡
𝑔(𝑑 − 1) 𝐹𝑡

𝑔(𝑑 ) 

Training 

Dataset 

1 
2020/10/14 

(Wed) 

2020/10/21 

(Wed) 

2020/10/25 

(Sun) 

2020/10/26 

(Mon) 

2020/10/27 

(Tue) 

2020/10/28 

(Wed) 

2 
2020/10/21 

(Wed) 

2020/10/28 

(Wed) 

2020/11/01 

(Sun) 

2020/11/02 

(Mon) 

2020/11/03 

(Tue) 

2020/11/04 

(Wed) 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

20 
2020/12/16 

(Wed) 

2020/12/23 

(Wed) 

2020/12/27 

(Sun) 

2020/12/28 

(Mon) 

2020/12/29 

(Tue) 

2020/12/30 

(Wed) 

Testing 

Dataset 
1 

2020/10/23 

(Wed) 

2020/12/30 

(Wed) 

2020/01/03 

(Sun) 

2020/01/04 

(Mon) 

2020/01/05 

(Tue) 

2021/01/06 

(Wed) 

 

In the Rule-Based Classification approach, days are grouped into the categories 

of weekday, weekend, and holiday. Each forecasting model is trained on the twenty 

most recent historical samples of the same-day type as the test day. For example, to 

forecast a Wednesday in 2021, the model uses the previous twenty Wednesdays from 

the training period. This ensures that the regression model learns load behavior specific 

to each category, improving contextual consistency compared to Everyday 

Classification. Table 4.3 shows the data arrangement, in which all training rows share 

the same day type as the test sample. While this improves homogeneity, rare categories 

such as holidays and bridging holidays may have fewer available samples. 
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Table 4.4 Data Arrangement of Forecasting Models with Tree-Based Classification 

Approaches 

 No. Input Variables for Regression 
Target 

Variable 

𝐿𝑡
𝑔(𝑑 − 14) 𝐿𝑡

𝑔(𝑑 − 7) 𝐿𝑡
𝑔(𝑑 − 3) 𝐿𝑡

𝑔(𝑑 − 2) 𝐿𝑡
𝑔(𝑑 − 1) 𝐹𝑡

𝑔(𝑑 ) 

Training 

Dataset 

1 
2020/10/14 

(Wed) 

2020/10/21 

(Wed) 

2020/10/25 

(Sun) 

2020/10/26 

(Mon) 

2020/10/27 

(Tue) 

2020/10/28 

(Wed) 

2 
2020/10/21 

(Wed) 

2020/10/28 

(Wed) 

2020/11/01 

(Sun) 

2020/11/02 

(Mon) 

2020/11/03 

(Tue) 

2020/11/04 

(Wed) 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

n 
2020/12/16 

(Wed) 

2020/12/23 

(Wed) 

2020/12/27 

(Sun) 

2020/12/28 

(Mon) 

2020/12/29 

(Tue) 

2020/12/30 

(Wed) 

Testing 

Dataset 
1 

2020/10/23 

(Wed) 

2020/12/30 

(Wed) 

2020/01/03 

(Sun) 

2020/01/04 

(Mon) 

2020/01/05 

(Tue) 

2021/01/06 

(Wed) 

 

For Tree-Based Classification methods, including CART and RF Classification, 

the assignment of training data is leaf-dependent rather than fixed. Each day is 

classified into a leaf node based on the combination of calendar features: Month of Year 

(MoY), Day of Week (DoW), Holiday indicator, and Bridging-Holiday indicator. After 

the classification step, the forecasting model for a test day uses only the historical 

samples that fall into the same leaf. As a result, the number of training samples is not 

constant; common combinations (e.g., mid-week working days) yield leaves with many 

samples, while rare combinations (e.g., holidays near weekends) produce leaves with 

fewer samples. Table 4.4 illustrates this dynamic structure, in which the set of training 

samples varies with the leaf assignment generated by the CART or RF classifier. This 

approach enhances segmentation precision but also necessitates fallback methods when 

leaf samples are insufficient.   

 

4.5 Handling Insufficient Training Samples Using Naïve and Linear Interpolation 

Methods 

When a test day’s corresponding leaf has insufficient training data for model 

training, two fallback strategies, such as the Naïve Method and the Linear Interpolation 
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Method, are used to maintain data continuity and forecasting reliability. These methods 

are introduced to handle scenarios in which certain calendar types, such as rare holidays 

or unique bridging holiday combinations, have very few or no historical samples in the 

classification tree. This section explains (i) the naïve methods, (ii) their limitations, (iii) 

the proposed fallback strategy, and (iv) the holiday mapping and interpolation 

mechanism used in this study. 

 

4.5.1 Naïve Method 

The Naïve Method is a simple yet effective approach that assumes the load 

pattern of the most recent day is similar to that of the following day. In this study, if the 

test day was a typical day with insufficient training data, the Naïve approach used the 

load from the previous day (𝑑 − 1) as the proxy value for model training. This 

assumption is grounded in the short-term temporal stability of Thailand’s daily load 

profiles, particularly in industrial and urban areas where electricity demand changes 

gradually from one day to the next. By referencing the previous day’s actual load, the 

Naïve Method maintains short-term consumption continuity and prevents abrupt 

deviations in the model’s learning. 

The Naïve Method can be mathematically expressed as: 

  𝐹𝑡
𝑇,𝑙(𝑑) =     𝐿𝑡

𝑇,𝑙(𝑑 − 1) (4.1) 

  

 

Other naïve alternatives, such as using the previous week’s load 𝐿(𝑑 − 7)The 

last observed load within the leaf node was evaluated for comparison. However, they 

are not used as the primary benchmark for forecasting: 

● 𝐿(𝑑 − 1) performs best overall and preserves short-term temporal behavior. 

● 𝐿(𝑑 − 7) maintains weekday alignment but is unsuitable for holidays because last 

week is almost always a typical day. 

● Leaf-node naïve load may come from a different month or holiday subtype due to 

RF’s random feature splits (e.g., Month-of-Year), causing mismatched seasonal 

patterns even if both points are formally holidays. 
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Thus, 𝐿(𝑑 − 1) is adopted as the official naïve method for benchmark models. 

