SIMULATED ANNEALING FOR VEHICLE ROUTING
PROBLEM WITH TIME WINDOW

BY

NATTANAN SUWANNAMANGKORN

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF MASTER OF ENGINEERING (LOGISTICS AND SUPPLY
CHAIN SYSTEMS ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY
THAMMASAT UNIVERSITY
ACADEMIC YEAR 2025

Ref. code: 25686422040821BAS

THAMMASAT UNIVERSITY
SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

INDEPENDENT STUDY
By
NATTANAN SUWANNAMANGKORN
ENTITLED

SIMULATED ANNEALING FOR VEHICLE ROUTING PROBLEM WITH TIME
WINDOW

was approved as partial fulfillment of the requirements for

the degree of Master of Engineering (Logistics and Supply Chain Systems Engineering)

on July 26, 2025

Member and Advisor /%//

(Assistant ProfeSsor Pham Duc Tai, Ph.D.)
Member R § 6
L2

(Associate Professor Jirachai Buddhakulsomsiri, Ph.D.)

Director ﬂ\(.

(Associate Professor Kriengsak Panuwatwanich, Ph.D.)

Ref. code: 25686422040821BAS

(1

Independent Study Title SIMULATED ANNEALING FOR VEHICLE
ROUTING PROBLEM WITH TIME
WINDOW

Author Nattanan Suwannamangkorn

Degree Master of Engineering (Logistics and Supply

Chain Systems Engineering)
Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Advisor Assistant Professor Pham Duc Tai, Ph.D.
Academic Years 2025
ABSTRACT

Nowadays. Vehicle routing problems (VRP) are an important component of
logistics management. and is often used in transportation logistics and distribution
within this article, we will look at the vehicle routing problem and present a solution
using an integer linear programming model. The objective is to reduce the total load
distance of transportation for each customer. For the problem, we considered the
number of customers, vehicles, and the transportation distance to determine the best
route for the vehicle to take from the warehouse to the customer. from the customer
back to the warehouse to avoid unnecessary travel, if a shorter distance can be traveled
to deliver goods, The delivery time will also be shorter, which will benefit both the
customers and the transport companies. However, the use of integer linear
programming is still limited. In order to resolve the issue, we developed a simulated
annealing (SA) method to create delivery routes that can satisfy both requests

simultaneously while reducing transportation costs and resolving a wider issue.

Keywords: Vehicle Routing Problem, Vehicle Routing Problem with Time Window,

Logistics, Transportation, Simulated annealing (SA)

Ref. code: 25686422040821BAS

2

ACKNOWLEDGEMENTS

I want to sincerely appreciate Assistant Professor Pham Duc Tai, my advisor,
for all of his or her help, support, and wise counsel during this endeavor. His support
and knowledge have been essential to this work's effective conclusion.

Additionally, I would like to thank the committee members for their insightful
comments and helpful recommendations, which have significantly raised the caliber
of this research.

In addition, I would like to express my gratitude to all of the faculty and staff at
Sirindhorn International Institute of Technology (SIIT) for offering me the resources
I needed for my study as well as an engaging academic atmosphere.

Lastly, I want to express my gratitude to my friends and family for their

continuous encouragement and support throughout this journey.

Nattanan Suwannamangkorn

Ref. code: 25686422040821BAS

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES

CHAPTER 1 INTRODUCTION

CHAPTER 2 REVIEW OF LITERATURE
2.1Vehicle Routing Problem with time window

2.2 Vehicle Routing Problem with Delivery and Pick-up

2.3 Linear programing and Mixed integer linear programming

CHAPTER 3 ALGORITHM
3.1 Integer linear programming for LDVRPTW

3.2 Simulated annealing for vehicle routing problem
CHAPTER 4 RESULT AND DISCUSSION
CHAPTER 5 CONCLUSIONS

REFERENCES

3)

Page
6]

2

“4)

B~ B~ LW W

27

29

30

Ref. code: 25686422040821BAS

“4)

LIST OF FIGURES

Figure page
3.1 The flow chart of simulated annealing 26

Ref. code: 25686422040821BAS

CHAPTER 1
INTRODUCTION

The vehicle routing problem (VRP) is crucial to the transportation industry.
because this method can calculate the route of the vehicles to deliver the goods to the
customer while reducing the travel distance. When the route is shorter, the duration and
cost of delivering the goods will also be reduced. Most of the problems that vehicle
routing problems will be solved are, for example, routes that use more cars than
necessary. But on another route, there are not enough cars to deliver products to
customers. This causes unnecessary expenses, and there may be more trips than
necessary. Solving problems using VRP will reduce these problems and make the
delivery truck more efficient.

A vehicle routing problem must be solved by choosing the optimal route
selection for the vehicles that will be used to serve a specific customer. Also, this is
among the most critical and well-studied combinational optimization issues. since
Dantzig and Ramser introduced the problem in 1959. They offered the first
mathematical programming theory and provided real-world applications for
transporting fuel to service stations. Their algorithmic approach has many practical
applications in the fields of distribution, logistics, and network design problems. To
achieve the objectives and solve problems such as shortest distance, lowest cost, and
the shortest duration within specific constraints such as product requirements, delivery,
delivery times Vehicle capacity limitations travel restrictions time constraints, etc. may
be less, the number of vehicles used as little as possible (Chao & Yang,2017).

