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ABSTRACT 

 

Nowadays. Vehicle routing problems (VRP) are an important component of 

logistics management. and is often used in transportation logistics and distribution 

within this article, we will look at the vehicle routing problem and present a solution 

using an integer linear programming model. The objective is to reduce the total load 

distance of transportation for each customer. For the problem, we considered the 

number of customers, vehicles, and the transportation distance to determine the best 

route for the vehicle to take from the warehouse to the customer. from the customer 

back to the warehouse to avoid unnecessary travel, if a shorter distance can be traveled 

to deliver goods, The delivery time will also be shorter, which will benefit both the 

customers and the transport companies.  However, the use of integer linear 

programming is still limited. In order to resolve the issue, we developed a simulated 

annealing (SA) method to create delivery routes that can satisfy both requests 

simultaneously while reducing transportation costs and resolving a wider issue. 

 

Keywords: Vehicle Routing Problem, Vehicle Routing Problem with Time Window, 

Logistics, Transportation, Simulated annealing (SA)
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CHAPTER 1 

INTRODUCTION 

 

The vehicle routing problem (VRP) is crucial to the transportation industry. 

because this method can calculate the route of the vehicles to deliver the goods to the 

customer while reducing the travel distance. When the route is shorter, the duration and 

cost of delivering the goods will also be reduced. Most of the problems that vehicle 

routing problems will be solved are, for example, routes that use more cars than 

necessary. But on another route, there are not enough cars to deliver products to 

customers. This causes unnecessary expenses, and there may be more trips than 

necessary. Solving problems using VRP will reduce these problems and make the 

delivery truck more efficient. 

A vehicle routing problem must be solved by choosing the optimal route 

selection for the vehicles that will be used to serve a specific customer. Also, this is 

among the most critical and well-studied combinational optimization issues. since 

Dantzig and Ramser introduced the problem in 1959. They offered the first 

mathematical programming theory and provided real-world applications for 

transporting fuel to service stations. Their algorithmic approach has many practical 

applications in the fields of distribution, logistics, and network design problems. To 

achieve the objectives and solve problems such as shortest distance, lowest cost, and 

the shortest duration within specific constraints such as product requirements, delivery, 

delivery times Vehicle capacity limitations travel restrictions time constraints, etc. may 

be less, the number of vehicles used as little as possible (Chao & Yang,2017). 

The vehicle routing problem with time windows (VRPTW) is the optimal 

routing of a vehicle between a warehouse and several customers that must visit within 

a predetermined time. which we refer to as the time window. Heuristics for vehicle 

routing issues fall into the following categories: 

• Construction heuristics 

• Improvement heuristics 

• Metaheuristics 
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Parallel or sequential approaches known as construction heuristics are used to create 

early solutions to routing issues that can later be enhanced by improvement heuristics 

or metaheuristics. Using decision functions for the selection of the customer to be 

placed in the route and the insertion point inside the route, sequential algorithms 

construct a route for each vehicle one at a time. Using a pre-calculated estimate of the 

number of routes, parallel algorithms construct the routes for all vehicle in parallel 

(Zirour, 2008) 

For the vehicle routing problem, we are provided with a set of customers with 

established demand, a vehicle, and a depot. The problem is reducing the overall cost of 

transport without limiting vehicle capacity. And there may be distance limitations. The 

vehicle routing problem with deliveries and pickups (VRPDP) can find a solution to 

the problem with depot-to-customer delivery and customer-to-depot return. The 

VRPDP is a significant logistical issue and has a wide range of applications (Kumar & 

Jayachitra,2016). 

 

. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

The literature review of earlier studies that have been done on the subject of this 

thesis is included in this chapter. The vehicle routing problem (VRP) is first described 

in general terms, and then the various solution methods are discussed. 

 

2.1 Vehicle Routing Problem with time window 

The distribution modified by the vehicle routing problem reduces the total travel 

costs incurred by vehicles in response to customer demand. One of the topical variations 

is the "vehicle routing problem with a time window." that has been the subject of the 

most research, whose time window ensures that each customer must visit at a specific 

time. In the case study problems and effective solutions for VRPTW have been 

presented. (Taş, Jabali, & Van Woensel, 2014) They are studying a flexible time limit 

needed to solve the vehicle routing problem; the content is This VRPTW concept 

implies that time windows will be considered a strict constraint. In many real-life 

situations, constraints on the time window are somewhat flexible. Therefore, they 

evaluate the operational profit of using a fixed relaxation of the time window 

constraints, where the vehicle is allowed to deviate from the customer's time window 

as appropriate. This flexibility reduces carriers' operating costs. because customers may 

receive the product before the specified time. (Pan, Zhang & Lim, 2021) They study 

routing problems in urban transport. Considering the travel time depends on time. 

Concurrent loading times at the warehouse and many trips per vehicle. The objective is 

to reduce total distance by following a time window. vehicle capacity and travel time 

restrictions. This is called a "multi-trip time-dependent vehicle routing problem with 

time windows (MT-TDVRPTW)" and there is also an article of (Martin, Jacques and 

Marius, 1991) They present about developing a new algorithm for the solution. 

Dynamic programming was utilized to identify the shortest path while keeping time 

window and capacity restrictions to apply column formation to solve the LP relaxation 

problem of VRPTW partitioning. the addition of potential columns as necessary, and 

the results show that the test was successful using VRP as standard. This algorithm can 

solve 100 customer problems appropriately. 