Table 4.5 Performance Comparison of Naïve and Fallback Methods 

Month 

Naïve 

(Using L(d-7)) 

Naïve 

(Using L(d-1)) 

Naïve 

(Using leaf-

node load 𝑳𝒅
𝑻,𝒍

) 

Generalized 

Linear 

Interpolation 

Fall Back 

Linear 

Interpolation 

using last 

year's holiday 

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE 

January 62.37 61.65 13.66 13.79 12.53 12.68 38.02 37.22 13.89 14.40 

February 6.41 7.18 4.75 5.67 7.91 8.36 11.12 11.61 4.09 4.83 

March - - - - - - - - - - 

April 25.31 26.16 4.64 5.66 7.06 7.56 14.73 15.33 10.79 12.28 

May 8.04 8.87 9.81 11.22 14.53 15.05 4.33 5.17 6.96 8.09 

June 8.61 9.42 7.88 9.69 43.09 43.75 5.43 6.43 8.61 9.42 

July 10.27 11.28 10.80 11.80 8.88 9.66 11.88 12.55 7.86 8.92 

August 10.44 12.47 13.76 15.37 7.18 7.78 3.76 4.90 5.26 5.83 

September 1.39 1.92 1.46 1.70 5.13 6.43 3.93 4.76 2.09 2.39 

October 4.71 5.92 6.01 7.13 5.29 5.49 3.40 4.40 4.01 4.63 

November - - - - - - - - - - 

December 20.72 21.49 11.12 11.68 6.30 7.25 21.66 21.89 4.12 4.82 

Average 15.83 16.64 8.39 9.37 11.79 12.40 11.83 12.43 6.77 7.56 

 

4.5.2 Limitations of Naïve Methods for Holidays and Bridging Holidays 

Although 𝐿(𝑑 − 1) on typical days, naïve methods perform well. However, on 

holiday-related cases, they fail for several reasons. Holidays do not exhibit normal daily 

or weekly patterns, instead, their loads are shaped by cultural behavior, national travel 

flows, seasonal timing, and industrial shutdown schedules. Using either 𝐿(𝑑 − 1)or 

𝐿(𝑑 − 7)often maps a holiday to a regular weekday, resulting in a significant mismatch. 

Furthermore, the RF leaf-node load may be misleading because leaf splits may occur 

based on Month-of-Year or other features, combining holidays from different seasons 

or contexts into the same leaf. This leads to poor estimates even if both samples are 

technically holidays. 

Bridging holidays also cannot be handled by naïve assumptions because their 

behavior lies between a weekday and a holiday, requiring a blended, not direct, 

representation.  
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4.5.3 Fallback Linear Interpolation Method 

To address the limitations above, the fallback Linear Interpolation Method uses 

a calendar-aware fallback mechanism that reflects the behavior of each day type.  

(1) Normal days: If training samples are insufficient, the model uses the load from the 

same weekday of the previous week, 𝐿(𝑑 − 7). Weekly patterns remain stable for 

regular days, making this sound approximation. 

𝐹𝑡(𝑑) = 𝐿(𝑑 − 7)                                                                                                          (4.2) 

(2) Holidays: For insufficient training samples, the model uses the load from the same 

holiday name in the previous year. Holiday-to-holiday repetition is high in Thailand, 

and last-year substitution yields much lower error than interpolation. 

𝐹𝑡(𝑑) = 𝐿ℎ𝑜𝑙𝑖𝑑𝑎𝑦
(𝑠𝑎𝑚𝑒 𝑛𝑎𝑚𝑒,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑦𝑒𝑎𝑟)

                                                                                (4.3) 
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Table 4.6 Mapping of 2021 Thailand Public Holidays to Same-Name Holidays in 

2020 

2021 Date Holiday Name 2020 Date (Same Holiday) 

2021-01-01 New Year’s Day 2020-01-01 

2021-02-12 Chinese New Year 2020-01-25 

2021-02-26 Makha Bucha Day 2020-02-10 

2021-04-06 Chakri Day 2020-04-06 

2021-04-12 Songkran Holiday 2020-04-13 

2021-04-13 Songkran Day 2020-04-14 

2021-04-14 Songkran Day 2020-04-15 

2021-04-15 Songkran Day 2020-04-15 

2021-05-03 Labour Day (sub.) 2020-05-01 

2021-05-04 Coronation Day 2020-05-04 

2021-05-10 Royal Ploughing Ceremony 2020-05-11 

2021-05-26 Visakha Bucha Day 2020-05-06 

2021-06-03 H.M. Queen Suthida's Birthday 2020-06-03 

2021-07-25 Buddhist Lent 2020-07-06 

2021-07-26 Asahna Bucha (obs.) 2020-07-07 

2021-07-28 King’s Birthday 2020-07-28 

2021-08-12 Mother’s Day 2020-08-12 

2021-09-24 Prince Mahidol Day 2020-09-24 

2021-10-13 King Rama IX Memorial Day 2020-10-13 

2021-10-22 King Chulalongkorn (sub.) 2020-10-23 

2021-12-05 Father’s Day  2020-12-05 

2021-12-06 King Bhumibol’s Birthday  2020-12-07 

2021-12-10 Constitution Day 2020-12-10 

2021-12-31 New Year’s Eve 2020-12-31 

 

Table 4.7 Mapping of 2021 France Public Holidays to Same-Name Holidays in 

2020 

2021 Date Holiday Name 2020 Date (Same Holiday) 

2021-01-01 New Years's Day 2020-01-01 

2021-04-05 Easter Monday 2020-04-13 

2021-05-01 Labor Day 2020-05-01 

2021-05-08 WWII Victory Day 2020-05-08 

2021-05-13 Ascension Day 2020-05-21 

2021-05-24 Whit Monday 2020-06-01 

2021-07-14 Bastille Day 2020-07-14 

2021-08-15 Assumption of Mary 2020-08-15 

2021-11-01 All Saint's Day 2020-11-01 

2021-11-11 Armistice Day 2020-11-11 

2021-12-25 Christmas Day 2020-12-25 
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(3) Bridging holidays: These days reflect partial working activity and partial holiday 

behavior. Thus, the fallback uses a weighted linear interpolation between a weekday 

load and the nearest holiday load. This method estimates the missing load by taking a 

weighted average of the adjacent weekday and holiday loads. This produces a realistic 

intermediate value that reflects the partial working activity typically observed during 

such periods. Mathematically, if 𝐿𝑡
𝑇,𝑙(𝑑 − 7)represents the weekday load and 

𝐿𝑡
𝑇,𝑙(𝑑∗) 𝑖𝑠 the holiday load, the forecasted bridging-holiday load 𝐹𝑡

𝑇,𝑙(𝑑)was computed 

as: 