The vehicle routing problem with time windows (VRPTW) is the optimal
routing of a vehicle between a warehouse and several customers that must visit within
a predetermined time. which we refer to as the time window. Heuristics for vehicle
routing issues fall into the following categories:

e Construction heuristics
e Improvement heuristics

e Metaheuristics

Ref. code: 25686422040821BAS

Parallel or sequential approaches known as construction heuristics are used to create
early solutions to routing issues that can later be enhanced by improvement heuristics
or metaheuristics. Using decision functions for the selection of the customer to be
placed in the route and the insertion point inside the route, sequential algorithms
construct a route for each vehicle one at a time. Using a pre-calculated estimate of the
number of routes, parallel algorithms construct the routes for all vehicle in parallel
(Zirour, 2008)

For the vehicle routing problem, we are provided with a set of customers with
established demand, a vehicle, and a depot. The problem is reducing the overall cost of
transport without limiting vehicle capacity. And there may be distance limitations. The
vehicle routing problem with deliveries and pickups (VRPDP) can find a solution to
the problem with depot-to-customer delivery and customer-to-depot return. The
VRPDP is a significant logistical issue and has a wide range of applications (Kumar &

Jayachitra,2016).

Ref. code: 25686422040821BAS

CHAPTER 2
REVIEW OF LITERATURE

The literature review of earlier studies that have been done on the subject of this
thesis is included in this chapter. The vehicle routing problem (VRP) is first described

in general terms, and then the various solution methods are discussed.

2.1 Vehicle Routing Problem with time window

The distribution modified by the vehicle routing problem reduces the total travel
costs incurred by vehicles in response to customer demand. One of the topical variations
is the "vehicle routing problem with a time window." that has been the subject of the
most research, whose time window ensures that each customer must visit at a specific
time. In the case study problems and effective solutions for VRPTW have been
presented. (Tas, Jabali, & Van Woensel, 2014) They are studying a flexible time limit
needed to solve the vehicle routing problem; the content is This VRPTW concept
implies that time windows will be considered a strict constraint. In many real-life
situations, constraints on the time window are somewhat flexible. Therefore, they
evaluate the operational profit of using a fixed relaxation of the time window
constraints, where the vehicle is allowed to deviate from the customer's time window
as appropriate. This flexibility reduces carriers' operating costs. because customers may
receive the product before the specified time. (Pan, Zhang & Lim, 2021) They study
routing problems in urban transport. Considering the travel time depends on time.
Concurrent loading times at the warehouse and many trips per vehicle. The objective is
to reduce total distance by following a time window. vehicle capacity and travel time
restrictions. This is called a "multi-trip time-dependent vehicle routing problem with
time windows (MT-TDVRPTW)" and there is also an article of (Martin, Jacques and
Marius, 1991) They present about developing a new algorithm for the solution.
Dynamic programming was utilized to identify the shortest path while keeping time
window and capacity restrictions to apply column formation to solve the LP relaxation
problem of VRPTW partitioning. the addition of potential columns as necessary, and
the results show that the test was successful using VRP as standard. This algorithm can

solve 100 customer problems appropriately.

Ref. code: 25686422040821BAS

2.2 Vehicle Routing Problem with Delivery and Pick-up
In part, the vehicle routing problem with delivery and pick-up (VRPDP) is a

very well-liked subject and is frequently utilized to solve the problem of pickup and
delivery of goods to customers. There has been a lot of research done on VRPDP, such
as by Gutiérrez-Jarpa et al. (2010) Talk about deliveries, selective pickups of the
product, and the time window. The data consists of customer deliveries and pickup
customers. Vehicles of the same capacity will be stationed at the depot and must be
delivered within the time window indicated. The objective is to minimize distance
costs, minus the revenue earned from pickup and delivery and another of research is
(Kumar & Jayachitra,2016) Study the problem of concurrent receipt and dispatching
between two warehouses with several distributed nodes and capacitated vehicle routing.
Using the maximum vehicle capacity while reducing the number of vehicles used are
the objectives of this study. The suggested heuristic can accomplish both goals and has

been proven effective in resolving issues in various contexts.

2.3 Linear programing and Mixed integer linear programming
When multiple restrictions are applied, a linear function is maximized or

minimized using the linear programming method of mathematical modeling. This
method is helpful for calculating decisions in business planning. This technique is
widely used in transportation businesses to achieve desired objectives such as reducing
travel distances. Reduce the number of vehicles used for travel, including reducing the
cost of transportation and A mixed integer linear program is an optimization of a linear
function under a linear constraint when some variables have integer values. There is
research that uses this technique to solve the problem (Bai, Xue, Chen & Roberts, 2015)
research an integer linear programming approach, investigate a bidirectional multi-shift
full truckload transportation problem. The objective is to minimize the total distance of
all routes. Real-world problem with container handling at substantial container
terminals is the source of this problem. (Saksuriya & Likasiri, 2022) using mixed-
integer linear programming to determine a path that will allow each caregiver to start
and return to the beginning location. Every patient must only pay for one visit at the
lowest possible cost. Same as (Haitam, Najat & Abouchabak, 2021) Research has been

done on home health care (HHC) programs as services for patients at home or for

Ref. code: 25686422040821BAS

patients who are unable to go to the hospital. This project's goal is to deliver high-
quality service. Minimize total costs as much as possible and limit losses. This issue is

solved using mixed-integer linear programming to lower the cost of HHC projects.

Ref. code: 25686422040821BAS

CHAPTER 3
ALGORITHM

3.1 Integer linear programming for LDVRPTW
We partially present an ILP formulation for the issue and discuss revisions that

could be made. To describe the LDVRPTW as a mixed integer linear programming

problem, we specify the pertinent sets, parameters, and decision variables:

Sets:
C =1{1,2,...,n}: set of customers

N ={0,1,2, ...,n} : set of all nodes including depot which is represented by node 0

Parameters:

n: The number of customers

d;;: Distance from node i to node j (km)

Z;j: Cumulative time from node i to node j (hours)
U;j: unloading time from node i to node j (hours)

T;j: Travel time from node i to node j (hours)

qi: The nonnegative weight (demand) of node i (tons)
Qo: The tare of a vehicle (tons)

Q: The capacity of a vehicle (tons)

Decision Variables:
x;;: binary variable, which indicates whether a vehicle travels from node i to node j or
not.

yi;- load weight carried by a vehicle when it travels from node i to node j (tons)