Ref. code: 25686422040821BAS



4 

 

 

2.2 Vehicle Routing Problem with Delivery and Pick-up 

In part, the vehicle routing problem with delivery and pick-up (VRPDP) is a 

very well-liked subject and is frequently utilized to solve the problem of pickup and 

delivery of goods to customers. There has been a lot of research done on VRPDP, such 

as by Gutiérrez-Jarpa et al. (2010) Talk about deliveries, selective pickups of the 

product, and the time window. The data consists of customer deliveries and pickup 

customers. Vehicles of the same capacity will be stationed at the depot and must be 

delivered within the time window indicated. The objective is to minimize distance 

costs, minus the revenue earned from pickup and delivery and another of research is 

(Kumar & Jayachitra,2016) Study the problem of concurrent receipt and dispatching 

between two warehouses with several distributed nodes and capacitated vehicle routing. 

Using the maximum vehicle capacity while reducing the number of vehicles used are 

the objectives of this study. The suggested heuristic can accomplish both goals and has 

been proven effective in resolving issues in various contexts. 

 

2.3 Linear programing and Mixed integer linear programming 

When multiple restrictions are applied, a linear function is maximized or 

minimized using the linear programming method of mathematical modeling. This 

method is helpful for calculating decisions in business planning. This technique is 

widely used in transportation businesses to achieve desired objectives such as reducing 

travel distances. Reduce the number of vehicles used for travel, including reducing the 

cost of transportation and A mixed integer linear program is an optimization of a linear 

function under a linear constraint when some variables have integer values. There is 

research that uses this technique to solve the problem (Bai, Xue, Chen & Roberts, 2015) 

research an integer linear programming approach, investigate a bidirectional multi-shift 

full truckload transportation problem. The objective is to minimize the total distance of 

all routes. Real-world problem with container handling at substantial container 

terminals is the source of this problem. (Saksuriya & Likasiri, 2022) using mixed-

integer linear programming to determine a path that will allow each caregiver to start 

and return to the beginning location. Every patient must only pay for one visit at the 

lowest possible cost. Same as (Haitam, Najat & Abouchabak, 2021) Research has been 

done on home health care (HHC) programs as services for patients at home or for 
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patients who are unable to go to the hospital. This project's goal is to deliver high-

quality service. Minimize total costs as much as possible and limit losses. This issue is 

solved using mixed-integer linear programming to lower the cost of HHC projects. 
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CHAPTER 3 

ALGORITHM 

 

3.1 Integer linear programming for LDVRPTW 

We partially present an ILP formulation for the issue and discuss revisions that 

could be made. To describe the LDVRPTW as a mixed integer linear programming 

problem, we specify the pertinent sets, parameters, and decision variables: 

 

Sets: 

𝐶 = {1,2, … , 𝑛} : set of customers 

𝑁 = {0,1,2, … , 𝑛} : set of all nodes including depot which is represented by node 0 

 

Parameters: 

𝑛: The number of customers 

𝑑𝑖𝑗: Distance from node 𝑖 to node 𝑗 (km) 

𝑍𝑖𝑗: Cumulative time from node 𝑖 to node 𝑗 (hours) 

𝑈𝑖𝑗: unloading time from node 𝑖 to node 𝑗 (hours) 

𝑇𝑖𝑗: Travel time from node 𝑖 to node 𝑗 (hours) 

𝑞𝑖: The nonnegative weight (demand) of node 𝑖 (tons) 

𝑄0: The tare of a vehicle (tons) 

𝑄: The capacity of a vehicle (tons) 

 

Decision Variables: 

𝑥𝑖𝑗: binary variable, which indicates whether a vehicle travels from node 𝑖  to node 𝑗 or 

not. 

𝑦𝑖𝑗: load weight carried by a vehicle when it travels from node 𝑖 to node 𝑗 (tons) 

 

Here are the problem's constraints, listed under the headings they belong to: 

 

min ∑ ∑ 𝑑𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

×  𝑦𝑖𝑗  (3.1) 
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Subject to:   

∑ 𝑥0𝑖

𝑖∈𝐶

= 2  (3.2) 

∑ 𝑥𝑖0

𝑖∈𝐶

= 2  (3.3) 

∑ 𝑥𝑖𝑗

𝑖∈𝑁

= 1 ∀𝑗 ∈ 𝐶 (3.4) 

∑ 𝑥𝑖𝑗

𝑗∈𝑁

= 1 ∀𝑖 ∈ 𝐶 (3.5) 

∑ 𝑦𝑗𝑖

𝑗∈𝑁,𝑗≠𝑖

− ∑ 𝑦𝑖𝑗

𝑗∈,𝑗≠𝑖

= 𝑞𝑖    ∀𝑖 ∈ 𝐶 (3.6) 

𝑦𝑖0 = 𝑄0 × 𝑥𝑖0 ∀𝑖 ∈ 𝐶 (3.7) 

𝑦𝑖𝑗 ≤ (𝑄 + 𝑄0 − 𝑞𝑖) × 𝑥𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (3.8) 

𝑦𝑖𝑗 ≥ (𝑄0 + 𝑞𝑗) × 𝑥𝑖𝑗 

 
∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (3.9) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁 (3.10) 

 

Minimizing the total load distance is objective (3.1). Two vehicles will always 

be used because of restrictions (3.2) and (3.3). The degree constraints for each node are 

constraints (3.4) and (3.5). The classical conservation of flow equation, which balances 

the inflow and outflow of each node and forbids any unauthorized detours, is constraint 

(3.6). The cost structure of the problem requires that constraint (3.7) initialize the flow 

on the first arc of each route. Constraints (3.9) produce lower bounds for the flow on 

any arc, while constraints (3.8) handle capacity restrictions and forces 𝑦𝑖𝑗  to zero when 

the arc (i, j) is not on any route. Integrality constraints are given in (3.10), we do not 

require nonnegativity constraints (3.9). Let's refer to the restrictions (3.7), (3.8), and 

(3.9) as the formulation's boundary constraints. 