𝐹𝑡
𝑇,𝑙(𝑑) =    𝛼 𝐿𝑡

𝑇,𝑙(𝑑 − 7) + (1 − 𝛼)    𝐿𝑡
𝑇,𝑙(𝑑∗)       (4.4) 

where 0 < 𝛼 < 1 represents the relative influence of the weekday and holiday 

patterns.
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Mean Absolute Percentage Error (MAPE) 

 MAPE measures the average percentage difference between the predicted and 

actual values. It shows how accurate your forecasting model is, expressed as a 

percentage. 

 

5.2 Root Mean Square Error (RMSE) 

RMSE measures the average magnitude of errors between predicted and actual 

values. It tells how much the predictions deviate, in the same units as the data. 

𝑅𝑀𝑆𝐸𝑔(𝑑 ) 𝑖𝑛 % =
√

1

𝑁
∑ (    𝐿𝑡

𝑔
(𝑑)−𝐹𝑡

𝑔
(𝑑))2𝑁

𝑡=1

1

𝑁
∑     𝐿𝑡

𝑔
(𝑑)𝑁

𝑡=1

 × 100%    (5.2) 

where, 

         𝑁  = Number of periods 

 𝐿𝑡
𝑔(𝑑)  = the actual load for group g at period t for day d,  

 𝐹𝑡
𝑔(𝑑) = the forecast load for group g at period for day d, 

        t   = 1, 2, 3,…,48 periods 

 

𝑀𝐴𝑃𝐸𝑔(𝑑 ) 𝑖𝑛 % =
1

𝑁
∑ |

    𝐿𝑡
𝑔(𝑑) − 𝐹𝑡

𝑔(𝑑)

    𝐿𝑡
𝑔(𝑑)

| × 100%

𝑁

𝑡=1

 (5.1) 

   

where, 

         𝑁  = Number of periods 

 𝐿𝑡
𝑔(𝑑)  = the actual load for group g at period t for day d,  

 𝐹𝑡
𝑔(𝑑) = the forecast load for group g at period for day d, 

         t   = 1, 2, 3,,…,48 periods 
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5.3 Monthly Forecasting Performance  

The monthly evaluation of forecasting performance provides insights into how 

seasonal and calendar-driven variations affect short-term load-forecasting accuracy in 

Thailand and France. Tables 5.1 and 5.2 summarize the monthly Mean Absolute 

Percentage Error (MAPE) and Root Mean Square Error (RMSE) for Thailand, while 

Tables 5.3 and 5.4 report the corresponding results for France. In both cases, three 

forecasting models, such as Multiple Linear Regression (MLR), Support Vector 

Regression (SVR), and Random Forest (RF), are evaluated under five classification 

frameworks: Everyday, Rule-based, CART-based, Generalized RF-based, and the 

proposed RF classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ref. code: 25686622040142SXF



51 
 

 

 

Table 5.1 Monthly MAPE Comparison of Forecasting Models (Thailand) 

  

Month 

With Everyday  

Classification 

With Rule-based  

Day Type Classification 

With CART  

Day Type Classification 

With RF  

Day Type Classification 

The Proposed RF 

Classification 

MLR SVR RF MLR SVR RF MLR SVR RF MLR SVR RF MLR SVR RF 

Jan 8.62 11.30 9.66 5.99 14.95 10.02 11.24 14.72 11.48 6.67 10.20 6.75 8.69 12.35 8.73 

Feb 4.86 6.40 5.10 3.14 4.02 3.91 4.10 5.66 4.39 4.43 5.93 4.68 4.00 5.26 4.14 

Mar 3.18 6.03 3.70 2.94 13.57 4.89 3.02 3.27 2.71 3.56 3.48 2.85 3.56 3.48 2.93 

Apr 8.41 11.73 9.16 5.47 9.81 5.88 9.66 7.09 5.68 8.28 6.52 5.53 9.96 6.11 5.06 

May 6.70 7.62 7.21 5.62 9.82 5.27 5.76 5.77 4.82 6.96 6.71 5.75 6.43 5.33 4.44 

Jun 4.98 5.37 5.40 3.06 5.53 5.72 4.97 6.06 4.96 4.61 4.92 4.15 4.28 4.39 3.60 

Jul 4.85 6.47 5.29 4.52 6.04 4.62 5.64 4.71 4.32 6.21 5.33 5.13 8.83 4.40 3.72 

Aug 5.78 5.53 6.88 4.45 4.88 4.42 4.27 4.38 4.13 5.13 4.80 4.41 4.27 3.80 3.29 

Sep 3.66 3.93 3.85 2.83 4.69 3.06 3.72 3.38 3.08 3.11 2.86 2.46 3.43 2.93 2.54 

Oct 5.07 5.51 5.30 2.98 3.25 3.30 4.44 3.55 3.55 4.20 3.90 3.65 4.35 3.55 3.12 

Nov 4.41 5.09 4.59 2.22 4.00 3.21 3.04 3.75 3.04 2.73 3.78 2.78 2.86 3.81 2.88 

Dec 8.76 9.02 7.97 6.40 12.01 7.94 8.92 7.65 7.10 4.78 5.48 4.65 4.26 4.68 4.06 

Avg MAPE 5.77 7.00 6.18 4.14 7.71 5.19 5.73 5.83 4.94 5.06 5.33 4.40 5.41 5.01 4.03 
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Table 5.2 Monthly RMSE Comparison of Forecasting Models (Thailand) 

  

