

SIMULATED ANNEALING FOR VEHICLE ROUTING

PROBLEM WITH TIME WINDOW

BY

NATTANAN SUWANNAMANGKORN

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF ENGINEERING (LOGISTICS AND SUPPLY

CHAIN SYSTEMS ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2025

Ref. code: 25686422040821BAS

(1)

Independent Study Title SIMULATED ANNEALING FOR VEHICLE

ROUTING PROBLEM WITH TIME

WINDOW

Author Nattanan Suwannamangkorn

Degree Master of Engineering (Logistics and Supply

Chain Systems Engineering)

Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Advisor Assistant Professor Pham Duc Tai, Ph.D.

Academic Years 2025

ABSTRACT

Nowadays. Vehicle routing problems (VRP) are an important component of

logistics management. and is often used in transportation logistics and distribution

within this article, we will look at the vehicle routing problem and present a solution

using an integer linear programming model. The objective is to reduce the total load

distance of transportation for each customer. For the problem, we considered the

number of customers, vehicles, and the transportation distance to determine the best

route for the vehicle to take from the warehouse to the customer. from the customer

back to the warehouse to avoid unnecessary travel, if a shorter distance can be traveled

to deliver goods, The delivery time will also be shorter, which will benefit both the

customers and the transport companies. However, the use of integer linear

programming is still limited. In order to resolve the issue, we developed a simulated

annealing (SA) method to create delivery routes that can satisfy both requests

simultaneously while reducing transportation costs and resolving a wider issue.

Keywords: Vehicle Routing Problem, Vehicle Routing Problem with Time Window,

Logistics, Transportation, Simulated annealing (SA)

Ref. code: 25686422040821BAS

(2)

ACKNOWLEDGEMENTS

 I want to sincerely appreciate Assistant Professor Pham Duc Tai, my advisor,

for all of his or her help, support, and wise counsel during this endeavor. His support

and knowledge have been essential to this work's effective conclusion.

 Additionally, I would like to thank the committee members for their insightful

comments and helpful recommendations, which have significantly raised the caliber

of this research.

 In addition, I would like to express my gratitude to all of the faculty and staff at

Sirindhorn International Institute of Technology (SIIT) for offering me the resources

I needed for my study as well as an engaging academic atmosphere.

 Lastly, I want to express my gratitude to my friends and family for their

continuous encouragement and support throughout this journey.

Nattanan Suwannamangkorn

Ref. code: 25686422040821BAS

(3)

TABLE OF CONTENTS

 Page

ABSTRACT (1)

ACKNOWLEDGEMENTS (2)

LIST OF FIGURES (4)

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 REVIEW OF LITERATURE 3

 2.1Vehicle Routing Problem with time window 3

 2.2 Vehicle Routing Problem with Delivery and Pick-up 4

 2.3 Linear programing and Mixed integer linear programming 4

CHAPTER 3 ALGORITHM 6

 3.1 Integer linear programming for LDVRPTW 6

 3.2 Simulated annealing for vehicle routing problem 8

CHAPTER 4 RESULT AND DISCUSSION 27

CHAPTER 5 CONCLUSIONS 29

REFERENCES 30

Ref. code: 25686422040821BAS

(4)

LIST OF FIGURES

Figure page

3.1 The flow chart of simulated annealing 26

Ref. code: 25686422040821BAS

1

CHAPTER 1

INTRODUCTION

The vehicle routing problem (VRP) is crucial to the transportation industry.

because this method can calculate the route of the vehicles to deliver the goods to the

customer while reducing the travel distance. When the route is shorter, the duration and

cost of delivering the goods will also be reduced. Most of the problems that vehicle

routing problems will be solved are, for example, routes that use more cars than

necessary. But on another route, there are not enough cars to deliver products to

customers. This causes unnecessary expenses, and there may be more trips than

necessary. Solving problems using VRP will reduce these problems and make the

delivery truck more efficient.

A vehicle routing problem must be solved by choosing the optimal route

selection for the vehicles that will be used to serve a specific customer. Also, this is

among the most critical and well-studied combinational optimization issues. since

Dantzig and Ramser introduced the problem in 1959. They offered the first

mathematical programming theory and provided real-world applications for

transporting fuel to service stations. Their algorithmic approach has many practical

applications in the fields of distribution, logistics, and network design problems. To

achieve the objectives and solve problems such as shortest distance, lowest cost, and

the shortest duration within specific constraints such as product requirements, delivery,

delivery times Vehicle capacity limitations travel restrictions time constraints, etc. may

be less, the number of vehicles used as little as possible (Chao & Yang,2017).

The vehicle routing problem with time windows (VRPTW) is the optimal

routing of a vehicle between a warehouse and several customers that must visit within

a predetermined time. which we refer to as the time window. Heuristics for vehicle

routing issues fall into the following categories:

• Construction heuristics

• Improvement heuristics

• Metaheuristics

Ref. code: 25686422040821BAS

2

Parallel or sequential approaches known as construction heuristics are used to create

early solutions to routing issues that can later be enhanced by improvement heuristics

or metaheuristics. Using decision functions for the selection of the customer to be

placed in the route and the insertion point inside the route, sequential algorithms

construct a route for each vehicle one at a time. Using a pre-calculated estimate of the

number of routes, parallel algorithms construct the routes for all vehicle in parallel

(Zirour, 2008)

For the vehicle routing problem, we are provided with a set of customers with

established demand, a vehicle, and a depot. The problem is reducing the overall cost of

transport without limiting vehicle capacity. And there may be distance limitations. The

vehicle routing problem with deliveries and pickups (VRPDP) can find a solution to

the problem with depot-to-customer delivery and customer-to-depot return. The

VRPDP is a significant logistical issue and has a wide range of applications (Kumar &

Jayachitra,2016).

.

Ref. code: 25686422040821BAS

3

CHAPTER 2

REVIEW OF LITERATURE

The literature review of earlier studies that have been done on the subject of this

thesis is included in this chapter. The vehicle routing problem (VRP) is first described

in general terms, and then the various solution methods are discussed.