This is constraints of the load distance vehicle routing problem, from now on 

we will add the constraints of the time window to constraints (3.11), (3.12), (3.13), 

(3.14) as follow: 

Constraint (11): Subtour elimination constraint and it guarantees that the solution 

contains no illegal subtours.  

∑ 𝑍𝑖𝑗

𝑗∈𝑁,𝑗≠𝑖

− ∑ 𝑍𝑗𝑖

𝑗∈𝑁,𝑗≠𝑖

=  ∑(𝑡𝑖𝑗 + 𝑢𝑖𝑗)

𝑗∈𝑁

 ×  𝑥𝑖𝑗 ∀𝑖 ∈ 𝐶 (3.11) 
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Constraint (12): ensures that at least the amount of time a vehicle can take to go from 

point j to the depot must be subtracted from the maximum total time 𝑇𝑖𝑗 

𝑍𝑖𝑗 ≤ (𝑍𝑚𝑎𝑥 − 𝑡𝑗0) × 𝑥𝑖𝑗 ∀𝑖 ∈ 𝑁, ∀𝑖 ∈ 𝐶 (3.12) 

Constraint (13): Ensures that the overall time spent getting to the depot does not go over 

the allotted amount of time. 

𝑍𝑖𝑗 ≤ 𝑍𝑚𝑎𝑥 × 𝑥𝑖0 ∀𝑖 ∈ 𝐶 (3.13) 

Constraint (14): Ensures that total time traveled up to j must be at least 𝑇𝑖0 + 𝑇𝑖𝑗. 

𝑍𝑖𝑗 ≤ (𝑡0𝑖 + 𝑢𝑖 + 𝑡𝑖𝑗 + 𝑢𝑗) × 𝑥𝑖𝑗 ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝑁 (3.14) 

 

3.2 Simulated annealing for vehicle routing problem 

Simulated annealing, a local search-based heuristic, can avoid becoming stuck 

at a local optimum by accepting, with a tiny probability, poorer solutions as it iterates 

through the problem. It has been successfully used to solve numerous extremely 

challenging combinatorial optimization issues. The annealing procedure employed in 

the metallurgical industry is where the idea for this technology originated. Slow cooling 

is used during the annealing process. to crystallize the metal in a more aligned low 

energy condition. Similar to the gradual cooling step, the SA enhancement step 

achieves a (nearly) global bottom. The physical melting process begins with a default 

random solution. The algorithm selects a new solution from a predetermined area near 

the current answer for each iteration. This new solution's objective function value will 

be contrasted with that of the existing solution. evaluate the update to see if it has been 

updated. When a new iteration of the search is conducted, the new solution replaces the 

current one if the objective function value of the new one is superior, i.e., smaller in the 

case of miniaturization. With a very small probability offered by the Boltzmann 

function, 𝑒−∆/𝑘𝑇 , where k is a preset constant and T denotes temperature, fresh 

solutions with larger objective function values may be accepted as current solutions. 

Avoiding a solely solution-oriented approach currently is crucial to preserving the value 

of the objective function. but allow adjustments that improve the value of the objective 

function as well. 
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 In this process, the temperature is set to a high initial temperature at the start of 

the search, which makes it simpler to accept a subpar result. A local search is carried 

out by the algorithm until a predetermined number of iterations has been reached. The 

local search then resumes after the temperature is cooled down by a certain rate. The 

algorithm continues to run until the temperature drops below the target temperature, at 

which point it stops, and the best answer is presented. 

 Simulated annealing is one of the techniques we use to solve routing problems. 

The code for Simulated Annealing through Google Colab, which consists of a total of 

11 steps for computing the route, is written as follows: 

 

Step 1: Google Colab import of routing data from Excel. 

import pandas as pd 

distance_df = pd.read_excel('/content/Data_Distance.xlsx', 

sheet_name='18_cust',index_col=0) 

 

demand_df = pd.read_excel('/content/Data_Distance.xlsx', 

sheet_name='18_cust_de', usecols=['NODE','DEMAND']) 

 

num_vehicle = int(pd.read_excel('/content/Data_Distance.xlsx', 

sheet_name='demand', usecols=['number_of_vehicle']).values[0]) 

 

max_cap = int(pd.read_excel('/content/Data_Distance.xlsx', 

sheet_name='demand', usecols=['max_capacity']).values[0]) 

 

vehicle_weight = int(pd.read_excel('/content/Data_Distance.xlsx', 

sheet_name='demand', usecols=['vehicle_weight']).values[0]) 

 

max_time = float(pd.read_excel('/content/Data_Distance.xlsx', 

sheet_name='demand', usecols=['max_time_vehicle']).values[0]) 

 

vehicle_velocity = 

int(pd.read_excel('/content/Data_Distance.xlsx', 

sheet_name='demand', usecols=['vehicle_velocity']).values[0]) 

 

loading_time = int(pd.read_excel('/content/Data_Distance.xlsx', 

sheet_name='demand', usecols=['loading_time']).values[0]) 
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Step 2: Calculation of Travel Time: `travel_time = distance_df / vehicle_velocity` 

calculates the travel time between different nodes based on the distance and vehicle 

velocity. 

Decoding Function: The function `decoding_func(route)` takes a route as input (in the 

form of a list of nodes) and processes it to determine feasible routes for a vehicle, 

considering constraints like vehicle capacity and time. Here's what the function does: 

- Initialize variables: `from_node`, `cum_load`, `cum_time`, `route`, 

`route_solution`, and `k`. 

- While there are nodes in the chromosome (the input route) 

- Get the first node as `to_node`. 