Month 

With Everyday  

Classification 

With Rule-based  

Day Type Classification 

With CART  

Day Type Classification 

With RF  

Day Type Classification 

The Proposed RF 

Classification 

MLR SVR RF MLR SVR RF MLR SVR RF MLR SVR RF MLR SVR RF 

Jan 9.75 11.82 11.88 6.98 14.55 9.87 8.83 12.18 8.97 8.17 11.35 7.63 10.53 12.63 9.10 

Feb 5.54 7.00 6.04 3.68 4.04 3.90 3.42 5.02 3.73 5.64 6.85 5.46 5.10 5.76 4.57 

Mar 3.77 6.52 4.49 3.38 13.61 4.90 3.03 3.27 2.71 4.41 3.78 3.27 4.37 3.76 3.32 

Apr 9.76 12.32 11.53 6.73 10.59 6.60 8.07 5.82 4.93 10.83 7.69 6.73 14.99 6.88 5.87 

May 7.59 8.39 8.89 6.63 9.94 5.33 4.97 4.97 4.00 8.42 7.56 6.74 8.48 5.96 5.09 

Jun 5.81 6.13 6.70 3.40 5.44 5.59 4.24 5.36 4.25 5.64 5.49 4.86 5.27 4.97 4.19 

Jul 5.55 7.17 6.38 5.92 6.73 5.30 5.27 4.40 4.02 7.62 6.35 6.07 9.06 5.02 4.34 

Aug 6.63 6.31 8.40 4.93 4.69 4.23 3.79 3.96 3.68 6.34 5.76 5.38 5.16 4.39 3.87 

Sep 4.20 4.57 4.68 3.46 4.71 3.08 2.91 2.58 2.28 3.92 3.48 2.99 4.25 3.48 2.98 

Oct 5.98 6.16 6.62 3.61 3.25 3.31 4.43 3.55 3.56 5.34 4.65 4.41 5.75 4.08 3.66 

Nov 5.03 5.72 5.76 2.68 4.01 3.22 2.95 3.61 2.89 3.54 4.30 3.24 3.61 4.22 3.26 

Dec 9.53 9.62 9.58 7.31 11.80 7.83 7.23 6.11 5.59 5.75 6.07 5.32 5.19 5.11 4.56 

Avg RMSE 6.59 7.64 7.58 4.89 7.78 5.26 4.93 5.07 4.58 6.30 6.11 5.18 6.81 5.52 4.47 
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Table 5.3 Monthly MAPE Comparison of Forecasting Models (France) 

  

Month 

With Everyday  

Classification 

With Rule-based  

Day Type Classification 

With CART  

Day Type Classification 

With RF  

Day Type Classification 

The Proposed RF 

Classification 

MLR SVR RF MLR SVR RF MLR SVR RF MLR SVR RF MLR SVR RF 

Jan 5.45 6.63 5.95 5.46 28.98 9.32 4.87 10.29 5.62 5.24 9.88 5.56 5.24 9.88 4.56 

Feb 8.20 7.01 7.86 5.11 19.28 6.75 5.15 7.23 5.55 5.21 8.08 5.83 5.21 8.08 4.83 

Mar 4.88 4.49 4.65 3.33 13.83 4.75 3.37 4.10 3.86 3.39 4.62 3.69 3.39 4.62 3.69 

Apr 6.28 5.83 5.45 4.36 8.35 5.57 4.00 5.41 4.55 3.85 5.61 4.49 3.85 5.61 3.49 

May 4.93 4.54 5.05 4.19 7.68 4.58 3.79 3.95 4.17 3.23 3.79 3.45 3.23 3.79 3.45 

Jun 3.55 2.67 2.10 1.59 13.92 2.87 1.98 2.68 1.70 1.88 3.33 1.63 1.88 3.33 1.63 

Jul 4.16 3.22 3.03 1.99 13.45 2.73 2.67 3.02 2.37 2.08 3.13 1.77 2.08 3.13 1.77 

Aug 3.30 3.54 2.63 2.13 20.79 3.79 2.04 4.53 2.09 2.17 5.07 2.15 2.17 5.07 2.15 

Sep 3.09 2.14 1.67 1.17 12.58 2.37 1.65 2.11 1.40 1.52 2.40 1.23 1.52 2.40 1.23 

Oct 3.78 3.61 3.11 2.25 4.64 3.32 2.38 2.85 2.77 2.26 2.93 2.53 2.26 2.93 2.53 

Nov 5.76 5.29 5.59 3.50 17.01 4.40 4.12 5.34 4.39 3.37 6.94 4.21 3.37 6.94 3.21 

Dec 5.84 5.27 5.96 4.81 21.69 5.14 4.40 5.62 4.75 4.29 8.17 4.60 4.29 8.17 3.60 

Avg MAPE 4.94 4.52 4.42 3.33 15.18 4.63 3.37 4.76 3.60 3.21 5.33 3.43 3.21 5.33 3.01 
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Table 5.4 Monthly RMSE Comparison of Forecasting Models (France) 

  

Month 

With Everyday  

Classification 

With Rule-based  

Day Type Classification 

With CART  

Day Type Classification 

With RF  

Day Type Classification 

The Proposed RF 

Classification 

MLR SVR RF MLR SVR RF MLR SVR RF MLR SVR RF MLR SVR RF 

Jan 6.71 8.75 7.83 6.89 29.97 11.26 6.51 13.42 6.98 7.00 12.48 6.90 7.00 12.48 6.90 

Feb 9.68 9.17 9.85 6.47 23.91 9.67 6.65 10.74 7.24 6.72 11.30 7.62 6.72 11.30 7.62 

