

APPLYING MACHINE LEARNING TO IDENTIFY

OPTIMAL FILE COMPRESSION METHODS

BY

PITAWAT CHAIVUTINUN

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF ENGINEERING (ARTIFICIAL INTELLIGENCE

AND INTERNET OF THINGS)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2025

Ref. code: 25686722041214TMO

(1)

Independent Study Title APPLYING MACHINE LEARNING TO

IDENTIFY OPTIMAL FILE COMPRESSION

METHODS

Author Pitawat Chaivutinun

Degree Master of Engineering (Artificial Intelligence

and Internet of Things)

Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Advisor Associate Professor Cholwich Nattee, D.Eng.

Co-Advisor Associate Professor Nirattaya Khamsemanan,

Ph.D.

Academic Years 2025

ABSTRACT

This independent study addresses the inefficiency of using a single lossless

compression algorithm for diverse file types, a common practice in financial reporting

and other domains. We propose an adaptive framework that uses supervised machine

learning to predict the most suitable compression method for each file. A dataset of

approximately 120,000 real-world files (including text, tabular, and semi-structured

formats) was created. Each file was compressed using six major algorithms (Zstd, LZ4,

Brotli, LZMA, Bzip2, and zlib) to determine the "ground-truth" best method based on

the lowest compression ratio achieved within a 30-second time limit. We extracted an

initial set of 15 structural features for each file. A Sequential Feature Selection (SFS)

technique was then employed to identify the most predictive subset of features. The

final model predicts the optimal algorithm, achieving compression ratios close to the

empirical optimum without the high cost of an exhaustive search. This model can be

embedded into existing data pipelines to automatically reduce storage costs and data

transfer times with minimal added latency.

Ref. code: 25686722041214TMO

(2)

Keywords: Lossless compression, machine learning, algorithm selection, feature

engineering, file storage optimization, data transfer efficiency

Ref. code: 25686722041214TMO

(3)

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor,

Assoc. Prof. Cholwich Nattee, and my co-advisor, Assoc. Prof. Nirattaya

Khamsemanan, for their invaluable guidance, encouragement, and continuous support

throughout the course of my Master’s Degree study and research. Their insightful

advice, constructive feedback, and profound knowledge have been the driving force

behind the successful completion of this thesis. I am truly honored to have had the

opportunity to learn under their supervision, and I am deeply thankful for their patience

and inspiration that have shaped both my research and academic growth.

I would also like to express my appreciation to my committee members for their

time, thoughtful comments, and valuable suggestions that helped improve the quality

of this work.

My sincere thanks go to all colleagues and friends at the Artificial Intelligence

and Internet of Things (AI & IoT) program at Sirindhorn International Institute of

Technology (SIIT), Thammasat University, for their encouragement, technical

discussions, and friendship that made my graduate life both productive and enjoyable.

Finally, I would like to extend my heartfelt gratitude to my family for their

unconditional love, patience, and endless support. Their encouragement and belief in

me have been my greatest motivation throughout my academic journey.

Pitawat Chaivutinun

Ref. code: 25686722041214TMO

(4)

TABLE OF CONTENTS

 Page

ABSTRACT (1)

ACKNOWLEDGEMENTS (3)

LIST OF TABLES (8)

LIST OF FIGURES (9)

LIST OF SYMBOLS/ABBREVIATIONS (10)

CHAPTER 1 INTRODUCTION 1

1.1 Data Compression 1

1.2 Machine Learning with Data Compression 1

1.3 Problem Statement 2

1.4 Motivation 2

1.5 Objectives 2

1.6 Expected Outcomes 3

1.7 Scope and Limitation 3

1.8 Structure of the Independent Study 3

CHAPTER 2 REVIEW OF LITERATURE 5

2.1 Data Compression 5

2.2 Lossless Compression Algorithms 5

2.2.1 zlib (DEFLATE) 5

2.2.1.1 LZ77 Dictionary Encoding 6

2.2.1.2 Huffman Entropy Coding 6

2.2.2 bzip2 7

2.2.2.1 Burrows–Wheeler Transform (BWT) 7

2.2.2.2 Move-to-Front (MTF) Coding 7

Ref. code: 25686722041214TMO

(5)