- Determine the customer load (`cus_load`) of the current node. 

- Calculate the travel time between the `from_node` and `to_node` using the 

`travel_time` matrix. 

- Calculate the unloading time based on the customer load and loading time. 

- If the current node is the starting node (0), append it to the route. 

- Check if adding the current node to the route violates capacity and time 

constraints. 

- If not, add the node to the route, update cumulative time and load, remove the 

node from the chromosome, and set the `from_node` as the current node. 

- If yes, end the current route by appending the starting node (0) and reset 

variables. 

- Finally, append the starting node (0) to close the last route, update cumulative 

time, and add the route to `route_solution`. 

Return Value: The function returns a list of routes (`route_solution`), each of which 

represents a feasible route for a vehicle that adheres to capacity and time constraints. 

travel_time =  distance_df / vehicle_velocity 

 

def decoding_func (route): 

  chromosome= route.copy() 

  from_node = 0 

  cum_load = 0 

  cum_time = 0 

  route = [] 

  route_solution = [] 

Ref. code: 25686422040821BAS



11 

 

 

  k = 1 

 

  while len(chromosome) > 0: 

    to_node =  chromosome[0] 

 

    cus_load = 

int(demand_df[demand_df['NODE']==to_node]['DEMAND']) 

 

    travel_time_df = travel_time.loc[from_node,to_node] 

 

    unloading_time = (loading_time/60*cus_load) 

 

    if from_node == 0: 

      route.append(0) 

 

    if(cum_load + cus_load <= max_cap) and (cum_time + 

travel_time_df + unloading_time <= max_time - 

travel_time.loc[from_node,0]): 

      route.append(to_node) 

       

      cum_time = cum_time + unloading_time + travel_time_df 

      cum_load = cum_load + cus_load 

      chromosome.remove(to_node) 

      from_node = to_node 

    else: 

      route.append(0) 

      cum_time = cum_time + travel_time.loc[from_node,0] 

      route_solution.append(route) 

 

      from_node = 0 

      cum_time = 0 

      cum_load = 0 

      k = k + 1 

      route = [] 

 

  route.append(0) 

  cum_time = cum_time + travel_time.loc[from_node,0] 

  route_solution.append(route) 

  

  return route_solution 
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Step 3: Function Definition: `def get_sum_load(route): ` defines a function named 

`get_sum_load` which takes a single argument `route`. 

Variable Initialization: Inside the function, `route_n` is created as a copy of the input 

`route`. `from_node` is initialized as 0 (the starting node), and `sum_load` is initialized 

as 0 to keep track of the cumulative load. 

Looping through the Route: 

- A `while` loop is used to iterate through the nodes in the `route_n` list until there 

are no nodes left. 

- The first node in the `route_n` list is extracted as `to_node`. 

- The distance between `from_node` and `to_node` is fetched from the 

`distance_df` DataFrame using `.loc[from_node, to_node]`. 

- `from_node` is updated to `to_node` for the next iteration. 

- The node `from_node` is removed from the `route_n` list to move to the next 

node. 

- The demand (load) associated with the current node (`to_node`) is fetched from 

the `demand_df` DataFrame using `.loc` and then calculated as an integer value. 

- The demand of the current node is added to the `sum_load`. 

Return Value: After looping through all nodes in the route, the function returns the 

calculated `sum_load`, which represents the total load associated with the given route. 

def get_sum_load(route):   

  route_n = route.copy() 

  from_node = 0 

  sum_load = 0 

  while len(route_n) > 0: 

    to_node = route_n[0] 

    distance = distance_df.loc[from_node,to_node] 

    from_node = to_node 

    route_n.remove(from_node) 

 

    cus_load = 

int(demand_df[demand_df['NODE']==to_node]['DEMAND']) 

 

    sum_load = sum_load + cus_load 

 

  return sum_load 
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Step 4: Function Definition: `def calculate_total_LD(route_n):` defines a function 

named `calculate_total_LD` which takes a single argument `route_n`. 

Variable Initialization: 

- `copy_route` is created as a copy of the input `route_n`. 

- `sum_load` is calculated using the previously defined `get_sum_load` function, 

which computes the total load of the route. 

- `cum_load` is initialized as 0 to keep track of cumulative load. 

- `from_node` is initialized as 0, representing the starting node. 

- `load_distance` is initialized as 0 to accumulate the load-distance value. 

Looping through the Route: 

- A `while` loop is used to iterate through the nodes in the `copy_route` list until 

there are no nodes left. 

- The first node in the `copy_route` list is extracted as `to_node`. 

- The distance between `from_node` and `to_node` is fetched from the 

`distance_df` DataFrame using `.loc[from_node, to_node]`. 

- The load-distance value for the current segment of the route is calculated using 

the formula: `(sum_load - cum_load + vehicle_weight) * distance`. 

- `cus_load` is calculated by fetching the demand (load) associated with the current 

node from the `demand_df` DataFrame. 

- `cum_load` is updated by adding the demand of the current node. 

- The current node (`to_node`) is removed from the `copy_route` list to move to 

the next node. 

- `from_node` is updated to `to_node` for the next iteration. 

Calculating Load-Distance for Last Segment: 

- After the loop, the distance between the last node and the starting node (0) is 

fetched from the `distance_df` DataFrame. 

- The load-distance value for the last segment of the route is calculated similarly 

to before. 

- The load-distance values for all segments are accumulated to get the total load-

distance value. 