Mar 5.93 5.56 5.90 4.26 15.53 5.74 4.25 5.04 4.89 4.32 5.56 4.64 4.32 5.56 4.64 

Apr 7.87 7.37 7.22 6.53 10.27 7.01 5.61 6.79 6.31 5.29 7.44 6.24 5.29 7.44 6.24 

May 6.44 6.06 6.62 5.73 8.92 5.51 5.16 5.32 5.62 4.34 4.97 4.50 4.34 4.97 4.50 

Jun 4.88 3.47 2.77 2.00 14.39 3.73 2.57 3.21 2.21 2.40 4.24 2.11 2.40 4.24 2.11 

Jul 5.62 4.49 4.59 2.72 14.23 3.45 4.04 4.18 3.92 2.93 4.15 2.51 2.93 4.15 2.51 

Aug 4.49 4.27 3.34 2.86 21.80 5.29 2.64 5.63 2.82 2.82 6.32 2.86 2.82 6.32 2.86 

Sep 4.42 2.88 2.18 1.46 12.86 2.95 2.22 2.61 1.95 2.02 3.10 1.67 2.02 3.10 1.67 

Oct 4.93 4.41 4.09 2.93 5.49 4.32 3.05 3.45 3.57 2.96 3.64 3.24 2.96 3.64 3.24 

Nov 7.19 6.96 7.25 4.62 19.23 5.46 5.32 6.56 5.75 4.49 9.63 5.69 4.49 9.63 5.69 

Dec 7.09 6.29 7.36 6.10 24.19 6.33 5.37 6.84 6.03 5.33 10.13 5.85 5.33 10.13 5.85 

Avg RMSE 6.27 5.81 5.75 4.38 16.73 5.89 4.45 6.15 4.77 4.22 6.91 4.49 4.22 6.91 4.49 
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5.3.1 Monthly MAPE Behavior 

The monthly MAPE patterns closely follow the climatic and calendar 

characteristics of each country. For Thailand, higher MAPE values are observed in the 

hot season, especially April and May, which correspond to the peak summer period and 

include major holidays such as Songkran. During these months, rapid temperature 

increases, widespread air-conditioning use, and overlapping public holidays lead to 

sharp, irregular changes in load. Despite this, the proposed RF-RF model maintains 

low error levels, for example, around 5-6% in the most volatile months, clearly 

outperforming the Everyday and Rule-based approaches, which show much larger 

deviations. Elevated errors also appear in December and January, which coincide with 

Thailand’s tourism season and New Year festivities. Load during this period is shaped 

by a combination of reduced industrial activity, increased travel, and higher residential 

and commercial usage in urban areas. Even under these conditions, the proposed model 

tracks the trend more accurately than competing methods. 

In contrast, France exhibits a different seasonal error pattern that aligns with its 

temperate climate and heating-driven demand. Higher MAPE values tend to occur in 

winter and early spring (e.g., January, February, and occasionally November-

December), when heating demand is high and sensitive to short-term temperature 

fluctuations. Rule-based SVR models show substantial errors in several winter months, 

reflecting their limited ability to adapt to complex interactions between temperature 

and calendar effects. The proposed RF-RF framework, however, significantly reduces 

these winter errors and achieves the lowest average MAPE throughout the year, around 

3.0%, indicating strong robustness in handling heating-driven peak loads. During 

summer months, when French demand is lower and more stable, MAPE values drop 

further for all methods, but the RF-based approaches remain the most accurate. 

Across both countries, Everyday and Rule-based classification strategies 

systematically yield higher MAPE. Everyday classification ignores day-type structure, 

while Rule-based classification relies on fixed, manually defined groups that can 

misrepresent irregular holidays or rare calendar combinations. CART-based 

segmentation improves performance by introducing data-driven splits, yet the single-

tree structure may overfit or fail to capture all relevant seasonal regimes. RF-based 

classification and the proposed hybrid model, by aggregating multiple trees, learn a 
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more diverse and nuanced calendar, which explains their consistently lower monthly 

MAPE in both Thailand and France. 

 

5.3.2 Monthly RMSE Behavior 

The RMSE analysis complements the MAPE analysis by emphasizing the 

magnitude of significant prediction errors, particularly during peak-demand periods. In 

Thailand, the proposed RF-RF framework achieves the lowest average RMSE among 

all models, indicating that it effectively limits large residuals even during extreme 

conditions. As with MAPE, RMSE is slightly higher in April and May, when sudden 

temperature spikes and holiday effects drive strong demand surges, and in December 

and January, when tourism and festive activities alter standard load patterns. 

Nevertheless, the proposed RF-RF model consistently records lower RMSE than MLR 

and SVR models with Everyday, Rule-based, or single-tree CART classification. 

During the rainy season from June to October, when temperature and economic activity 

are more stable, RMSE values are typically in the 3-4% range, and the proposed model 

attains its best performance, reflecting its ability to exploit predictable calendar and 

seasonal structures. 

For France, the RMSE results in Table 5.4 show a similar trend: the proposed 

RF-RF method delivers the most stable and lowest average RMSE across all months. 

Winter months, especially January, February, and December, naturally exhibit higher 

RMSE due to substantial, highly weather-sensitive heating loads. Rule-based SVR 

models often produce very large RMSE in these periods, indicating vulnerability to 

mis-specified day-type segmentation and sensitivity to outliers. In contrast, the RF 

models, particularly the proposed hybrid framework, smooth out such extremes by 

aggregating multiple calendar-aware trees, thereby improving generalization under 

rapidly changing winter conditions. In spring and summer, when French demand is 

lower and less volatile, RMSE values decrease for all methods. Still, the proposed RF-

RF model maintains a clear advantage and demonstrates less month-to-month 

fluctuation than the CART-SVR combination. 

Taken together, the monthly MAPE and RMSE analyses for both Thailand and 

France confirm that: 
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• Seasonal and calendar effects are critical: error peaks align with hot season cooling and 

festive periods in Thailand, and with winter heating in France. 

• Simple temporal or rule-based classification is insufficient: Everyday and Rule-based 

strategies struggle in months with irregular holidays or strong weather sensitivity. 

• Ensemble classification with RF is more robust: the proposed RF-RF framework 

consistently achieves the lowest or near-lowest errors across all months and both 

countries, demonstrating that a calendar-aware ensemble architecture generalizes well 

across contrasting climatic and load regimes. 

 

5.4 Predicted vs. Actual Load Pattern Comparison  

This section compares the predicted and actual load profiles generated by the 

proposed RF-RF framework for both Thailand and France across different day types. 

The prediction-curve figures highlight the model’s ability to reproduce daily demand 

dynamics under diverse climatic, cultural, and operational conditions. Overall, the 

close alignment between the actual and estimated curves demonstrates that the model 

effectively captures short-term load behavior in two fundamentally different power 

systems.  