2.1 Vehicle Routing Problem with time window

The distribution modified by the vehicle routing problem reduces the total travel

costs incurred by vehicles in response to customer demand. One of the topical variations

is the "vehicle routing problem with a time window." that has been the subject of the

most research, whose time window ensures that each customer must visit at a specific

time. In the case study problems and effective solutions for VRPTW have been

presented. (Taş, Jabali, & Van Woensel, 2014) They are studying a flexible time limit

needed to solve the vehicle routing problem; the content is This VRPTW concept

implies that time windows will be considered a strict constraint. In many real-life

situations, constraints on the time window are somewhat flexible. Therefore, they

evaluate the operational profit of using a fixed relaxation of the time window

constraints, where the vehicle is allowed to deviate from the customer's time window

as appropriate. This flexibility reduces carriers' operating costs. because customers may

receive the product before the specified time. (Pan, Zhang & Lim, 2021) They study

routing problems in urban transport. Considering the travel time depends on time.

Concurrent loading times at the warehouse and many trips per vehicle. The objective is

to reduce total distance by following a time window. vehicle capacity and travel time

restrictions. This is called a "multi-trip time-dependent vehicle routing problem with

time windows (MT-TDVRPTW)" and there is also an article of (Martin, Jacques and

Marius, 1991) They present about developing a new algorithm for the solution.

Dynamic programming was utilized to identify the shortest path while keeping time

window and capacity restrictions to apply column formation to solve the LP relaxation

problem of VRPTW partitioning. the addition of potential columns as necessary, and

the results show that the test was successful using VRP as standard. This algorithm can

solve 100 customer problems appropriately.

Ref. code: 25686422040821BAS

4

2.2 Vehicle Routing Problem with Delivery and Pick-up

In part, the vehicle routing problem with delivery and pick-up (VRPDP) is a

very well-liked subject and is frequently utilized to solve the problem of pickup and

delivery of goods to customers. There has been a lot of research done on VRPDP, such

as by Gutiérrez-Jarpa et al. (2010) Talk about deliveries, selective pickups of the

product, and the time window. The data consists of customer deliveries and pickup

customers. Vehicles of the same capacity will be stationed at the depot and must be

delivered within the time window indicated. The objective is to minimize distance

costs, minus the revenue earned from pickup and delivery and another of research is

(Kumar & Jayachitra,2016) Study the problem of concurrent receipt and dispatching

between two warehouses with several distributed nodes and capacitated vehicle routing.

Using the maximum vehicle capacity while reducing the number of vehicles used are

the objectives of this study. The suggested heuristic can accomplish both goals and has

been proven effective in resolving issues in various contexts.

2.3 Linear programing and Mixed integer linear programming

When multiple restrictions are applied, a linear function is maximized or

minimized using the linear programming method of mathematical modeling. This

method is helpful for calculating decisions in business planning. This technique is

widely used in transportation businesses to achieve desired objectives such as reducing

travel distances. Reduce the number of vehicles used for travel, including reducing the

cost of transportation and A mixed integer linear program is an optimization of a linear

function under a linear constraint when some variables have integer values. There is

research that uses this technique to solve the problem (Bai, Xue, Chen & Roberts, 2015)

research an integer linear programming approach, investigate a bidirectional multi-shift

full truckload transportation problem. The objective is to minimize the total distance of

all routes. Real-world problem with container handling at substantial container

terminals is the source of this problem. (Saksuriya & Likasiri, 2022) using mixed-

integer linear programming to determine a path that will allow each caregiver to start

and return to the beginning location. Every patient must only pay for one visit at the

lowest possible cost. Same as (Haitam, Najat & Abouchabak, 2021) Research has been

done on home health care (HHC) programs as services for patients at home or for

Ref. code: 25686422040821BAS

5

patients who are unable to go to the hospital. This project's goal is to deliver high-

quality service. Minimize total costs as much as possible and limit losses. This issue is

solved using mixed-integer linear programming to lower the cost of HHC projects.

Ref. code: 25686422040821BAS

6

CHAPTER 3

ALGORITHM

3.1 Integer linear programming for LDVRPTW

We partially present an ILP formulation for the issue and discuss revisions that

could be made. To describe the LDVRPTW as a mixed integer linear programming

problem, we specify the pertinent sets, parameters, and decision variables:

Sets:

𝐶 = {1,2, … , 𝑛} : set of customers

𝑁 = {0,1,2, … , 𝑛} : set of all nodes including depot which is represented by node 0

Parameters:

𝑛: The number of customers

𝑑𝑖𝑗: Distance from node 𝑖 to node 𝑗 (km)

𝑍𝑖𝑗: Cumulative time from node 𝑖 to node 𝑗 (hours)

𝑈𝑖𝑗: unloading time from node 𝑖 to node 𝑗 (hours)

𝑇𝑖𝑗: Travel time from node 𝑖 to node 𝑗 (hours)

𝑞𝑖: The nonnegative weight (demand) of node 𝑖 (tons)

𝑄0: The tare of a vehicle (tons)

𝑄: The capacity of a vehicle (tons)

Decision Variables:

𝑥𝑖𝑗: binary variable, which indicates whether a vehicle travels from node 𝑖 to node 𝑗 or

not.

𝑦𝑖𝑗: load weight carried by a vehicle when it travels from node 𝑖 to node 𝑗 (tons)

Here are the problem's constraints, listed under the headings they belong to:

min ∑ ∑ 𝑑𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

× 𝑦𝑖𝑗 (3.1)

Ref. code: 25686422040821BAS

7

Subject to:

∑ 𝑥0𝑖

𝑖∈𝐶

= 2 (3.2)

∑ 𝑥𝑖0

𝑖∈𝐶

= 2 (3.3)

∑ 𝑥𝑖𝑗

𝑖∈𝑁

= 1 ∀𝑗 ∈ 𝐶 (3.4)

∑ 𝑥𝑖𝑗

𝑗∈𝑁

= 1 ∀𝑖 ∈ 𝐶 (3.5)

∑ 𝑦𝑗𝑖

𝑗∈𝑁,𝑗≠𝑖

− ∑ 𝑦𝑖𝑗

𝑗∈,𝑗≠𝑖

= 𝑞𝑖 ∀𝑖 ∈ 𝐶 (3.6)