Here are the problem's constraints, listed under the headings they belong to:
mmZZdU X Yij (31)

iEN JEN

Ref. code: 25686422040821BAS

Subject to:
Z Xoi = 2 (3.2)
ieC

Xip = 2 (3.3)
ieC
inj =1 vjec (3.4)
ieN

Xij = 1 VieCl (3.5)
JEN

Z Yiji = z Yij = q; Viecl (3.6)

JEN j#i jEj#i
Yio = Qo X Xjo viec (3.7)
Vi < (Q + Qo — q1) X x5 VijJEN, L #] (3-8)
Yij 2 (Qo + ;) X x5 Vi, jEN,i %] (3.9)
x;j €{0,1} VieEN,VjEN (3.10)

Minimizing the total load distance is objective (3.1). Two vehicles will always
be used because of restrictions (3.2) and (3.3). The degree constraints for each node are
constraints (3.4) and (3.5). The classical conservation of flow equation, which balances
the inflow and outflow of each node and forbids any unauthorized detours, is constraint
(3.6). The cost structure of the problem requires that constraint (3.7) initialize the flow
on the first arc of each route. Constraints (3.9) produce lower bounds for the flow on
any arc, while constraints (3.8) handle capacity restrictions and forces y;; to zero when
the arc (i, j) 1s not on any route. Integrality constraints are given in (3.10), we do not
require nonnegativity constraints (3.9). Let's refer to the restrictions (3.7), (3.8), and
(3.9) as the formulation's boundary constraints.

This is constraints of the load distance vehicle routing problem, from now on
we will add the constraints of the time window to constraints (3.11), (3.12), (3.13),
(3.14) as follow:

Constraint (11): Subtour elimination constraint and it guarantees that the solution
contains no illegal subtours.

Z Zij — Z Zji = Z(ti,-+ui,-) X Xij vViel (3.11)

JEN,j#i JEN,j#i JEN

Ref. code: 25686422040821BAS

Constraint (12): ensures that at least the amount of time a vehicle can take to go from
point j to the depot must be subtracted from the maximum total time T;;

Z; < (Zmax — tjo) X X; VieN,VIieC (3.12)
Constraint (13): Ensures that the overall time spent getting to the depot does not go over

the allotted amount of time.

Zij < Zmax X Xig VieC (3.13)

Constraint (14): Ensures that total time traveled up to j must be at least Ty + Tj;.

Zij < (t0i+ui+tij+uj)><xij ViEC,VjEN (314)

3.2 Simulated annealing for vehicle routing problem
Simulated annealing, a local search-based heuristic, can avoid becoming stuck

at a local optimum by accepting, with a tiny probability, poorer solutions as it iterates
through the problem. It has been successfully used to solve numerous extremely
challenging combinatorial optimization issues. The annealing procedure employed in
the metallurgical industry is where the idea for this technology originated. Slow cooling
is used during the annealing process. to crystallize the metal in a more aligned low
energy condition. Similar to the gradual cooling step, the SA enhancement step
achieves a (nearly) global bottom. The physical melting process begins with a default
random solution. The algorithm selects a new solution from a predetermined area near
the current answer for each iteration. This new solution's objective function value will
be contrasted with that of the existing solution. evaluate the update to see if it has been
updated. When a new iteration of the search is conducted, the new solution replaces the
current one if the objective function value of the new one is superior, i.e., smaller in the
case of miniaturization. With a very small probability offered by the Boltzmann

function, e ~2/kT

, where k is a preset constant and T denotes temperature, fresh
solutions with larger objective function values may be accepted as current solutions.
Avoiding a solely solution-oriented approach currently is crucial to preserving the value
of the objective function. but allow adjustments that improve the value of the objective

function as well.

Ref. code: 25686422040821BAS

In this process, the temperature is set to a high initial temperature at the start of
the search, which makes it simpler to accept a subpar result. A local search is carried
out by the algorithm until a predetermined number of iterations has been reached. The
local search then resumes after the temperature is cooled down by a certain rate. The
algorithm continues to run until the temperature drops below the target temperature, at
which point it stops, and the best answer is presented.

Simulated annealing is one of the techniques we use to solve routing problems.
The code for Simulated Annealing through Google Colab, which consists of a total of

11 steps for computing the route, is written as follows:

Step 1: Google Colab import of routing data from Excel.

import pandas as pd
distance df = pd.read excel('/content/Data Distance.xlsx',
sheet name='1l8 cust', index col=0)

demand df = pd.read excel ('/content/Data Distance.xlsx',
sheet name='1l8 cust de', usecols=['NODE', 'DEMAND'])

num vehicle = int (pd.read excel ('/content/Data Distance.xlsx',
sheet name='demand',6 usecols=['number of vehicle']) .values[0])

max_cap = int (pd.read_excel ('/content/Data Distance.xlsx',
sheet name='demand', usecols=['max capacity']) .values[0])

vehicle weight = int (pd.read excel('/content/Data Distance.xlsx',

sheet name='demand', usecols=['vehicle weight']) .values[O0])
max_time = float (pd.read excel('/content/Data Distance.xlsx',
sheet name='demand',6 usecols=['max time vehicle']) .values[0])

vehicle velocity =
int (pd.read excel ('/content/Data Distance.xlsx',
sheet name='demand',6 usecols=['vehicle velocity']) .values[0])

loading time = int (pd.read excel('/content/Data Distance.xlsx',
sheet name='demand', usecols=['loading time']) .values[0])

Ref. code: 25686422040821BAS

10

Step 2: Calculation of Travel Time: “travel time = distance df / vehicle velocity”
calculates the travel time between different nodes based on the distance and vehicle
velocity.