 

5.4.1 Weekday Load Pattern  

For weekdays, the predicted curves in both Thailand and France closely follow 

the actual load trajectories. In Thailand, the model accurately replicates the 

characteristic morning ramp-up, midday plateau, and evening stabilization typical of 

commercial and industrial activity. Minor deviations occur at midweek intervals, yet 

the error margins remain narrow, confirming that weekday load is highly regular and 

strongly dependent on work-hour demand patterns well learned from lagged features 

within the model. 

France exhibits similarly strong weekday performance. Despite differences in 

climate and daily routines, such as more pronounced winter morning peaks driven by 

heating usage, the predicted curves maintain close correspondence with the observed 

profiles. The model successfully reproduces France’s sharper weekday morning rise 

and evening secondary peak. Overall, the near-overlap of the two curves across most 
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weekdays indicates that the classification–forecasting pipeline generalizes effectively 

across regions with different demand drivers. 

 

 

(i) 

 

(ii) 

Figure 5.1 Predicted vs Actual Monday Load Profile (i) Thailand and (ii) France 
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(i) 

         

(ii) 

Figure 5.2 Predicted vs Actual Tuesday Load Profile (i) Thailand and (ii) France 
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(i) 

 

(ii) 

Figure 5.3 Predicted vs Actual Wednesday Load Profile (i) Thailand and (ii) France 
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(i) 

 

(ii) 

Figure 5.4 Predicted vs Actual Thursday Load Profile (i) Thailand and (ii) France 
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(i) 

 

(ii) 

Figure 5.5 Predicted vs Actual Friday Load Profile (i) Thailand and (ii) France 

 

5.4.2 Weekend Load Pattern  

Weekend behavior introduces greater variability in both countries due to 

reductions in industrial activity and more heterogeneous residential usage. In Thailand, 

the predicted series remains directionally consistent with the actual curve but exhibits 

slightly wider oscillations, reflecting the less-structured consumption typical of 

weekends. Similarly, in France, weekend profiles are flatter and more temperature-
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dependent, yet the model still tracks primary turning points and maintains a stable error 

band. Despite these variations, the differences between actual and predicted values 

remain modest, indicating that Random Forest regression captures non-linear shifts in 

residential behavior without overfitting to weekday patterns. 

 

(i) 

 

(ii) 

Figure 5.6 Predicted vs Actual Saturday Load Profile (i) Thailand and (ii) France 
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(i) 

 

(ii) 

Figure 5.7 Predicted vs Actual Sunday Load Profile (i) Thailand and (ii) France 
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slightly overshoot during rapid declines due to the small number of holiday training 

samples. 

In France, holidays similarly exhibit lower-than-normal load levels, but the 

pattern is shaped more by heating needs in winter or reduced activity in summer. 

Despite these structural differences, the predicted curves for both countries capture the 

overall shape and magnitude of holiday demand. The interpolation strategy applied for 

data-sparse leaf nodes ensures smoothness and prevents disruptive forecasting gaps. 
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Figure 5.8 Predicted vs Actual Holiday Load Profile (i) Thailand and (ii) France 

 

5.4.4 Bridging Holiday Load Pattern  

The bridging-holiday case in Figure 5.9 illustrates one of the most challenging 

forecasting scenarios. These transitional days display load levels between weekday and 

holiday behavior. The actual curve fluctuates sharply over a short time frame, yet the 

predicted series still tracks its overall direction and approximates its magnitude. The 

differences seen around the third day, where the actual load spikes more strongly than 

expected, highlight the hybrid nature of such days; even so, the model’s adaptive 

interpolation effectively smooths the transition. This indicates that while complete 

accuracy for rare patterns remains difficult, the framework’s two-stage design still 

provides reliable estimates for operational planning. 
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(i) 

Figure 5.9 Predicted vs Actual Bridging Holiday Load Profile (i) Thailand and (ii) 

France 

 

Overall, the comparison between actual and predicted curves across all nine 

figures demonstrates that the proposed hybrid Random Forest-classification and 

Random Forest-forecasting model can accurately predict actual load patterns. The close 

alignment of the curves, particularly on weekdays, confirms that the ensemble method 

captures both cyclical regularities and moderate irregularities in both datasets. Even 

under irregular conditions such as holidays and bridging holidays, the model preserves 

realistic trend behavior and avoids systematic bias. These results verify that the model’s 

predictive performance is not only numerically strong but also visually consistent with 

real-world load dynamics. 

 

5.5 Discussion in Relation to Thailand’s Load Characteristics 

The monthly forecasting performance reveals clear relationships between 

model accuracy and the underlying load characteristics of both Thailand and France. 

In Thailand, the variations in MAPE and RMSE correspond strongly to the country’s 

climatic and socio-economic cycles. The summer months, from March to May, produce 

the highest national electricity demand due to intensive air-conditioning use, resulting 

in greater volatility and increased forecasting difficulty. The cool season from 
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November to February introduces additional uncertainty driven by tourism, extended 

festive periods, and irregular holiday schedules. By contrast, the rainy season from June 

to October exhibits the most stable load behavior, reflected in consistently low 

forecasting errors across all models. These findings confirm that Thailand’s load profile 

is highly temperature-sensitive and strongly influenced by calendar events. 

In France, a different pattern emerges, aligning with its temperate climate. The 

winter months from December to February generate the highest forecasting errors due 

to pronounced heating demand and strong morning and evening peaks. The transition 

seasons, spring from March to May and autumn from September to November, display 

moderate demand levels and more predictable load shapes, resulting in lower MAPE 

and RMSE values. Summer months in France exhibit the lowest overall errors, 

reflecting relatively stable load patterns and weaker cooling demand than in Thailand. 

These results demonstrate that, unlike Thailand’s heat-driven consumption, France’s 

load system is predominantly shaped by heating cycles and socio-economic rhythms 

tied to commuting and working hours. 

Across both countries, the proposed calendar-aware Random Forest (RF) 

classification combined with RF forecasting delivers the most consistent performance. 