𝑦𝑖0 = 𝑄0 × 𝑥𝑖0 ∀𝑖 ∈ 𝐶 (3.7)

𝑦𝑖𝑗 ≤ (𝑄 + 𝑄0 − 𝑞𝑖) × 𝑥𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (3.8)

𝑦𝑖𝑗 ≥ (𝑄0 + 𝑞𝑗) × 𝑥𝑖𝑗

∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (3.9)

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁 (3.10)

Minimizing the total load distance is objective (3.1). Two vehicles will always

be used because of restrictions (3.2) and (3.3). The degree constraints for each node are

constraints (3.4) and (3.5). The classical conservation of flow equation, which balances

the inflow and outflow of each node and forbids any unauthorized detours, is constraint

(3.6). The cost structure of the problem requires that constraint (3.7) initialize the flow

on the first arc of each route. Constraints (3.9) produce lower bounds for the flow on

any arc, while constraints (3.8) handle capacity restrictions and forces 𝑦𝑖𝑗 to zero when

the arc (i, j) is not on any route. Integrality constraints are given in (3.10), we do not

require nonnegativity constraints (3.9). Let's refer to the restrictions (3.7), (3.8), and

(3.9) as the formulation's boundary constraints.

This is constraints of the load distance vehicle routing problem, from now on

we will add the constraints of the time window to constraints (3.11), (3.12), (3.13),

(3.14) as follow:

Constraint (11): Subtour elimination constraint and it guarantees that the solution

contains no illegal subtours.

∑ 𝑍𝑖𝑗

𝑗∈𝑁,𝑗≠𝑖

− ∑ 𝑍𝑗𝑖

𝑗∈𝑁,𝑗≠𝑖

= ∑(𝑡𝑖𝑗 + 𝑢𝑖𝑗)

𝑗∈𝑁

 × 𝑥𝑖𝑗 ∀𝑖 ∈ 𝐶 (3.11)

Ref. code: 25686422040821BAS

8

Constraint (12): ensures that at least the amount of time a vehicle can take to go from

point j to the depot must be subtracted from the maximum total time 𝑇𝑖𝑗

𝑍𝑖𝑗 ≤ (𝑍𝑚𝑎𝑥 − 𝑡𝑗0) × 𝑥𝑖𝑗 ∀𝑖 ∈ 𝑁, ∀𝑖 ∈ 𝐶 (3.12)

Constraint (13): Ensures that the overall time spent getting to the depot does not go over

the allotted amount of time.

𝑍𝑖𝑗 ≤ 𝑍𝑚𝑎𝑥 × 𝑥𝑖0 ∀𝑖 ∈ 𝐶 (3.13)

Constraint (14): Ensures that total time traveled up to j must be at least 𝑇𝑖0 + 𝑇𝑖𝑗.

𝑍𝑖𝑗 ≤ (𝑡0𝑖 + 𝑢𝑖 + 𝑡𝑖𝑗 + 𝑢𝑗) × 𝑥𝑖𝑗 ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝑁 (3.14)

3.2 Simulated annealing for vehicle routing problem

Simulated annealing, a local search-based heuristic, can avoid becoming stuck

at a local optimum by accepting, with a tiny probability, poorer solutions as it iterates

through the problem. It has been successfully used to solve numerous extremely

challenging combinatorial optimization issues. The annealing procedure employed in

the metallurgical industry is where the idea for this technology originated. Slow cooling

is used during the annealing process. to crystallize the metal in a more aligned low

energy condition. Similar to the gradual cooling step, the SA enhancement step

achieves a (nearly) global bottom. The physical melting process begins with a default

random solution. The algorithm selects a new solution from a predetermined area near

the current answer for each iteration. This new solution's objective function value will

be contrasted with that of the existing solution. evaluate the update to see if it has been

updated. When a new iteration of the search is conducted, the new solution replaces the

current one if the objective function value of the new one is superior, i.e., smaller in the

case of miniaturization. With a very small probability offered by the Boltzmann

function, 𝑒−∆/𝑘𝑇 , where k is a preset constant and T denotes temperature, fresh

solutions with larger objective function values may be accepted as current solutions.

Avoiding a solely solution-oriented approach currently is crucial to preserving the value

of the objective function. but allow adjustments that improve the value of the objective

function as well.

Ref. code: 25686422040821BAS

9

 In this process, the temperature is set to a high initial temperature at the start of

the search, which makes it simpler to accept a subpar result. A local search is carried

out by the algorithm until a predetermined number of iterations has been reached. The

local search then resumes after the temperature is cooled down by a certain rate. The

algorithm continues to run until the temperature drops below the target temperature, at

which point it stops, and the best answer is presented.

 Simulated annealing is one of the techniques we use to solve routing problems.

The code for Simulated Annealing through Google Colab, which consists of a total of

11 steps for computing the route, is written as follows:

Step 1: Google Colab import of routing data from Excel.

import pandas as pd

distance_df = pd.read_excel('/content/Data_Distance.xlsx',

sheet_name='18_cust',index_col=0)

demand_df = pd.read_excel('/content/Data_Distance.xlsx',

sheet_name='18_cust_de', usecols=['NODE','DEMAND'])

num_vehicle = int(pd.read_excel('/content/Data_Distance.xlsx',

sheet_name='demand', usecols=['number_of_vehicle']).values[0])

max_cap = int(pd.read_excel('/content/Data_Distance.xlsx',

sheet_name='demand', usecols=['max_capacity']).values[0])

vehicle_weight = int(pd.read_excel('/content/Data_Distance.xlsx',

sheet_name='demand', usecols=['vehicle_weight']).values[0])

max_time = float(pd.read_excel('/content/Data_Distance.xlsx',

sheet_name='demand', usecols=['max_time_vehicle']).values[0])

vehicle_velocity =

int(pd.read_excel('/content/Data_Distance.xlsx',

sheet_name='demand', usecols=['vehicle_velocity']).values[0])

loading_time = int(pd.read_excel('/content/Data_Distance.xlsx',

sheet_name='demand', usecols=['loading_time']).values[0])

Ref. code: 25686422040821BAS

10

Step 2: Calculation of Travel Time: `travel_time = distance_df / vehicle_velocity`

calculates the travel time between different nodes based on the distance and vehicle

velocity.