Decoding Function: The function ‘decoding_func(route)" takes a route as input (in the
form of a list of nodes) and processes it to determine feasible routes for a vehicle,

considering constraints like vehicle capacity and time. Here's what the function does:

Initialize variables: ‘from node’, ‘cum load’, ‘cum time’, ‘route’,
‘route_solution’, and k.
- While there are nodes in the chromosome (the input route)
- Get the first node as "to_node’.
- Determine the customer load ("cus_load") of the current node.
- Calculate the travel time between the from node’ and ‘to node’ using the
‘travel time' matrix.
- Calculate the unloading time based on the customer load and loading time.
- If the current node is the starting node (0), append it to the route.
- Check if adding the current node to the route violates capacity and time
constraints.
- If not, add the node to the route, update cumulative time and load, remove the
node from the chromosome, and set the "from node’ as the current node.
- If yes, end the current route by appending the starting node (0) and reset
variables.
- Finally, append the starting node (0) to close the last route, update cumulative
time, and add the route to "route solution’.
Return Value: The function returns a list of routes (‘route_solution’), each of which
represents a feasible route for a vehicle that adheres to capacity and time constraints.
travel time = distance df / vehicle velocity
def decoding func (route):
chromosome= route.copy ()
from node = 0
cum load = O
cum_time = 0

route = []
route solution = []

Ref. code: 25686422040821BAS

11

while len (chromosome) > O:

to node = chromosome [0]
cus load =
int (demand df[demand df['NODE']==to node] ['DEMAND'])

travel time df = travel time.loc[from node,to node]

unloading time (loading_time/60*cus_load)
if from node == 0:
route.append (0)

if (cum load + cus load <= max cap) and (cum time +
travel time df + unloading time <= max time -
travel time.loc[from node,0]):
route.append (to node)

cum_time = cum time + unloading time + travel time df
cum load = cum load + cus load
chromosome.remove (to_node)
from node = to node
else:
route.append (0)
cum time = cum time + travel time.loc[from node, 0]
route solution.append(route)

from node = 0
cum time = O
cum load = 0
k=%k+ 1
route = []

route.append (0)
cum_time = cum time + travel time.loc[from node, 0]

route solution.append(route)

return route solution

Ref. code: 25686422040821BAS

12

Step 3: Function Definition: "def get sum load(route): * defines a function named

‘get sum load’ which takes a single argument “route’.

Variable Initialization: Inside the function, ‘route n’ is created as a copy of the input

‘route’. ‘from node’ is initialized as O (the starting node), and “sum load" is initialized

as

0 to keep track of the cumulative load.

Looping through the Route:

A “while’ loop is used to iterate through the nodes in the "route n" list until there
are no nodes left.

The first node in the ‘route n" list is extracted as 'to_node’.

The distance between ‘from node’ and ‘to node' is fetched from the
‘distance_df" DataFrame using ".loc[from node, to_node] .

‘from_node’ is updated to 'to_node" for the next iteration.

The node “from_node’ is removed from the ‘route n’ list to move to the next
node.

The demand (load) associated with the current node (‘to_node") is fetched from
the "demand df" DataFrame using ".loc’ and then calculated as an integer value.

The demand of the current node is added to the "sum load’.

Return Value: After looping through all nodes in the route, the function returns the

calculated ‘sum_load’, which represents the total load associated with the given route.

de

in

f get sum load(route):
route n = route.copy()
from node = 0

sum load = 0

while len(route n) > O:
to node = route n[0]
distance = distance df.loc[from node,to node]
from node = to node

route n.remove (from node)

cus load =
t (demand df [demand df['NODE']==to node] ['DEMAND'])

sum load = sum load + cus_load

return sum load

Ref. code: 25686422040821BAS

13

Step 4: Function Definition: "def calculate total LD(route n):" defines a function
named “calculate total LD’ which takes a single argument ‘route n'.
Variable Initialization:
- “copy_route’ is created as a copy of the input ‘route n’.
- “sum_load" is calculated using the previously defined ‘get sum load" function,
which computes the total load of the route.

- “cum_load’ is initialized as 0 to keep track of cumulative load.

‘from_node’ is initialized as 0, representing the starting node.
- load distance’ is initialized as 0 to accumulate the load-distance value.
Looping through the Route:
- A 'while’ loop is used to iterate through the nodes in the ‘copy route" list until
there are no nodes left.
- The first node in the ‘copy_route’ list is extracted as "to_node’.
- The distance between ‘from node’ and ‘to node’ is fetched from the
‘distance_df" DataFrame using ".loc[from node, to_node]".
- The load-distance value for the current segment of the route is calculated using
the formula: “(sum_load - cum_load + vehicle weight) * distance’.
- ‘cus_load’ is calculated by fetching the demand (load) associated with the current
node from the ‘demand df" DataFrame.
- “cum_load’ is updated by adding the demand of the current node.
- The current node (‘to_node’) is removed from the ‘copy route’ list to move to
the next node.
- from_node’ is updated to "to_node’ for the next iteration.
Calculating Load-Distance for Last Segment:
- After the loop, the distance between the last node and the starting node (0) is
fetched from the “distance df* DataFrame.
- The load-distance value for the last segment of the route is calculated similarly
to before.
- The load-distance values for all segments are accumulated to get the total load-

distance value.

Ref. code: 25686422040821BAS

14

Return Value: The function returns the calculated “load distance’, which represents
the load-distance value associated with the given route.

def calculate total LD (route n):
copy route = route n.copy ()
sum load = get sum load(route n)
0
from node = 0

cum_ load
load distance = 0

while len(copy route) > O:

to node = copy route [0]
distance = distance df.loc[from node,to node]
load distance = load distance + (sum load-cum load +

vehicle weight) *distance

cus load =
int (demand df [demand df['NODE']==to node] ['DEMAND'])

cum load = cum load + cus load
copy_ route.remove (to node)
from node = to node
distance = distance df.loc[from node, 0]
load distance = load distance + (sum load-cum load +

vehicle weight) *distance
return load distance

Ref. code: 25686422040821BAS

15

Step 5: Function Definition: "deftotal LD func(all route):" defines a function named
‘total LD func® which takes a single argument “all_route’, expected to be a collection
of routes.
Variable Initialization:
- ‘sum_load distance’ is initialized as 0. This variable will be used to accumulate
the load-distance values of all routes.
Loop through Routes and Accumulate Load-Distance:
- A for’ loop is used to iterate through each route in the collection "all route’.
- For each route, the “calculate total LD(route)" function is called to compute the
load-distance value for that specific route.
- The calculated load-distance value for the current route is added to the
‘sum_load_distance” variable.
Return Value: After looping through all routes, the function returns the final value of
‘sum_load distance’, which represents the cumulative load-distance value for all the
provided routes.
def total LD func(all route):

sum load distance = 0

for route in all route:
sum load distance = sum_ load distance +
calculate total LD(route)
return sum load distance