Ref. code: 25686422040821BAS



14 

 

 

Return Value: The function returns the calculated `load_distance`, which represents 

the load-distance value associated with the given route. 

def calculate_total_LD (route_n): 

  copy_route = route_n.copy() 

  sum_load = get_sum_load(route_n) 

  cum_load = 0 

  from_node = 0 

  load_distance = 0 

   

  while len(copy_route) > 0: 

    to_node = copy_route [0] 

    distance = distance_df.loc[from_node,to_node] 

    load_distance = load_distance + (sum_load-cum_load + 

vehicle_weight)*distance 

     

    cus_load = 

int(demand_df[demand_df['NODE']==to_node]['DEMAND']) 

 

    cum_load = cum_load + cus_load 

    copy_route.remove(to_node) 

    from_node = to_node 

 

  distance = distance_df.loc[from_node,0] 

 

  load_distance = load_distance + (sum_load-cum_load + 

vehicle_weight)*distance 

  return load_distance 
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Step 5: Function Definition: `def total_LD_func(all_route):` defines a function named 

`total_LD_func` which takes a single argument `all_route`, expected to be a collection 

of routes. 

Variable Initialization: 

- `sum_load_distance` is initialized as 0. This variable will be used to accumulate 

the load-distance values of all routes. 

Loop through Routes and Accumulate Load-Distance: 

- A `for` loop is used to iterate through each route in the collection `all_route`. 

- For each route, the `calculate_total_LD(route)` function is called to compute the 

load-distance value for that specific route. 

- The calculated load-distance value for the current route is added to the 

`sum_load_distance` variable. 

Return Value: After looping through all routes, the function returns the final value of 

`sum_load_distance`, which represents the cumulative load-distance value for all the 

provided routes. 

def total_LD_func(all_route): 

  sum_load_distance = 0 

 

  for route in all_route: 

    sum_load_distance = sum_load_distance + 

calculate_total_LD(route) 

  return sum_load_distance 

 

Step 6: Function Definition: `def acceptance (current_LD, candidate_LD, T):` defines 

a function named `acceptance` which takes three arguments: 

- `current_LD`: The load-distance value of the current solution. 

- `candidate_LD`: The load-distance value of the candidate solution. 

- `T`: The current temperature in the simulated annealing process. 

Comparison and Decision: 

- The function begins with an `if` statement to compare the load-distance value of 

the candidate solution (`candidate_LD`) with the load-distance value of the 

current solution (`current_LD`). 

- If the `candidate_LD` is less than the `current_LD`, this means the candidate 

solution is better, so the function returns `'accept'`. 
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- If the `candidate_LD` is not better, it means the candidate solution is worse or 

equivalent. In this case, the function calculates the energy difference `E` between 

the candidate solution and the current solution: `E = -candidate_LD + 

current_LD`. 

- The probability `P` of accepting the worse solution is calculated using the 

exponential function `math.exp(E/T)`. The higher the temperature `T`, the more 

likely it is to accept worse solutions. 

- A random value `R` between 0 and 1 is generated using `random.random()`. 

- If `P` is greater than or equal to `R`, the function returns `'accept'`. This means 

there's a chance to accept a worse solution based on the current temperature and 

the energy difference. 

- If `P` is less than `R`, the function returns `'reject'`, indicating that the worse 

solution should be rejected. 

- The code includes print statements to display the calculated probability `P` and 

the random value `R` for diagnostic purposes. 

import random 

import math 

 

def acceptance(current_LD,candidate_LD, T): 

 

  if candidate_LD < current_LD: 

    return 'accept' 

  else: 

    E = -candidate_LD+current_LD 

    P = math.exp(E/T) 

    R = random.random() 

    print("P =", P) 

    print("R =",R) 

    if P>R: 

      return 'accept' 

    else: 

      return 'reject' 
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Step 7: Function Definition: ̀ def swap(route):` defines a function named ̀ swap` which 

takes a single argument `route`. 

Copying the Route: 

- The function starts by creating a copy of the input route called ̀ temp_route`. This 

copy will be modified to generate a new candidate solution. 

Randomly Selecting Indices: 

- The function generates two random indices: `idx1` and `idx2`. These indices will 

correspond to positions in the `temp_route` list where the elements will be 

swapped. 

- `idx1` is generated using `random.randrange(0, len(route))`. It's the index of the 

first element to be swapped. 

- `idx2` is generated similarly, but it's important to ensure that it is different from 

`idx1` to avoid swapping an element with itself. A `while` loop is used to 

repeatedly generate `idx2` until it is different from `idx1`. 

Swapping Elements: 

- The elements at positions `idx1` and `idx2` in `temp_route` are swapped. This 

simulates the process of swapping two nodes in the route, which can lead to a 

new candidate solution. 

Return Value: 

- The function returns the modified `temp_route`, which now represents the 

candidate solution after the swap operation. 

def swap(route): 

    temp_route = route.copy() 

    idx1=random.randrange(0,  len(route)) 

    idx2=random.randrange(0,  len(route)) 

     

    while idx1 == idx2: 

      idx1=random.randrange(0,  len(route)) 

      idx2=random.randrange(0,  len(route)) 

 

    temp = temp_route [idx1] 

    temp_route [idx1] = temp_route [idx2] 

    temp_route [idx2] = temp 

    return temp_route 
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Step 8: Function Definition: `def candidate_func(current_sol, T):` defines a function 

named `candidate_func` which takes two arguments: 

- `current_sol`: The current solution represented as a list of nodes. 

- `T`: The current temperature in the simulated annealing process. 

Calculating `search_dist`: 

- The code calculates `search_dist` as the square root of `T`, rounded to the nearest 

integer. This value determines the number of swap operations to be performed in 

this iteration. 

Loop and Generating Candidate Solutions: 

- A `while` loop is used to perform the swapping operation a certain number of 

times, specified by `search_dist`. 

- A copy of the `current_sol` is created using `temp_current_sol = 

current_sol.copy()`. This copy will be modified to generate a candidate solution. 