For Thailand, the hybrid approach achieves an annual average MAPE of 4.03% and 

RMSE of 4.57%, outperforming all baseline classification strategies. A similar trend is 

observed in France, where the proposed model achieves an MAPE of 3.31% and an 

RMSE of 3.85%, the lowest among all forecasting configurations. 
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Table 5.5 Overall Forecasting Performance under Different Classification Methods 

Forecasting 

Models 

Classification 

Approach 

Thailand France  

MAPE (%) 
RMSE 

(%) 

MAPE 

(%) 

RMSE 

(%) 

MLR 

Everyday 

Rule-Based 

CART 

RF 

Proposed  

6.02 

4.52 

6.78 

5.45 

5.77 

6.89 

5.42 

6.26 

6.81 

7.18 

4.91 

3.65 

3.94 

3.38 

3.36 

5.42 

5.55 

5.56 

5.04 

5.02 

SVR 

Everyday 

Rule-Based 

CART 

RF 

Proposed  

7.25 

7.78 

5.31 

5.55 

4.97 

7.85 

7.99 

4.96 

6.46 

5.50 

4.52 

15.18 

4.76 

5.19 

5.31 

5.81 

16.73 

6.14 

6.00 

6.15 

RF 

Everyday 

Rule-Based 

CART 

RF 

Proposed  

6.47 

5.57 

4.38 

4.71 

4.03 

7.90 

5.78 

4.58 

5.60 

4.47 

4.42 

4.63 

3.59 

3.37 

3.31 

5.75 

5.89 

4.21 

3.90 

3.85 

 

Compared to simpler classification schemes, such as Everyday or Rule-Based 

grouping, the Random Forest-based classification demonstrates superior adaptability 

to atypical calendar patterns and climate-induced variability. While CART 

classification improves performance through feature-driven segmentation, its single-

tree structure is inherently prone to overfitting, resulting in less stable monthly 

accuracy. In contrast, the proposed RF–RF framework leverages the diversity of 

multiple trees to develop more generalizable partitions and forecasts. 

Overall, the monthly MAPE and RMSE results for Thailand and France 

underscore the robustness and cross-country applicability of the proposed method. The 

model consistently provides accurate forecasts across diverse climatic conditions, from 

Thailand’s high-temperature seasonal peaks to France’s winter-driven load cycles. 

These outcomes reinforce the value of integrating calendar-awareness with ensemble 

learning, offering a scalable and operationally practical forecasting solution for both 

tropical and temperate electricity systems. 
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Figure 5.10 Average MAPE of Forecasting Models under Different Classification 

Methods  

 

Figure 5.11 Average RMSE of Forecasting Models under Different Classification 

Methods  

 

Figures 5.10 and 5.11 summarize the forecast performance of the proposed 

model and benchmark models. These figures provide a high-level understanding of 

how day-type variability and classification structure affect the accuracy of short-term 

load forecasting. 
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Figure 5.12 Cross-Country MAPE Comparison of MLR Forecasting Models 

 

Figure 5.13 Cross-Country MAPE Comparison of SVR Forecasting Models 
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Figure 5.14 Cross-Country MAPE Comparison of RF Forecasting Models 

 

Figure 5.15 Cross-Country RMSE Comparison of MLR Forecasting Models 
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Figure 5.16 Cross-Country RMSE Comparison of SVR Forecasting Models 

 

Figure 5.17 Cross-Country RMSE Comparison of RF Forecasting Models 

 

The Average MAPE results reveal that forecasting errors are lowest on 

weekdays and weekends, and consistently higher on holidays and bridging holidays. 

This pattern occurs in both Thailand and France, reflecting the inherently irregular load 

behavior associated with non-working days. The proposed RF-based classification 

produces the lowest MAPE across all day types, indicating its superior ability to 

segment training data into behaviorally consistent groups. Traditional schemes such as 

Everyday and Rule-Based classification perform noticeably worse, as shown by their 
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higher bars in Figure 5.10 and the cross-country comparisons in Figures 5.12-5.14. For 

example, MLR and SVR suffer substantial accuracy degradation when paired with 

these simpler classification methods, particularly for France during the CART and 

Rule-Based cases, where load volatility differs sharply between seasons. Figure 5.11, 

which depicts Average RMSE, reinforces the MAPE findings but with an emphasis on 

the absolute size of prediction errors.  

The proposed model again records the smallest RMSE values across all day 

types, demonstrating that it not only reduces MAPE but also suppresses large 

deviations between actual and predicted loads. This improvement is noticeable when 

compared with the RMSE profiles shown in Figures 5.15-5.17. In both Thailand and 

France, the proposed RF-RF framework achieves the lowest RMSE among all model 

classification combinations. 

Simpler classification strategies, such as Everyday and Rule-Based, exhibit 

substantially higher RMSE during holidays and bridging holidays, reflecting their 

limited ability to capture abrupt shifts caused by national events, travel patterns, and 

seasonal anomalies. CART and RF classification improve stability by incorporating 

feature-based splits. Still, the RF classification approach consistently outperforms 

CART because its ensemble structure generalizes across multiple calendar variables 

more effectively than a single decision tree. 

The results collectively show that the proposed RF classification, combined 

with RF forecasting, consistently provides the most balanced accuracy across all day 

types, outperforming traditional classification schemes and alternative models. This 

confirms the importance of calendar-aware segmentation and ensemble learning for 

robust short-term load forecasting in both countries. 
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CHAPTER 6 

CONCLUSION 

 

This research introduced a unified short-term load forecasting (STLF) 

framework that integrates calendar-aware classification with machine-learning 

regression to enhance predictive accuracy under diverse operating conditions. Using 

two national datasets, Thailand’s EGAT half-hourly load profiles and France’s 

ENTSO-E hourly load data. The study evaluated Multiple Linear Regression (MLR), 

Support Vector Regression (SVR), and Random Forest (RF) under five classification 

strategies: Everyday, Rule-based, CART, RF, and the proposed hybrid RF-classified 

RF-forecasting model. 

Across both countries, results consistently show that calendar segmentation 

markedly improves forecasting accuracy compared to approaches that ignore day-type 

variation. Traditional baselines, particularly Everyday and Rule-based classifications, 

experience sharp accuracy degradation during holidays and bridging-holidays, 

reflecting their limited ability to model irregular and event-driven consumption 

behaviors. France and Thailand both exhibit this challenge, but for different underlying 

reasons—holiday-related reductions and tourism impacts in Thailand, versus heating-

driven fluctuations and working-day variability in France’s temperate climate. 