Step 6: Function Definition: "def acceptance (current LD, candidate LD, T):" defines
a function named “acceptance’ which takes three arguments:

- “current LD": The load-distance value of the current solution.

- ‘candidate LD": The load-distance value of the candidate solution.

- "T": The current temperature in the simulated annealing process.

Comparison and Decision:

- The function begins with an "if" statement to compare the load-distance value of
the candidate solution (‘candidate LD") with the load-distance value of the
current solution ("current LD").

- If the ‘candidate LD" is less than the ‘current LD, this means the candidate

solution is better, so the function returns “'accept’.

Ref. code: 25686422040821BAS

16

- If the "candidate LD is not better, it means the candidate solution is worse or
equivalent. In this case, the function calculates the energy difference "E’ between
the candidate solution and the current solution: 'E = -candidate LD +
current LD".

- The probability "'P* of accepting the worse solution is calculated using the
exponential function ‘math.exp(E/T)". The higher the temperature "T", the more
likely it is to accept worse solutions.

- A random value 'R’ between 0 and 1 is generated using "random.random()".

- If 'P’ is greater than or equal to 'R’, the function returns "'accept”. This means
there's a chance to accept a worse solution based on the current temperature and
the energy difference.

- If P’ is less than 'R’, the function returns “'reject”, indicating that the worse
solution should be rejected.

- The code includes print statements to display the calculated probability "P* and
the random value 'R’ for diagnostic purposes.

import random
import math

def acceptance (current LD,candidate LD, T):

if candidate LD < current LD:
return 'accept'

else:
E = -candidate LD+current LD
P = math.exp(E/T)
R = random.random ()
print ("P =", P)
print ("R =",R)
if P>R:

return 'accept'
else:

return 'reject'

Ref. code: 25686422040821BAS

17

Step 7: Function Definition: "def swap(route):" defines a function named “swap” which
takes a single argument "route’.
Copying the Route:

- The function starts by creating a copy of the input route called ‘temp route’. This

copy will be modified to generate a new candidate solution.
Randomly Selecting Indices:

- The function generates two random indices: "idx1" and "1dx2". These indices will
correspond to positions in the ‘temp route’ list where the elements will be
swapped.

- idx1 is generated using ‘random.randrange(0, len(route))". It's the index of the
first element to be swapped.

- "idx2’ is generated similarly, but it's important to ensure that it is different from
'idx1" to avoid swapping an element with itself. A “while’ loop is used to
repeatedly generate "idx2" until it is different from “idx1".

Swapping Elements:

- The elements at positions ‘idx1" and ‘idx2" in "temp route’ are swapped. This
simulates the process of swapping two nodes in the route, which can lead to a
new candidate solution.

Return Value:

- The function returns the modified ‘temp route’, which now represents the

candidate solution after the swap operation.

def swap (route):
temp route = route.copy()
idxl=random.randrange (0, len (route))
idx2=random.randrange (0, len (route))

while idxl == idx2:
idxl=random.randrange (0, len (route))
idx2=random.randrange (0, len (route))

temp = temp route [idx1]
temp route [idxl] = temp route [idx2]

temp route [idx2] = temp
return temp route

Ref. code: 25686422040821BAS

18

Step 8: Function Definition: "def candidate func(current sol, T):" defines a function
named ‘candidate func’ which takes two arguments:

- “current_sol': The current solution represented as a list of nodes.

- "T': The current temperature in the simulated annealing process.

Calculating “search_dist :

- The code calculates “search dist" as the square root of "T", rounded to the nearest
integer. This value determines the number of swap operations to be performed in
this iteration.

Loop and Generating Candidate Solutions:

- A 'while" loop is used to perform the swapping operation a certain number of
times, specified by “search_dist’.

- A copy of the ‘current sol’ is created using ‘temp current sol =
current_sol.copy()". This copy will be modified to generate a candidate solution.

- The "swap(temp_current_sol)’ function is called to generate a candidate solution
by swapping nodes in the current solution.

- The ‘decoding_func(candidate sol)’ function is then called to decode the
candidate solution and obtain the corresponding routes.

- Ifthe number of routes in the decoded candidate solution is equal to the specified
number of vehicles (‘num_vehicle"), the candidate solution is accepted and
assigned to “current sol’. Otherwise, the "current sol’ remains unchanged.

Iteration Counter and Printing:
- The iteration counter ‘1" is incremented in each iteration of the loop.
- The function prints the final candidate solution after all iterations.
Return Value:

- The function returns the modified ‘current sol’, which now represents the

candidate solution after multiple swap operations.

def candidate func (current sol, T):
search dist = round(math.sqrt(T),0)

i=1

while i <= search dist:

Ref. code: 25686422040821BAS

19

temp current sol = current sol. copy()
candidate sol = swap (temp current sol)
decode candidate sol = decoding func (candidate sol)
if len (decode candidate sol)== num vehicle:
current sol = candidate sol
else:
current sol = current sol
i+=1
print ('The final candidate solution',current sol)

return current sol

Step 9: Function Definition: ‘def SA LDVRPTW (init T, final T, num iter,
max_cap, current_sol, current LD):" defines a function named 'SA_LDVRPTW" that
takes several parameters:

- init_T": The initial temperature for the simulated annealing process.