Decoding Function: The function `decoding_func(route)` takes a route as input (in the

form of a list of nodes) and processes it to determine feasible routes for a vehicle,

considering constraints like vehicle capacity and time. Here's what the function does:

- Initialize variables: `from_node`, `cum_load`, `cum_time`, `route`,

`route_solution`, and `k`.

- While there are nodes in the chromosome (the input route)

- Get the first node as `to_node`.

- Determine the customer load (`cus_load`) of the current node.

- Calculate the travel time between the `from_node` and `to_node` using the

`travel_time` matrix.

- Calculate the unloading time based on the customer load and loading time.

- If the current node is the starting node (0), append it to the route.

- Check if adding the current node to the route violates capacity and time

constraints.

- If not, add the node to the route, update cumulative time and load, remove the

node from the chromosome, and set the `from_node` as the current node.

- If yes, end the current route by appending the starting node (0) and reset

variables.

- Finally, append the starting node (0) to close the last route, update cumulative

time, and add the route to `route_solution`.

Return Value: The function returns a list of routes (`route_solution`), each of which

represents a feasible route for a vehicle that adheres to capacity and time constraints.

travel_time = distance_df / vehicle_velocity

def decoding_func (route):

 chromosome= route.copy()

 from_node = 0

 cum_load = 0

 cum_time = 0

 route = []

 route_solution = []

Ref. code: 25686422040821BAS

11

 k = 1

 while len(chromosome) > 0:

 to_node = chromosome[0]

 cus_load =

int(demand_df[demand_df['NODE']==to_node]['DEMAND'])

 travel_time_df = travel_time.loc[from_node,to_node]

 unloading_time = (loading_time/60*cus_load)

 if from_node == 0:

 route.append(0)

 if(cum_load + cus_load <= max_cap) and (cum_time +

travel_time_df + unloading_time <= max_time -

travel_time.loc[from_node,0]):

 route.append(to_node)

 cum_time = cum_time + unloading_time + travel_time_df

 cum_load = cum_load + cus_load

 chromosome.remove(to_node)

 from_node = to_node

 else:

 route.append(0)

 cum_time = cum_time + travel_time.loc[from_node,0]

 route_solution.append(route)

 from_node = 0

 cum_time = 0

 cum_load = 0

 k = k + 1

 route = []

 route.append(0)

 cum_time = cum_time + travel_time.loc[from_node,0]

 route_solution.append(route)

 return route_solution

Ref. code: 25686422040821BAS

12

Step 3: Function Definition: `def get_sum_load(route): ` defines a function named

`get_sum_load` which takes a single argument `route`.

Variable Initialization: Inside the function, `route_n` is created as a copy of the input

`route`. `from_node` is initialized as 0 (the starting node), and `sum_load` is initialized

as 0 to keep track of the cumulative load.

Looping through the Route:

- A `while` loop is used to iterate through the nodes in the `route_n` list until there

are no nodes left.

- The first node in the `route_n` list is extracted as `to_node`.

- The distance between `from_node` and `to_node` is fetched from the

`distance_df` DataFrame using `.loc[from_node, to_node]`.

- `from_node` is updated to `to_node` for the next iteration.

- The node `from_node` is removed from the `route_n` list to move to the next

node.

- The demand (load) associated with the current node (`to_node`) is fetched from

the `demand_df` DataFrame using `.loc` and then calculated as an integer value.

- The demand of the current node is added to the `sum_load`.

Return Value: After looping through all nodes in the route, the function returns the

calculated `sum_load`, which represents the total load associated with the given route.

def get_sum_load(route):

 route_n = route.copy()

 from_node = 0

 sum_load = 0

 while len(route_n) > 0:

 to_node = route_n[0]

 distance = distance_df.loc[from_node,to_node]

 from_node = to_node

 route_n.remove(from_node)

 cus_load =

int(demand_df[demand_df['NODE']==to_node]['DEMAND'])

 sum_load = sum_load + cus_load

 return sum_load

Ref. code: 25686422040821BAS

13

Step 4: Function Definition: `def calculate_total_LD(route_n):` defines a function

named `calculate_total_LD` which takes a single argument `route_n`.

Variable Initialization:

- `copy_route` is created as a copy of the input `route_n`.

- `sum_load` is calculated using the previously defined `get_sum_load` function,

which computes the total load of the route.

- `cum_load` is initialized as 0 to keep track of cumulative load.

- `from_node` is initialized as 0, representing the starting node.

- `load_distance` is initialized as 0 to accumulate the load-distance value.

Looping through the Route:

- A `while` loop is used to iterate through the nodes in the `copy_route` list until

there are no nodes left.

- The first node in the `copy_route` list is extracted as `to_node`.

- The distance between `from_node` and `to_node` is fetched from the

`distance_df` DataFrame using `.loc[from_node, to_node]`.

- The load-distance value for the current segment of the route is calculated using

the formula: `(sum_load - cum_load + vehicle_weight) * distance`.

- `cus_load` is calculated by fetching the demand (load) associated with the current

node from the `demand_df` DataFrame.

- `cum_load` is updated by adding the demand of the current node.

- The current node (`to_node`) is removed from the `copy_route` list to move to

the next node.

- `from_node` is updated to `to_node` for the next iteration.

Calculating Load-Distance for Last Segment:

- After the loop, the distance between the last node and the starting node (0) is

fetched from the `distance_df` DataFrame.

- The load-distance value for the last segment of the route is calculated similarly

to before.

- The load-distance values for all segments are accumulated to get the total load-

distance value.

Ref. code: 25686422040821BAS

14

Return Value: The function returns the calculated `load_distance`, which represents

the load-distance value associated with the given route.

def calculate_total_LD (route_n):

 copy_route = route_n.copy()

 sum_load = get_sum_load(route_n)

 cum_load = 0

 from_node = 0

 load_distance = 0

 while len(copy_route) > 0:

 to_node = copy_route [0]

 distance = distance_df.loc[from_node,to_node]

 load_distance = load_distance + (sum_load-cum_load +

vehicle_weight)*distance

 cus_load =

int(demand_df[demand_df['NODE']==to_node]['DEMAND'])

 cum_load = cum_load + cus_load

 copy_route.remove(to_node)

 from_node = to_node

 distance = distance_df.loc[from_node,0]

 load_distance = load_distance + (sum_load-cum_load +

vehicle_weight)*distance

 return load_distance

Ref. code: 25686422040821BAS

15

Step 5: Function Definition: `def total_LD_func(all_route):` defines a function named

`total_LD_func` which takes a single argument `all_route`, expected to be a collection

of routes.