The proposed hybrid model demonstrated the most stable and accurate 

performance across all day types in both countries. RF classification effectively 

grouped days with similar load signatures, while RF regression captured nonlinear 

dependencies using lagged load features. The interpolation mechanism for sparse leaf 

nodes further improved robustness under rare-event conditions, particularly in holiday 

and bridging-holiday scenarios where training samples are limited. As a result, the 

hybrid RF-RF framework achieved the lowest average MAPE and RMSE in Thailand. 

It consistently ranked among the best in France, outperforming MLR and SVR across 

all classification schemes. 

These findings confirm the benefits of integrating ensemble-based 

segmentation with ensemble regression in a unified forecasting pipeline. Moreover, 

cross-country results demonstrate the generalizability of the framework: despite 
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substantial climatic and behavioral differences between Thailand, which is cooling-

dominated, tropical, and France, which is heating-dominated, temperate, the proposed 

method adapts effectively to both systems. This versatility highlights its value for 

operational forecasting, generation scheduling, demand-response planning, and 

regional energy management. 

In conclusion, the hybrid RF-classification -RF-forecasting model offers a 

robust, scalable, and interpretable STLF solution capable of handling complex calendar 

effects and irregular demand patterns across diverse national contexts. It represents a 

practical advancement for power utilities seeking reliable short-term forecasts under 

increasingly dynamic electricity consumption conditions. 
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APPENDIX A 

PYTHON CODE: RF CLASSIFICATION + LEAF-BASED RF 

FORECASTING 

 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

 

from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor 

from sklearn.metrics import mean_absolute_percentage_error, mean_squared_error 

 

# Load dataset 

data = pd.read_excel('RF_Data.xlsx') 

data['Date'] = pd.to_datetime(data['Date']) 

data['Year'] = data['Date'].dt.year 

data['Month'] = data['Date'].dt.month 

 

# Train – Test Data 

train = data[(data['Year'] == 2019) | (data['Year'] == 2020)] 

test  = data[(data['Year'] == 2021)] 

 

# RF Classification (Calendar Inputs) 

X_train_cal = train[['MoY','DoW','Hol','BHol']] 

y_train_cal = train['Group_true'] 

 

X_test_cal  = test[['MoY','DoW','Hol','BHol']] 

y_test_cal  = test['Group_true'] 

 

clf = RandomForestClassifier( 

        n_estimators = 10, 

        max_features = 'sqrt', 
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        min_samples_leaf = 6, 

        bootstrap = False, 

        random_state = 42) 

 

clf.fit(X_train_cal, y_train_cal) 

 

# Predicted group 

test['Group_pred'] = clf.predict(X_test_cal) 

 

# Convert RF leaf nodes → leaf ID string 

def leaf_to_key(arr): 

    return "_".join(map(str, arr)) 

 

train['Leaf_ID'] = np.apply_along_axis(leaf_to_key, 1, clf.apply(X_train_cal)) 

test['Leaf_ID']  = np.apply_along_axis(leaf_to_key, 1, clf.apply(X_test_cal)) 

 

# Train RF Forecasting Models Per Leaf 

feature_cols = ['X1','X2','X3','X4','X5'] 

leaf_models = {} 

 

for leaf_id, group in train.groupby('Leaf_ID'): 

    if len(group) < 6:      # skip small leaves 

        continue 

    Xg = group[feature_cols] 

    yg = group['Y'] 

     

    reg = RandomForestRegressor( 

            n_estimators = 10, 

            max_features = 'sqrt', 

            min_samples_leaf = 6, 

            bootstrap = False, 

            random_state = 42) 
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    reg.fit(Xg, yg) 

    leaf_models[leaf_id] = reg 

 

# Global model for fallback 

global_reg = RandomForestRegressor( 

        n_estimators = 10, 

        max_features = 'sqrt', 

        min_samples_leaf = 6, 

        bootstrap = False, 

        random_state = 42) 

 

global_reg.fit(train[feature_cols], train['Y']) 

 

# Forecast for each test day 

pred_list = [] 

true_list = [] 

month_list = [] 

group_true_list = [] 

 

for i, row in test.iterrows(): 

    leaf = row['Leaf_ID'] 

    x = row[feature_cols].values.reshape(1,-1) 

     

    if leaf in leaf_models: 

        y_hat = leaf_models[leaf].predict(x)[0] 

    else: 

        y_hat = global_reg.predict(x)[0] 

         

    pred_list.append(y_hat) 

    true_list.append(row['Y']) 

    month_list.append(row['Month']) 
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    group_true_list.append(row['Group_true']) 

# Evaluation Metrics 

overall_mape = mean_absolute_percentage_error(true_list, pred_list)*100 

overall_rmse = np.sqrt(mean_squared_error(true_list, pred_list)) 

 

print("MAPE:", overall_mape) 

print("RMSE:", overall_rmse) 

 

# Monthly accuracy 

res = pd.DataFrame({ 

    'Month': month_list, 

    'Y_true': true_list, 

    'Y_pred': pred_list, 

    'Group_true': group_true_list 

}) 

 

monthly = res.groupby('Month').apply( 

    lambda g: mean_absolute_percentage_error(g['Y_true'], g['Y_pred'])*100 

) 

 

group_acc = res.groupby('Group_true').apply( 

    lambda g: mean_absolute_percentage_error(g['Y_true'], g['Y_pred'])*100 

) 

# Plot Monthly MAPE 

plt.figure(figsize=(8,4)) 

plt.plot(monthly.index, monthly.values, marker='o') 

plt.title("Monthly MAPE (2021)") 

plt.xlabel("Month") 

plt.ylabel("MAPE (%)") 

plt.grid(True) 

plt.show() 
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# Plot Load-Group MAPE 

plt.figure(figsize=(7,4)) 

plt.bar(group_acc.index, group_acc.values) 

plt.title("Load Group MAPE (2021)") 

plt.ylabel("MAPE (%)") 

plt.grid(axis='y') 

plt.show() 
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