“final_T': The final temperature, at which the process will stop.
- "num_iter': The number of iterations to be performed at each temperature level.
- ‘max_cap': The maximum capacity of the vehicles.
- “current_sol': The initial solution (list of nodes) to start the algorithm.
- “current LD": The initial load distance associated with the "current sol’.
Initialization and Main Loop:
- The function initializes variables "temp cycle' and "T" (current temperature) to
manage the annealing process.
- The main loop continues as long as "T" is greater than “final T".
- Inside the loop, the algorithm performs the specified number of iterations
(‘num_iter") to explore solutions at the current temperature.
Iteration Loop:
- For each iteration.
- The current solution is decoded using "decoding_func' to obtain routes, and the
current load distance is calculated using “total LD func'.
- A copy of the current solution (‘newsol’) is created to generate a candidate

solution.

Ref. code: 25686422040821BAS

20

‘candidate func’ is used to generate a candidate solution by performing swaps
on the nodes in ‘newsol".

- The decoded candidate solution's load distance is calculated.

- The “acceptance’ function determines whether to accept the candidate solution
based on the difference between the current load distance and the candidate load
distance, as well as the current temperature.

- If the candidate solution is accepted, the current solution and load distance are
updated accordingly. If the candidate's load distance is better than the best load
distance seen so far (‘cur_best LD"), the best solution and load distance are also
updated.

- The algorithm prints relevant information, like the acceptance status and current
solution, during each iteration.

Temperature Update:

- After completing ‘'num_iter’ iterations at the current temperature, the temperature
"T" is updated based on a cooling schedule. Here, it's set as "init T - (0.95 *
temp_cycle)’, where ‘temp_cycle’ is the current temperature cycle.

Finalization:

- Once the temperature falls below “final T, the algorithm exits the main loop.

- The algorithm prints the final best solution and its associated load distance.

- The decoded version of the best solution is printed using "decoding_func’.

- The function returns the final best solution and its load distance.

def
SA LDVRPTW (init T,final T,num iter,max cap,current sol,current LD

) 3

temp cycle = 0

T = init T

cur best sol = current sol.copy ()
cur best LD = current LD.copy ()
while T > final T:

print ('--—-----—-—--———- Temp cycle ', temp cycle, ",",'T =
Vo Iby, Vsmmmmmasoss=s ")
for i in range (0,num iter)
Print (M. ..ttt e iteration
Va4, Y coocoo0000000000000000000c ")

print ('The current solution is', current sol)

Ref. code: 25686422040821BAS

21

decode current sol = decoding func (current sol)
current LD = total LD func(decode current sol)
print ('The current load distance is', current LD)
newsol = current sol.copy()
candidate sol = candidate func(newsol,T)
print ('The current solution is', candidate sol)
decode candidate sol = decoding func (candidate sol)
candidate LD = total LD func(decode candidate sol)
print ('The candidate load distance is', candidate LD)
accept = acceptance (current LD, candidate LD, T)
if accept == 'accept':

print ('accept')

current sol = candidate sol

current LD = candidate LD

print ("Current LD after accept", current LD)

if current LD < cur best LD:

cur best sol = current sol.copy ()
cur best LD = current LD

else:

print ('reject')
print ("current solution after compare", current sol)

temp cycle = temp cycle+l
T = init T-(0.95*temp cycle)

print ("Final solution = ", cur best sol)

print ("Final LD =", cur best LD)

print ('The final solution after decoding is', decoding func
(cur best sol))

return cur best sol, cur best LD

Step 10: Function Definition: def initial pop(num_chromosome): This line defines a
function named initial pop that takes one argument, num chromosome, which
represents the number of chromosomes (individuals) in the population.
Initialization:
- 1=1:This initializes a variable i to 1. It's used as a counter to control the number
of chromosomes generated.
- chromosome _lIst = []: This initializes an empty list chromosome _lst to store the

generated chromosomes.

Ref. code: 25686422040821BAS

22

While Loop:

- while i <= num_chromosome:: This initiates a while loop that continues until 1
is greater than num_chromosome. The purpose of this loop is to generate the
specified number of chromosomes.

Chromosome Generation:

- chromosome = (list(np.random.permutation(len(distance df)))): This line
generates a random permutation of indices from 0 to len(distance df) - 1. It uses
NumPy's permutation function and converts the result to a list. This is a common
way to represent a permutation.

- chromosome.remove(0): This removes the element 0 from the generated
chromosome. This suggests that the permutation is intended to represent
indices, and 0 is being excluded (possibly indicating a starting point).

List Update:

- 1+=1: This increments the counter i by 1.

- chromosome Ist.append(chromosome): The generated chromosome is added to
the list chromosome Ist.

Return Statement:

- return chromosome_lst: The function returns the list of generated chromosomes.

def initial pop (num chromosome) :

i=1

chromosome lst =[]

while i <= num chromosome:
chromosome = (list (np.random.permutation(len(distance df))))
chromosome.remove (0)
i+=1
chromosome lst.append (chromosome)

return chromosome 1lst

Ref. code: 25686422040821BAS

23

Step 11: Importing Libraries: The code imports the NumPy library as ‘'np’.
Initializing Population:

- ‘num_chromosome’ specifies the number of initial solutions (chromosomes) in
the population.

- ‘chromosome Ist’ is a list that will hold the initial solutions generated for each
chromosome using the “initial pop" function.

Iterating Through Chromosomes:

- A loop iterates through each ‘initial sol’ (initial solution) in the
‘chromosome Ist’. This represents different initial solutions for each
chromosome.

Simulated Annealing for Each Chromosome:

- For each "initial_sol".

- The initial temperature (‘init T"), final temperature (‘final T'), number of
iterations (‘num_iter’), and other parameters are set.

- “current_sol’ is initialized with the initial sol’.