Variable Initialization:

- `sum_load_distance` is initialized as 0. This variable will be used to accumulate

the load-distance values of all routes.

Loop through Routes and Accumulate Load-Distance:

- A `for` loop is used to iterate through each route in the collection `all_route`.

- For each route, the `calculate_total_LD(route)` function is called to compute the

load-distance value for that specific route.

- The calculated load-distance value for the current route is added to the

`sum_load_distance` variable.

Return Value: After looping through all routes, the function returns the final value of

`sum_load_distance`, which represents the cumulative load-distance value for all the

provided routes.

def total_LD_func(all_route):

 sum_load_distance = 0

 for route in all_route:

 sum_load_distance = sum_load_distance +

calculate_total_LD(route)

 return sum_load_distance

Step 6: Function Definition: `def acceptance (current_LD, candidate_LD, T):` defines

a function named `acceptance` which takes three arguments:

- `current_LD`: The load-distance value of the current solution.

- `candidate_LD`: The load-distance value of the candidate solution.

- `T`: The current temperature in the simulated annealing process.

Comparison and Decision:

- The function begins with an `if` statement to compare the load-distance value of

the candidate solution (`candidate_LD`) with the load-distance value of the

current solution (`current_LD`).

- If the `candidate_LD` is less than the `current_LD`, this means the candidate

solution is better, so the function returns `'accept'`.

Ref. code: 25686422040821BAS

16

- If the `candidate_LD` is not better, it means the candidate solution is worse or

equivalent. In this case, the function calculates the energy difference `E` between

the candidate solution and the current solution: `E = -candidate_LD +

current_LD`.

- The probability `P` of accepting the worse solution is calculated using the

exponential function `math.exp(E/T)`. The higher the temperature `T`, the more

likely it is to accept worse solutions.

- A random value `R` between 0 and 1 is generated using `random.random()`.

- If `P` is greater than or equal to `R`, the function returns `'accept'`. This means

there's a chance to accept a worse solution based on the current temperature and

the energy difference.

- If `P` is less than `R`, the function returns `'reject'`, indicating that the worse

solution should be rejected.

- The code includes print statements to display the calculated probability `P` and

the random value `R` for diagnostic purposes.

import random

import math

def acceptance(current_LD,candidate_LD, T):

 if candidate_LD < current_LD:

 return 'accept'

 else:

 E = -candidate_LD+current_LD

 P = math.exp(E/T)

 R = random.random()

 print("P =", P)

 print("R =",R)

 if P>R:

 return 'accept'

 else:

 return 'reject'

Ref. code: 25686422040821BAS

17

Step 7: Function Definition: ̀ def swap(route):` defines a function named ̀ swap` which

takes a single argument `route`.

Copying the Route:

- The function starts by creating a copy of the input route called ̀ temp_route`. This

copy will be modified to generate a new candidate solution.

Randomly Selecting Indices:

- The function generates two random indices: `idx1` and `idx2`. These indices will

correspond to positions in the `temp_route` list where the elements will be

swapped.

- `idx1` is generated using `random.randrange(0, len(route))`. It's the index of the

first element to be swapped.

- `idx2` is generated similarly, but it's important to ensure that it is different from

`idx1` to avoid swapping an element with itself. A `while` loop is used to

repeatedly generate `idx2` until it is different from `idx1`.

Swapping Elements:

- The elements at positions `idx1` and `idx2` in `temp_route` are swapped. This

simulates the process of swapping two nodes in the route, which can lead to a

new candidate solution.

Return Value:

- The function returns the modified `temp_route`, which now represents the

candidate solution after the swap operation.

def swap(route):

 temp_route = route.copy()

 idx1=random.randrange(0, len(route))

 idx2=random.randrange(0, len(route))

 while idx1 == idx2:

 idx1=random.randrange(0, len(route))

 idx2=random.randrange(0, len(route))

 temp = temp_route [idx1]

 temp_route [idx1] = temp_route [idx2]

 temp_route [idx2] = temp

 return temp_route

Ref. code: 25686422040821BAS

18

Step 8: Function Definition: `def candidate_func(current_sol, T):` defines a function

named `candidate_func` which takes two arguments:

- `current_sol`: The current solution represented as a list of nodes.

- `T`: The current temperature in the simulated annealing process.

Calculating `search_dist`:

- The code calculates `search_dist` as the square root of `T`, rounded to the nearest

integer. This value determines the number of swap operations to be performed in

this iteration.

Loop and Generating Candidate Solutions:

- A `while` loop is used to perform the swapping operation a certain number of

times, specified by `search_dist`.

- A copy of the `current_sol` is created using `temp_current_sol =

current_sol.copy()`. This copy will be modified to generate a candidate solution.

- The `swap(temp_current_sol)` function is called to generate a candidate solution

by swapping nodes in the current solution.

- The `decoding_func(candidate_sol)` function is then called to decode the

candidate solution and obtain the corresponding routes.

- If the number of routes in the decoded candidate solution is equal to the specified

number of vehicles (`num_vehicle`), the candidate solution is accepted and

assigned to `current_sol`. Otherwise, the `current_sol` remains unchanged.

Iteration Counter and Printing:

- The iteration counter `i` is incremented in each iteration of the loop.

- The function prints the final candidate solution after all iterations.