- The `swap(temp_current_sol)` function is called to generate a candidate solution 

by swapping nodes in the current solution. 

- The `decoding_func(candidate_sol)` function is then called to decode the 

candidate solution and obtain the corresponding routes. 

- If the number of routes in the decoded candidate solution is equal to the specified 

number of vehicles (`num_vehicle`), the candidate solution is accepted and 

assigned to `current_sol`. Otherwise, the `current_sol` remains unchanged. 

Iteration Counter and Printing: 

- The iteration counter `i` is incremented in each iteration of the loop. 

- The function prints the final candidate solution after all iterations. 

Return Value: 

- The function returns the modified `current_sol`, which now represents the 

candidate solution after multiple swap operations. 

def candidate_func (current_sol, T): 

 

  search_dist = round(math.sqrt(T),0) 

   

  i=1 

  while i <= search_dist: 
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    temp_current_sol = current_sol. copy()   

    candidate_sol = swap (temp_current_sol)    

    decode_candidate_sol = decoding_func (candidate_sol) 

    

    if len (decode_candidate_sol)== num_vehicle: 

      current_sol = candidate_sol 

    else: 

      current_sol = current_sol 

    i+=1 

  print ('The final candidate_solution',current_sol) 

  return current_sol 

 

Step 9: Function Definition: `def SA_LDVRPTW (init_T, final_T, num_iter, 

max_cap, current_sol, current_LD):` defines a function named `SA_LDVRPTW` that 

takes several parameters: 

- `init_T`: The initial temperature for the simulated annealing process. 

- `final_T`: The final temperature, at which the process will stop. 

- `num_iter`: The number of iterations to be performed at each temperature level. 

- `max_cap`: The maximum capacity of the vehicles. 

- `current_sol`: The initial solution (list of nodes) to start the algorithm. 

- `current_LD`: The initial load distance associated with the `current_sol`. 

Initialization and Main Loop: 

- The function initializes variables `temp_cycle` and `T` (current temperature) to 

manage the annealing process. 

- The main loop continues as long as `T` is greater than `final_T`. 

- Inside the loop, the algorithm performs the specified number of iterations 

(`num_iter`) to explore solutions at the current temperature. 

Iteration Loop: 

- For each iteration. 

- The current solution is decoded using `decoding_func` to obtain routes, and the 

current load distance is calculated using `total_LD_func`. 

- A copy of the current solution (`newsol`) is created to generate a candidate 

solution. 
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- `candidate_func` is used to generate a candidate solution by performing swaps 

on the nodes in `newsol`. 

- The decoded candidate solution's load distance is calculated. 

- The `acceptance` function determines whether to accept the candidate solution 

based on the difference between the current load distance and the candidate load 

distance, as well as the current temperature. 

- If the candidate solution is accepted, the current solution and load distance are 

updated accordingly. If the candidate's load distance is better than the best load 

distance seen so far (`cur_best_LD`), the best solution and load distance are also 

updated. 

- The algorithm prints relevant information, like the acceptance status and current 

solution, during each iteration. 

Temperature Update: 

- After completing ̀ num_iter` iterations at the current temperature, the temperature 

`T` is updated based on a cooling schedule. Here, it's set as `init_T - (0.95 * 

temp_cycle)`, where `temp_cycle` is the current temperature cycle. 

Finalization: 

- Once the temperature falls below `final_T`, the algorithm exits the main loop. 

- The algorithm prints the final best solution and its associated load distance. 

- The decoded version of the best solution is printed using `decoding_func`. 

- The function returns the final best solution and its load distance. 

def 

SA_LDVRPTW(init_T,final_T,num_iter,max_cap,current_sol,current_LD

): 

 

  temp_cycle = 0 

  T = init_T 

  cur_best_sol = current_sol.copy() 

  cur_best_LD = current_LD.copy() 

  while T > final_T: 

    print('----------------Temp cycle ',temp_cycle, ",",'T = 

',T,'-------------')  

    for i in range(0,num_iter): 

      print('........................iteration 

',i+1,'........................') 

      print ('The current solution is', current_sol) 
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      decode_current_sol = decoding_func (current_sol) 

      current_LD = total_LD_func(decode_current_sol) 

      print ('The current load distance is', current_LD) 

      newsol = current_sol.copy() 

      candidate_sol = candidate_func(newsol,T) 

      print ('The current solution is', candidate_sol) 

      decode_candidate_sol = decoding_func (candidate_sol) 

      candidate_LD = total_LD_func(decode_candidate_sol) 

      print ('The candidate load distance is', candidate_LD) 

      accept = acceptance(current_LD,candidate_LD, T) 

      if accept == 'accept': 

        print('accept') 

        current_sol = candidate_sol 

        current_LD = candidate_LD 

        print("Current LD after accept", current_LD) 

        if current_LD < cur_best_LD: 

            cur_best_sol = current_sol.copy() 

            cur_best_LD = current_LD 

      else: 

        print('reject') 

      print("current solution after compare", current_sol) 

    temp_cycle = temp_cycle+1 

    T = init_T-(0.95*temp_cycle) 

 

  print("Final solution = ", cur_best_sol) 

  print("Final LD =", cur_best_LD) 

  print ('The final solution after decoding is', decoding_func 

(cur_best_sol)) 

  return cur_best_sol, cur_best_LD 

 

Step 10: Function Definition: def initial_pop(num_chromosome): This line defines a 

function named initial_pop that takes one argument, num_chromosome, which 

represents the number of chromosomes (individuals) in the population. 

Initialization: 

- i = 1: This initializes a variable i to 1. It's used as a counter to control the number 

of chromosomes generated. 