- The initial solution is decoded and its load distance is computed using the
‘decoding_func’ and “total LD func’.

- The 'SA_ LDVRPTW" function is called to perform simulated annealing using
the provided parameters. This function returns the best solution and its associated
load distance.

- The best solution and load distance are added to respective lists
(‘cur_best sol Ist” and ‘cur _best LD Ist").

Finding the Best Solution from Population:

- After iterating through all chromosomes, the minimum load distance ("best LD")
from the population is found using the 'min" function.

- The index of "best LD in ‘cur best LD Ist' is used to find the corresponding
best solution ("best_sol’) in “cur_best sol Ist".

Printing Results:

- The code then prints out various results.

- The list of best solutions found for each chromosome: ‘cur best sol Ist".

- The list of best load distances associated with the best solutions:

‘cur_best LD Ist.

Ref. code: 25686422040821BAS

24

- The minimum load distance: "best LD".

- The best solution found: “best sol".

- The decoded version of the best solution wusing ‘decoding func':
‘best_decode sol'.

import numpy as np

num chromosome = 20
chromosome lst = initial pop (num chromosome)
cur _best sol 1st=[]
cur best LD 1lst =[]
for initial sol in chromosome lst:
PEILAE (Vosommo=—s—ss= SEAR T me s e e ams S ")
print ('The initial solution is',initial sol)
init T = 10
temp cycle = 0
final T =1

num iter = 10

T = init T

current sol = initial sol

decode initial sol = decoding func(initial sol)

initial LD = total LD func(decode initial sol)
current LD = initial LD
print ('The initial load distance',initial LD)
cur _best sol, cur best LD =
SA LDVRPTW(init T,final T,num iter,max cap,current sol,current LD
)
cur best sol 1st .append (cur best sol)
cur best LD lst.append (cur best LD)
prdae (Vososesssasaes I e e e e e Sl ")
print ('The current best solution list is', cur best sol 1lst)
print ('The current best load distance list is', cur best LD 1lst)
best LD = min(cur best LD 1st)
print ('The minimum LD is', best LD)
best sol = cur best sol lst[cur best LD lst.index(best LD)]
print ('The best solution is', best sol)
best decode sol = decoding func (best sol)
print ('The best decoded solution is', best decode sol)

Ref. code: 25686422040821BAS

25

and here is an example of the response you will receive after running this code.

e The current best solution list is [[16, 18, 13,6, 17,1,5,2,9,11, 7, 10, 3, 12, 4,
15, 14, 8], 14,6, 3,9, 11, 15,8, 7,2, 16, 10, 13, 12,4, 5, 18, 17, 1], [4, 16, 15,
9,11,18,2,7,12, 14, 10,5, 13, 1, 8,6, 17, 3], [1, 16, 18, 17, 15, 4, 6, 14, 8, 11,
12,3,2,13,9,7,10, 5], [3, 15, 18, 13,5, 12,9, 17,6, 1, 7, 2, 4, 10, 14, 16, 8,
1]]

e The current best load distance list is [3833.44, 3551.44, 3846.0800000000004,
3774.3599999999997, 4176.849999999999]

e The minimum LD is 3551.44

e The best solution is [14, 6, 3,9, 11, 15,8, 7,2, 16, 10, 13, 12,4, 5, 18, 17, 1]

e The best decoded solution is [[0, 14, 6, 3,9, 11, 15, 8, 0], [0, 7, 2, 16, 10, 0], [0,
13,12, 4,5,18,0],[0, 17, 1, 0]]

where each execution will produce a different result.

Ref. code: 25686422040821BAS

26

Generate an initial solution
randomly

Generate an initial solution randomly based on
current solution and specified neighbourhood
structure

Current solution is
better than candidate
solution

P = math.exp(E/T)
Generate R in (0,1) randomly

Yes

R<P?

No

Current solution = Candidate solution

Stop condition of inner loop is met? No

Yes

Decrease the temparature

No

Stop condition of outer loop is met?

Yes

Output the solution

END

Figure 3.1 The flow chart of simulated annealing

Figure 3.1 provides a detailed flowchart representing all steps of SA.

Ref. code: 25686422040821BAS

27

CHAPTER 4
RESULT AND DISCUSSION

Simulated annealing We've set a hyperparameter this time. based on the
following metrics: Number of chromosomes is 20, Initial Time is 10, Final Time is 1,
and Number of iterations is 10. We calculated one round of this issue in roughly 3
minutes and 40 seconds. We performed 40 computations and obtained various results.
As a result, we selected the best solution to this issue is:

e The current best solution listis [[12, 13,1,7,4, 11, 3, 16,2, 17,15, 18, 5, 8,
6,14,10,9],[11,8,2,14,7,1,5,10, 12,3, 17, 16,9, 18, 13, 15, 6, 4], [1, 5, &,
9,10,7,15,6,11,14,4,17, 16,2, 13,3, 12, 18], [11, 12, 18, 16,4, 13,9, 15, 3,
14,7,6,1,10,17,5,2,8],[8,17,15,11,4,2,10, 18, 16, 7, 6, 14, 13, 3,9, 5, 1,
12],[15,12,5,11,9,10, 17,8, 16,2, 3,6, 14, 1,4, 7, 18, 13], [1, 17, 11, 6, 16,
3,8,7,18,14,9,4, 15,12, 5, 10, 13, 2], [11, 15, 6, 3, 8, 16, 14, 12, 18,4, 1, 5,
17,2,10,9,13, 7], [4, 11,13, 14,6, 15, 17, 2,3, 12,7, 8, 16, 9, 18, 10, 5, 1],
[9,12,11,3,6,1,4,15,7,2,5,8,13,10, 17, 18, 14, 16], [5, 13, 6,9, 11, 17, 4,
14, 18, 2, 8, 10, 7, 3, 16, 12, 15, 1], [1, 14, 15,9, 16, 17, 13, 6,4, 12, 8, 11, 7,
10, 3,2, 18, 5], [14, 16, 2, 13, 10, 18,7, 15,9, 11, 8, 17,4, 5, 1, 3, 6, 12], [5, 6,
13,14,17, 1,12, 16,7, 8, 2, 3, 11, 15, 10, 4, 18, 9], [14, 5, 8, 10, 12, 9, 2, 16,
13,17,4,3,11,7,6, 15,18, 1], [1, 3, 5, 10, 9, 4, 12, 13, 16, 2, 14, 18, 17, 11,
15,8,7,6],[13,11,5,3,2,16,6,12,17,4,7, 18, 1, 10, 9, 14, 15, 8], [16, 13,
10,8, 3,12,2,17,9, 14,11, 18, 15,7, 5, 1, 6, 4], [15, 14, 13, 17,5, 7, 12, 1, 4,
16,8,3,10,9,6,11,2,18],[2, 11,6, 18, 8,10, 14, 3,5, 16,12, 1,7, 15, 13, 17,
4,911