Return Value:

- The function returns the modified `current_sol`, which now represents the

candidate solution after multiple swap operations.

def candidate_func (current_sol, T):

 search_dist = round(math.sqrt(T),0)

 i=1

 while i <= search_dist:

Ref. code: 25686422040821BAS

19

 temp_current_sol = current_sol. copy()

 candidate_sol = swap (temp_current_sol)

 decode_candidate_sol = decoding_func (candidate_sol)

 if len (decode_candidate_sol)== num_vehicle:

 current_sol = candidate_sol

 else:

 current_sol = current_sol

 i+=1

 print ('The final candidate_solution',current_sol)

 return current_sol

Step 9: Function Definition: `def SA_LDVRPTW (init_T, final_T, num_iter,

max_cap, current_sol, current_LD):` defines a function named `SA_LDVRPTW` that

takes several parameters:

- `init_T`: The initial temperature for the simulated annealing process.

- `final_T`: The final temperature, at which the process will stop.

- `num_iter`: The number of iterations to be performed at each temperature level.

- `max_cap`: The maximum capacity of the vehicles.

- `current_sol`: The initial solution (list of nodes) to start the algorithm.

- `current_LD`: The initial load distance associated with the `current_sol`.

Initialization and Main Loop:

- The function initializes variables `temp_cycle` and `T` (current temperature) to

manage the annealing process.

- The main loop continues as long as `T` is greater than `final_T`.

- Inside the loop, the algorithm performs the specified number of iterations

(`num_iter`) to explore solutions at the current temperature.

Iteration Loop:

- For each iteration.

- The current solution is decoded using `decoding_func` to obtain routes, and the

current load distance is calculated using `total_LD_func`.

- A copy of the current solution (`newsol`) is created to generate a candidate

solution.

Ref. code: 25686422040821BAS

20

- `candidate_func` is used to generate a candidate solution by performing swaps

on the nodes in `newsol`.

- The decoded candidate solution's load distance is calculated.

- The `acceptance` function determines whether to accept the candidate solution

based on the difference between the current load distance and the candidate load

distance, as well as the current temperature.

- If the candidate solution is accepted, the current solution and load distance are

updated accordingly. If the candidate's load distance is better than the best load

distance seen so far (`cur_best_LD`), the best solution and load distance are also

updated.

- The algorithm prints relevant information, like the acceptance status and current

solution, during each iteration.

Temperature Update:

- After completing ̀ num_iter` iterations at the current temperature, the temperature

`T` is updated based on a cooling schedule. Here, it's set as `init_T - (0.95 *

temp_cycle)`, where `temp_cycle` is the current temperature cycle.

Finalization:

- Once the temperature falls below `final_T`, the algorithm exits the main loop.

- The algorithm prints the final best solution and its associated load distance.

- The decoded version of the best solution is printed using `decoding_func`.

- The function returns the final best solution and its load distance.

def

SA_LDVRPTW(init_T,final_T,num_iter,max_cap,current_sol,current_LD

):

 temp_cycle = 0

 T = init_T

 cur_best_sol = current_sol.copy()

 cur_best_LD = current_LD.copy()

 while T > final_T:

 print('----------------Temp cycle ',temp_cycle, ",",'T =

',T,'-------------')

 for i in range(0,num_iter):

 print('........................iteration

',i+1,'........................')

 print ('The current solution is', current_sol)

Ref. code: 25686422040821BAS

21

 decode_current_sol = decoding_func (current_sol)

 current_LD = total_LD_func(decode_current_sol)

 print ('The current load distance is', current_LD)

 newsol = current_sol.copy()

 candidate_sol = candidate_func(newsol,T)

 print ('The current solution is', candidate_sol)

 decode_candidate_sol = decoding_func (candidate_sol)

 candidate_LD = total_LD_func(decode_candidate_sol)

 print ('The candidate load distance is', candidate_LD)

 accept = acceptance(current_LD,candidate_LD, T)

 if accept == 'accept':

 print('accept')

 current_sol = candidate_sol

 current_LD = candidate_LD

 print("Current LD after accept", current_LD)

 if current_LD < cur_best_LD:

 cur_best_sol = current_sol.copy()

 cur_best_LD = current_LD

 else:

 print('reject')

 print("current solution after compare", current_sol)

 temp_cycle = temp_cycle+1

 T = init_T-(0.95*temp_cycle)

 print("Final solution = ", cur_best_sol)

 print("Final LD =", cur_best_LD)

 print ('The final solution after decoding is', decoding_func

(cur_best_sol))

 return cur_best_sol, cur_best_LD

Step 10: Function Definition: def initial_pop(num_chromosome): This line defines a

function named initial_pop that takes one argument, num_chromosome, which

represents the number of chromosomes (individuals) in the population.

Initialization:

- i = 1: This initializes a variable i to 1. It's used as a counter to control the number

of chromosomes generated.

- chromosome_lst = []: This initializes an empty list chromosome_lst to store the

generated chromosomes.

Ref. code: 25686422040821BAS

22

While Loop:

- while i <= num_chromosome:: This initiates a while loop that continues until i

is greater than num_chromosome. The purpose of this loop is to generate the

specified number of chromosomes.

Chromosome Generation:

- chromosome = (list(np.random.permutation(len(distance_df)))): This line

generates a random permutation of indices from 0 to len(distance_df) - 1. It uses

NumPy's permutation function and converts the result to a list. This is a common

way to represent a permutation.

- chromosome.remove(0): This removes the element 0 from the generated

chromosome. This suggests that the permutation is intended to represent

indices, and 0 is being excluded (possibly indicating a starting point).

List Update:

- i += 1: This increments the counter i by 1.

- chromosome_lst.append(chromosome): The generated chromosome is added to

the list chromosome_lst.

Return Statement:

- return chromosome_lst: The function returns the list of generated chromosomes.

def initial_pop(num_chromosome):

 i = 1

 chromosome_lst =[]

 while i <= num_chromosome:

 chromosome = (list(np.random.permutation(len(distance_df))))

 chromosome.remove (0)

 i+=1

 chromosome_lst.append (chromosome)

 return chromosome_lst

Ref. code: 25686422040821BAS

23

Step 11: Importing Libraries: The code imports the NumPy library as `np`.

Initializing Population:

- `num_chromosome` specifies the number of initial solutions (chromosomes) in

the population.

- `chromosome_lst` is a list that will hold the initial solutions generated for each

chromosome using the `initial_pop` function.

Iterating Through Chromosomes:

- A loop iterates through each `initial_sol` (initial solution) in the

`chromosome_lst`. This represents different initial solutions for each

chromosome.