- chromosome_lst = []: This initializes an empty list chromosome_lst to store the 

generated chromosomes. 
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While Loop: 

- while i <= num_chromosome:: This initiates a while loop that continues until i 

is greater than num_chromosome. The purpose of this loop is to generate the 

specified number of chromosomes. 

Chromosome Generation: 

- chromosome = (list(np.random.permutation(len(distance_df)))): This line 

generates a random permutation of indices from 0 to len(distance_df) - 1. It uses 

NumPy's permutation function and converts the result to a list. This is a common 

way to represent a permutation. 

- chromosome.remove(0): This removes the element 0 from the generated 

chromosome. This suggests that the permutation is intended to represent 

indices, and 0 is being excluded (possibly indicating a starting point). 

List Update: 

- i += 1: This increments the counter i by 1. 

- chromosome_lst.append(chromosome): The generated chromosome is added to 

the list chromosome_lst. 

Return Statement: 

- return chromosome_lst: The function returns the list of generated chromosomes. 

 

def initial_pop(num_chromosome): 

  i = 1 

  chromosome_lst =[] 

  while i <= num_chromosome: 

    chromosome = (list(np.random.permutation(len(distance_df)))) 

    chromosome.remove (0) 

    i+=1 

    chromosome_lst.append (chromosome) 

  return chromosome_lst 
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Step 11: Importing Libraries: The code imports the NumPy library as `np`. 

Initializing Population: 

- `num_chromosome` specifies the number of initial solutions (chromosomes) in 

the population. 

- `chromosome_lst` is a list that will hold the initial solutions generated for each 

chromosome using the `initial_pop` function.  

Iterating Through Chromosomes: 

- A loop iterates through each `initial_sol` (initial solution) in the 

`chromosome_lst`. This represents different initial solutions for each 

chromosome. 

Simulated Annealing for Each Chromosome: 

- For each `initial_sol`. 

- The initial temperature (`init_T`), final temperature (`final_T`), number of 

iterations (`num_iter`), and other parameters are set. 

- `current_sol` is initialized with the `initial_sol`. 

- The initial solution is decoded and its load distance is computed using the 

`decoding_func` and `total_LD_func`. 

- The `SA_LDVRPTW` function is called to perform simulated annealing using 

the provided parameters. This function returns the best solution and its associated 

load distance. 

- The best solution and load distance are added to respective lists 

(`cur_best_sol_lst` and `cur_best_LD_lst`). 

Finding the Best Solution from Population: 

- After iterating through all chromosomes, the minimum load distance (`best_LD`) 

from the population is found using the `min` function. 

- The index of `best_LD` in `cur_best_LD_lst` is used to find the corresponding 

best solution (`best_sol`) in `cur_best_sol_lst`. 

Printing Results: 

- The code then prints out various results. 

- The list of best solutions found for each chromosome: `cur_best_sol_lst`. 

- The list of best load distances associated with the best solutions: 

`cur_best_LD_lst`. 
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- The minimum load distance: `best_LD`. 

- The best solution found: `best_sol`. 

- The decoded version of the best solution using `decoding_func`: 

`best_decode_sol`. 

import numpy as np 

 

num_chromosome = 20 

chromosome_lst = initial_pop(num_chromosome) 

cur_best_sol_lst=[] 

cur_best_LD_lst =[] 

for initial_sol in chromosome_lst: 

  print ('-------------start-----------------------') 

  print('The initial solution is',initial_sol) 

  init_T = 10 

  temp_cycle = 0 

  final_T = 1 

  num_iter = 10 

  T = init_T 

  current_sol = initial_sol 

  decode_initial_sol = decoding_func(initial_sol) 

  initial_LD = total_LD_func(decode_initial_sol) 

  current_LD = initial_LD 

  print('The initial load distance',initial_LD) 

  cur_best_sol, cur_best_LD = 

SA_LDVRPTW(init_T,final_T,num_iter,max_cap,current_sol,current_LD

) 

  cur_best_sol_lst .append (cur_best_sol) 

  cur_best_LD_lst.append (cur_best_LD) 

  print ('-------------end-----------------------') 

print ('The current best solution list is', cur_best_sol_lst) 

print ('The current best load distance list is', cur_best_LD_lst) 

best_LD = min(cur_best_LD_lst) 

print ('The minimum LD is', best_LD) 

best_sol = cur_best_sol_lst[cur_best_LD_lst.index(best_LD)] 

print ('The best solution is', best_sol) 

best_decode_sol = decoding_func (best_sol) 

print ('The best decoded solution is', best_decode_sol) 
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and here is an example of the response you will receive after running this code. 

• The current best solution list is [[16, 18, 13, 6, 17, 1, 5, 2, 9, 11, 7, 10, 3, 12, 4, 

15, 14, 8], [14, 6, 3, 9, 11, 15, 8, 7, 2, 16, 10, 13, 12, 4, 5, 18, 17, 1], [4, 16, 15, 

9, 11, 18, 2, 7, 12, 14, 10, 5, 13, 1, 8, 6, 17, 3], [1, 16, 18, 17, 15, 4, 6, 14, 8, 11, 

12, 3, 2, 13, 9, 7, 10, 5], [3, 15, 18, 13, 5, 12, 9, 17, 6, 1, 7, 2, 4, 10, 14, 16, 8, 

11]] 

• The current best load distance list is [3833.44, 3551.44, 3846.0800000000004, 

3774.3599999999997, 4176.849999999999] 

• The minimum LD is 3551.44 

• The best solution is [14, 6, 3, 9, 11, 15, 8, 7, 2, 16, 10, 13, 12, 4, 5, 18, 17, 1] 

• The best decoded solution is [[0, 14, 6, 3, 9, 11, 15, 8, 0], [0, 7, 2, 16, 10, 0], [0, 

13, 12, 4, 5, 18, 0], [0, 17, 1, 0]] 

where each execution will produce a different result. 
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Figure 3.1 The flow chart of simulated annealing 

Figure 3.1 provides a detailed flowchart representing all steps of SA. 
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CHAPTER 4  

RESULT AND DISCUSSION 
 

 

Simulated annealing We've set a hyperparameter this time. based on the 

following metrics: Number of chromosomes is 20, Initial Time is 10, Final Time is 1, 

and Number of iterations is 10. We calculated one round of this issue in roughly 3 

minutes and 40 seconds. We performed 40 computations and obtained various results. 