e The current best load distance list is [3965.21, 3788.0699999999997,
4041.01, 3998.44, 3610.6499999999996, 3651.32, 4074.7499999999995,
3407.98, 3043.89, 3363.2999999999997, 3766.46, 3902.54, 3525.38,
3661.8500000000004, 3914.71, 4042.2799999999997, 3465.3500000000004,
4025.46, 3687.76,4011.06]

e The minimum LD is 3043.89

e The best solution is [4, 11, 13, 14,6, 15,17,2,3,12,7,8, 16,9, 18, 10, 5, 1]

Ref. code: 25686422040821BAS

28

e The best decoded solution is [[0, 4, 11, 13, 14, 6, 15, 17, 0], [0, 2, 3, 12, 7, 8,
16, 0], [0, 9, 18, 10, 5, 0], [0, 1, O]

e Considering the outcomes, we chose the routes [4, 11, 13, 14, 6, 15, 17, 2, 3,
12,7,8,16,9, 18, 10, 5, 1] that have values out of a total of 20 routes. 3043.89
is the shortest load distance among the 20 paths. The best decoded answer is [[0,
4,11, 13,14,6,15,17,0], [0, 2, 3,12, 7, 8, 16], [0, 9, 18, 10, 5], [0, 1, O]], for
which we used the excel solver method to get the minimum load distance for all

4 routes. It's 872.36, 1155.16, 955.09, and 388.37.

Ref. code: 25686422040821BAS

29

CHAPTER 5
CONCLUSIONS

Studies show that a simulated annealing technique developed in Python can
solve VRP. The fact that there are just 18 customers in total places limitations on this
strategy. When solving the problem, consideration was given to the number of cars,
maximum capacity, vehicle weight, maximum vehicle time, vehicle velocity, and
loading time. The tool we developed to solve this problem is currently unable to
determine the right optimal for customers that have more than 18 customers.

In accordance with subsequent study recommendations, we should make the
code more user-friendly and efficient. To evaluate how much of this result may be used

in those circumstances, we should also conduct experiments in real-world scenarios.

Ref. code: 25686422040821BAS

30

REFERENCES

Aurachman, R., Baskara, D. B., & Habibie, J. (2021). Vehicle routing problem with
simulated annealing using python programming. In /OP Conference Series:
Materials Science and Engineering (Vol. 1010, No. 1, p. 012010). IOP
Publishing.

Bai, R., Xue, N., Chen, J., & Roberts, G. W. (2015). A set-covering model for a
bidirectional multi-shift full truckload vehicle routing problem. Transportation
Research Part B: Methodological, 79, 134-148.

Cao, W., & Yang, W. (2017). A survey of vehicle routing problems. In MATEC Web
of Conferences (Vol. 100, p. 01006). EDP Sciences.

Desrochers, M., Desrosiers, J., & Solomon, M. (1992). A new optimization algorithm
for the vehicle routing problem with time windows. Operations research, 40(2),
342-354.

Gutiérrez-Jarpa, G., Desaulniers, G., Laporte, G., & Marianov, V. (2010). A
branch-and-price algorithm for the vehicle routing problem with
deliveries, selective pickups and time windows. European Journal of
Operational Research, 206(2), 341-349.

Haitam, E., Najat, R., & Abouchabaka, J. (2021). GRASP combined with ILS for the
vehicle routing problem with time windows, precedence, synchronization and
lunch break constraints. International Journal of Advanced Computer Science
and Applications, 12(5).

Kumar, V. S., & Jayachitra, R. (2016). Linear Sweep Algorithm for Vehicle Routing
Problem with Simultaneous Pickup and Delivery between Two Depots With
Several Nodes. Global Journal of Pure and Applied Mathematics, 12(1), 897-
908.

Pan, B., Zhang, Z., & Lim, A. (2021). Multi-trip time-dependent vehicle routing
problem with time windows. European Journal of Operational
Research, 291(1), 218-231.

Redi, A. A. N. P., Maula, F. R., Kumari, F., Syaveyenda, N. U., Ruswandi, N.,
Khasanah, A. U., & Kurniawan, A. C. (2020). Simulated annealing algorithm

Ref. code: 25686422040821BAS

31

for solving the capacitated vehicle routing problem: a case study of
pharmaceutical distribution. Jurnal Sistem dan Manajemen Industri, 4(1), 41-
49.

Saksuriya, P., & Likasiri, C. (2022). Hybrid Heuristic for Vehicle Routing Problem
with Time Windows and Compatibility Constraints in Home Healthcare
System. Applied Sciences, 12(13), 6486.

Tas, D., Jabali, O., & Van Woensel, T. (2014). A vehicle routing problem with flexible
time windows. Computers & Operations Research, 52, 39-54.

Zirour, M. (2008). Vehicle routing problem: models and solutions. Journal of Quality
Measurement and Analysis JOMA, 4(1), 205-218.

Ref. code: 25686422040821BAS