Simulated Annealing for Each Chromosome:

- For each `initial_sol`.

- The initial temperature (`init_T`), final temperature (`final_T`), number of

iterations (`num_iter`), and other parameters are set.

- `current_sol` is initialized with the `initial_sol`.

- The initial solution is decoded and its load distance is computed using the

`decoding_func` and `total_LD_func`.

- The `SA_LDVRPTW` function is called to perform simulated annealing using

the provided parameters. This function returns the best solution and its associated

load distance.

- The best solution and load distance are added to respective lists

(`cur_best_sol_lst` and `cur_best_LD_lst`).

Finding the Best Solution from Population:

- After iterating through all chromosomes, the minimum load distance (`best_LD`)

from the population is found using the `min` function.

- The index of `best_LD` in `cur_best_LD_lst` is used to find the corresponding

best solution (`best_sol`) in `cur_best_sol_lst`.

Printing Results:

- The code then prints out various results.

- The list of best solutions found for each chromosome: `cur_best_sol_lst`.

- The list of best load distances associated with the best solutions:

`cur_best_LD_lst`.

Ref. code: 25686422040821BAS

24

- The minimum load distance: `best_LD`.

- The best solution found: `best_sol`.

- The decoded version of the best solution using `decoding_func`:

`best_decode_sol`.

import numpy as np

num_chromosome = 20

chromosome_lst = initial_pop(num_chromosome)

cur_best_sol_lst=[]

cur_best_LD_lst =[]

for initial_sol in chromosome_lst:

 print ('-------------start-----------------------')

 print('The initial solution is',initial_sol)

 init_T = 10

 temp_cycle = 0

 final_T = 1

 num_iter = 10

 T = init_T

 current_sol = initial_sol

 decode_initial_sol = decoding_func(initial_sol)

 initial_LD = total_LD_func(decode_initial_sol)

 current_LD = initial_LD

 print('The initial load distance',initial_LD)

 cur_best_sol, cur_best_LD =

SA_LDVRPTW(init_T,final_T,num_iter,max_cap,current_sol,current_LD

)

 cur_best_sol_lst .append (cur_best_sol)

 cur_best_LD_lst.append (cur_best_LD)

 print ('-------------end-----------------------')

print ('The current best solution list is', cur_best_sol_lst)

print ('The current best load distance list is', cur_best_LD_lst)

best_LD = min(cur_best_LD_lst)

print ('The minimum LD is', best_LD)

best_sol = cur_best_sol_lst[cur_best_LD_lst.index(best_LD)]

print ('The best solution is', best_sol)

best_decode_sol = decoding_func (best_sol)

print ('The best decoded solution is', best_decode_sol)

Ref. code: 25686422040821BAS

25

and here is an example of the response you will receive after running this code.

• The current best solution list is [[16, 18, 13, 6, 17, 1, 5, 2, 9, 11, 7, 10, 3, 12, 4,

15, 14, 8], [14, 6, 3, 9, 11, 15, 8, 7, 2, 16, 10, 13, 12, 4, 5, 18, 17, 1], [4, 16, 15,

9, 11, 18, 2, 7, 12, 14, 10, 5, 13, 1, 8, 6, 17, 3], [1, 16, 18, 17, 15, 4, 6, 14, 8, 11,

12, 3, 2, 13, 9, 7, 10, 5], [3, 15, 18, 13, 5, 12, 9, 17, 6, 1, 7, 2, 4, 10, 14, 16, 8,

11]]

• The current best load distance list is [3833.44, 3551.44, 3846.0800000000004,

3774.3599999999997, 4176.849999999999]

• The minimum LD is 3551.44

• The best solution is [14, 6, 3, 9, 11, 15, 8, 7, 2, 16, 10, 13, 12, 4, 5, 18, 17, 1]

• The best decoded solution is [[0, 14, 6, 3, 9, 11, 15, 8, 0], [0, 7, 2, 16, 10, 0], [0,

13, 12, 4, 5, 18, 0], [0, 17, 1, 0]]

where each execution will produce a different result.

Ref. code: 25686422040821BAS

26

Figure 3.1 The flow chart of simulated annealing

Figure 3.1 provides a detailed flowchart representing all steps of SA.

Ref. code: 25686422040821BAS

27

CHAPTER 4

RESULT AND DISCUSSION

Simulated annealing We've set a hyperparameter this time. based on the

following metrics: Number of chromosomes is 20, Initial Time is 10, Final Time is 1,

and Number of iterations is 10. We calculated one round of this issue in roughly 3

minutes and 40 seconds. We performed 40 computations and obtained various results.

As a result, we selected the best solution to this issue is:

• The current best solution list is [[12, 13, 1, 7, 4, 11, 3, 16, 2, 17, 15, 18, 5, 8,

6, 14, 10, 9], [11, 8, 2, 14, 7, 1, 5, 10, 12, 3, 17, 16, 9, 18, 13, 15, 6, 4], [1, 5, 8,

9, 10, 7, 15, 6, 11, 14, 4, 17, 16, 2, 13, 3, 12, 18], [11, 12, 18, 16, 4, 13, 9, 15, 3,

14, 7, 6, 1, 10, 17, 5, 2, 8], [8, 17, 15, 11, 4, 2, 10, 18, 16, 7, 6, 14, 13, 3, 9, 5, 1,

12], [15, 12, 5, 11, 9, 10, 17, 8, 16, 2, 3, 6, 14, 1, 4, 7, 18, 13], [1, 17, 11, 6, 16,

3, 8, 7, 18, 14, 9, 4, 15, 12, 5, 10, 13, 2], [11, 15, 6, 3, 8, 16, 14, 12, 18, 4, 1, 5,

17, 2, 10, 9, 13, 7], [4, 11, 13, 14, 6, 15, 17, 2, 3, 12, 7, 8, 16, 9, 18, 10, 5, 1],

[9, 12, 11, 3, 6, 1, 4, 15, 7, 2, 5, 8, 13, 10, 17, 18, 14, 16], [5, 13, 6, 9, 11, 17, 4,