As a result, we selected the best solution to this issue is:   

• The current best solution list is [[12, 13, 1, 7, 4, 11, 3, 16, 2, 17, 15, 18, 5, 8, 

6, 14, 10, 9], [11, 8, 2, 14, 7, 1, 5, 10, 12, 3, 17, 16, 9, 18, 13, 15, 6, 4], [1, 5, 8, 

9, 10, 7, 15, 6, 11, 14, 4, 17, 16, 2, 13, 3, 12, 18], [11, 12, 18, 16, 4, 13, 9, 15, 3, 

14, 7, 6, 1, 10, 17, 5, 2, 8], [8, 17, 15, 11, 4, 2, 10, 18, 16, 7, 6, 14, 13, 3, 9, 5, 1, 

12], [15, 12, 5, 11, 9, 10, 17, 8, 16, 2, 3, 6, 14, 1, 4, 7, 18, 13], [1, 17, 11, 6, 16, 

3, 8, 7, 18, 14, 9, 4, 15, 12, 5, 10, 13, 2], [11, 15, 6, 3, 8, 16, 14, 12, 18, 4, 1, 5, 

17, 2, 10, 9, 13, 7], [4, 11, 13, 14, 6, 15, 17, 2, 3, 12, 7, 8, 16, 9, 18, 10, 5, 1], 

[9, 12, 11, 3, 6, 1, 4, 15, 7, 2, 5, 8, 13, 10, 17, 18, 14, 16], [5, 13, 6, 9, 11, 17, 4, 

14, 18, 2, 8, 10, 7, 3, 16, 12, 15, 1], [1, 14, 15, 9, 16, 17, 13, 6, 4, 12, 8, 11, 7, 

10, 3, 2, 18, 5], [14, 16, 2, 13, 10, 18, 7, 15, 9, 11, 8, 17, 4, 5, 1, 3, 6, 12], [5, 6, 

13, 14, 17, 1, 12, 16, 7, 8, 2, 3, 11, 15, 10, 4, 18, 9], [14, 5, 8, 10, 12, 9, 2, 16, 

13, 17, 4, 3, 11, 7, 6, 15, 18, 1], [1, 3, 5, 10, 9, 4, 12, 13, 16, 2, 14, 18, 17, 11, 

15, 8, 7, 6], [13, 11, 5, 3, 2, 16, 6, 12, 17, 4, 7, 18, 1, 10, 9, 14, 15, 8], [16, 13, 

10, 8, 3, 12, 2, 17, 9, 14, 11, 18, 15, 7, 5, 1, 6, 4], [15, 14, 13, 17, 5, 7, 12, 1, 4, 

16, 8, 3, 10, 9, 6, 11, 2, 18], [2, 11, 6, 18, 8, 10, 14, 3, 5, 16, 12, 1, 7, 15, 13, 17, 

4, 9]] 

• The current best load distance list is [3965.21, 3788.0699999999997, 

4041.01, 3998.44, 3610.6499999999996, 3651.32, 4074.7499999999995, 

3407.98, 3043.89, 3363.2999999999997, 3766.46, 3902.54, 3525.38, 

3661.8500000000004, 3914.71, 4042.2799999999997, 3465.3500000000004, 

4025.46, 3687.76, 4011.06] 

• The minimum LD is 3043.89 

• The best solution is [4, 11, 13, 14, 6, 15, 17, 2, 3, 12, 7, 8, 16, 9, 18, 10, 5, 1] 
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• The best decoded solution is [[0, 4, 11, 13, 14, 6, 15, 17, 0], [0, 2, 3, 12, 7, 8, 

16, 0], [0, 9, 18, 10, 5, 0], [0, 1, 0]] 

• Considering the outcomes, we chose the routes [4, 11, 13, 14, 6, 15, 17, 2, 3, 

12, 7, 8, 16, 9, 18, 10, 5, 1] that have values out of a total of 20 routes. 3043.89 

is the shortest load distance among the 20 paths. The best decoded answer is [[0, 

4, 11, 13, 14, 6, 15, 17, 0], [0, 2, 3, 12, 7, 8, 16], [0, 9, 18, 10, 5], [0, 1, 0]], for 

which we used the excel solver method to get the minimum load distance for all 

4 routes. It's 872.36, 1155.16, 955.09, and 388.37. 
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CHAPTER 5  

CONCLUSIONS 

 

Studies show that a simulated annealing technique developed in Python can 

solve VRP. The fact that there are just 18 customers in total places limitations on this 

strategy. When solving the problem, consideration was given to the number of cars, 

maximum capacity, vehicle weight, maximum vehicle time, vehicle velocity, and 

loading time. The tool we developed to solve this problem is currently unable to 

determine the right optimal for customers that have more than 18 customers. 

In accordance with subsequent study recommendations, we should make the 

code more user-friendly and efficient. To evaluate how much of this result may be used 

in those circumstances, we should also conduct experiments in real-world scenarios. 
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