14, 18, 2, 8, 10, 7, 3, 16, 12, 15, 1], [1, 14, 15, 9, 16, 17, 13, 6, 4, 12, 8, 11, 7,

10, 3, 2, 18, 5], [14, 16, 2, 13, 10, 18, 7, 15, 9, 11, 8, 17, 4, 5, 1, 3, 6, 12], [5, 6,

13, 14, 17, 1, 12, 16, 7, 8, 2, 3, 11, 15, 10, 4, 18, 9], [14, 5, 8, 10, 12, 9, 2, 16,

13, 17, 4, 3, 11, 7, 6, 15, 18, 1], [1, 3, 5, 10, 9, 4, 12, 13, 16, 2, 14, 18, 17, 11,

15, 8, 7, 6], [13, 11, 5, 3, 2, 16, 6, 12, 17, 4, 7, 18, 1, 10, 9, 14, 15, 8], [16, 13,

10, 8, 3, 12, 2, 17, 9, 14, 11, 18, 15, 7, 5, 1, 6, 4], [15, 14, 13, 17, 5, 7, 12, 1, 4,

16, 8, 3, 10, 9, 6, 11, 2, 18], [2, 11, 6, 18, 8, 10, 14, 3, 5, 16, 12, 1, 7, 15, 13, 17,

4, 9]]

• The current best load distance list is [3965.21, 3788.0699999999997,

4041.01, 3998.44, 3610.6499999999996, 3651.32, 4074.7499999999995,

3407.98, 3043.89, 3363.2999999999997, 3766.46, 3902.54, 3525.38,

3661.8500000000004, 3914.71, 4042.2799999999997, 3465.3500000000004,

4025.46, 3687.76, 4011.06]

• The minimum LD is 3043.89

• The best solution is [4, 11, 13, 14, 6, 15, 17, 2, 3, 12, 7, 8, 16, 9, 18, 10, 5, 1]

Ref. code: 25686422040821BAS

28

• The best decoded solution is [[0, 4, 11, 13, 14, 6, 15, 17, 0], [0, 2, 3, 12, 7, 8,

16, 0], [0, 9, 18, 10, 5, 0], [0, 1, 0]]

• Considering the outcomes, we chose the routes [4, 11, 13, 14, 6, 15, 17, 2, 3,

12, 7, 8, 16, 9, 18, 10, 5, 1] that have values out of a total of 20 routes. 3043.89

is the shortest load distance among the 20 paths. The best decoded answer is [[0,

4, 11, 13, 14, 6, 15, 17, 0], [0, 2, 3, 12, 7, 8, 16], [0, 9, 18, 10, 5], [0, 1, 0]], for

which we used the excel solver method to get the minimum load distance for all

4 routes. It's 872.36, 1155.16, 955.09, and 388.37.

Ref. code: 25686422040821BAS

29

CHAPTER 5

CONCLUSIONS

Studies show that a simulated annealing technique developed in Python can

solve VRP. The fact that there are just 18 customers in total places limitations on this

strategy. When solving the problem, consideration was given to the number of cars,

maximum capacity, vehicle weight, maximum vehicle time, vehicle velocity, and

loading time. The tool we developed to solve this problem is currently unable to

determine the right optimal for customers that have more than 18 customers.

In accordance with subsequent study recommendations, we should make the

code more user-friendly and efficient. To evaluate how much of this result may be used

in those circumstances, we should also conduct experiments in real-world scenarios.

Ref. code: 25686422040821BAS

30

REFERENCES

Aurachman, R., Baskara, D. B., & Habibie, J. (2021). Vehicle routing problem with

simulated annealing using python programming. In IOP Conference Series:

Materials Science and Engineering (Vol. 1010, No. 1, p. 012010). IOP

Publishing.

Bai, R., Xue, N., Chen, J., & Roberts, G. W. (2015). A set-covering model for a

bidirectional multi-shift full truckload vehicle routing problem. Transportation

Research Part B: Methodological, 79, 134-148.

Cao, W., & Yang, W. (2017). A survey of vehicle routing problems. In MATEC Web

of Conferences (Vol. 100, p. 01006). EDP Sciences.

Desrochers, M., Desrosiers, J., & Solomon, M. (1992). A new optimization algorithm

for the vehicle routing problem with time windows. Operations research, 40(2),

342-354.

Gutiérrez-Jarpa, G., Desaulniers, G., Laporte, G., & Marianov, V. (2010). A

branch-and-price algorithm for the vehicle routing problem with

deliveries, selective pickups and time windows. European Journal of

Operational Research, 206(2), 341-349.

Haitam, E., Najat, R., & Abouchabaka, J. (2021). GRASP combined with ILS for the

vehicle routing problem with time windows, precedence, synchronization and

lunch break constraints. International Journal of Advanced Computer Science

and Applications, 12(5).

Kumar, V. S., & Jayachitra, R. (2016). Linear Sweep Algorithm for Vehicle Routing

Problem with Simultaneous Pickup and Delivery between Two Depots With

Several Nodes. Global Journal of Pure and Applied Mathematics, 12(1), 897-

908.

Pan, B., Zhang, Z., & Lim, A. (2021). Multi-trip time-dependent vehicle routing

problem with time windows. European Journal of Operational

Research, 291(1), 218-231.

Redi, A. A. N. P., Maula, F. R., Kumari, F., Syaveyenda, N. U., Ruswandi, N.,

Khasanah, A. U., & Kurniawan, A. C. (2020). Simulated annealing algorithm

Ref. code: 25686422040821BAS

31

for solving the capacitated vehicle routing problem: a case study of

pharmaceutical distribution. Jurnal Sistem dan Manajemen Industri, 4(1), 41-

49.

Saksuriya, P., & Likasiri, C. (2022). Hybrid Heuristic for Vehicle Routing Problem

with Time Windows and Compatibility Constraints in Home Healthcare

System. Applied Sciences, 12(13), 6486.

Taş, D., Jabali, O., & Van Woensel, T. (2014). A vehicle routing problem with flexible

time windows. Computers & Operations Research, 52, 39-54.

Zirour, M. (2008). Vehicle routing problem: models and solutions. Journal of Quality

Measurement and Analysis JQMA, 4(1), 205-218.

Ref. code: 25686422040821BAS