2.2.2.3 Run-Length Encoding (RLE) 8

2.2.2.4 Huffman Coding 8

2.2.3 LZMA 8

2.2.3.1 Dictionary Match Search 8

2.2.3.2 Range Encoding 8

2.2.4 Zstandard (Zstd) 9

2.2.5 LZ4 9

2.2.6 Brotli 10

2.3 Machine Learning Approaches for Data Compression 10

2.3.1 Decision Tree 11

2.3.2 Random Forest 11

2.3.3 XGBoost 12

2.3.3.1 Ensemble of Decision Trees 12

2.3.3.2 Objective Function 12

2.3.3.3 Regularization 13

2.3.4 Support Vector Machine (SVM) 13

2.3.5 Logistic Regression 13

2.3.6 K-Nearest Neighbors (KNN) 14

2.4 Model Comparison 15

2.5 Related Works 16

2.5.1 Using Machine Learning to Predict Effective Compression Algorithms

for Heterogeneous Datasets (Burtchell and Burtscher, 2024) 16

2.5.2 Adaptive Compression Algorithm Selection Using LSTM Network in

Column-oriented Database (Jin et al., 2019) 17

2.5.3 Compression Selection for Columnar Data using Machine-Learning

(Larsen and Persson, 2023) 17

CHAPTER 3 METHODOLOGY 19

3.1 Data Collection 20

3.2 Feature Extraction 21

3.2.1 File Size (N) 21

3.2.2 Entropy 21

Ref. code: 25686722041214TMO

(6)

3.2.3 Chi-Square (χ2) 21

3.2.4 Byte Variance 22

3.2.5 Byte Kurtosis 22

3.2.6 Byte Standard Deviation 23

3.2.7 Longest Repeated Byte Sequence 23

3.2.8 Average Repeat Length 23

3.2.9 Dictionary Fit 24

3.2.10 ASCII Ratio 24

3.2.11 File Type 24

3.2.12 Average Line Length 24

3.2.13 Unique Bytes 25

3.2.14 N-gram Redundancy 25

3.2.15 Proxy Compression Ratio 25

3.3 Compression Testing 26

3.4 Best Algorithm Selection 27

3.5 Feature Selection 29

3.6 Final Dataset 30

3.7 Machine Learning Model Training 31

3.7.1 Classification Setup 31

3.7.2 Hyperparameter Tuning and Validation 31

3.7.3 Model Selection 32

3.8 Summary 32

CHAPTER 4 EXPERIMENTAL RESULTS 34

4.1 Optimal Algorithm Distribution 34

4.2 Feature Importance and Selection Analysis 35

4.3 Hyperparameter Optimization Results 37

4.4 Classification Performance (Confusion Matrix) 39

4.5 Comparison with Baseline Compression 40

CHAPTER 5 CONCLUSION AND FUTURE DIRECTION 43

5.1 Conclusion 43

Ref. code: 25686722041214TMO

(7)

5.2 Comparison with Baseline Compression 44

5.3 Future Direction 44

REFERENCES 45

Ref. code: 25686722041214TMO

(8)

LIST OF TABLES

Tables Page

2.1 Comparison of Lossless Compression Algorithms 15

2.2 Comparison of Machine Learning Algorithms 16

3.1 Summary of basic file metadata collected during data preparation 20

4.1 Performance Comparison of Machine Learning Algorithm Selector vs. Baseline

ZIP Compression Over Random 1,200 Files 42

Ref. code: 25686722041214TMO

(9)

LIST OF FIGURES

Figures Page

2.1 Decision Tree 11

2.2 Random Forest 12

2.3 Support Vector Machine 13

2.4 Logistic Regression 14

2.5 K-Nearest Neighbors 15

3.1 Overview of the methodology 19

4.1 Optimal algorithm counts 35

4.2 Feature Selection Performance 36

4.3 Feature Importance 37

4.4 Hyperparameter Optimization Results 38

4.5 Confusion Matrix – Algorithm Families 39

Ref. code: 25686722041214TMO

(10)

LIST OF SYMBOLS/ABBREVIATIONS

Symbols/Abbreviations Terms

ASCII American Standard Code for

 Information Interchange

ML Machine Learning

Ref. code: 25686722041214TMO

1

CHAPTER 1

INTRODUCTION

Nowadays, data compression is playing an increasingly important role in

various technologies. It reduces storage costs, lowers data transfer, and optimizes

resource utilization for many enterprises. Yang, Qin and Hu (2023) state that traditional

data compression algorithms work well with specific types of data, but this can cause

problems with heterogeneous datasets and complicated file structures. This research

aims to explore the potential of machine learning to find the most effective compression

method for a given file based on its data structure. By applying machine learning

models, we can achieve higher compression ratios with acceptable compression speeds,

resulting in efficient resource management compared to traditional methods.

1.1 Data Compression

Data compression is the process of encoding data into a file, producing an output

with fewer bits than the original file. Data compression reduces the size of data by

identifying and eliminating redundancy and irrelevancy. Compression techniques are

essential for various applications. Reducing file size leads to reduced storage space,

increasing data transfer speeds, lowering bandwidth usage, and enhancing resource

utilization (Fitriya, Purboyo and Prasasti, 2017).

Traditional data compression algorithms can be categorized into lossless and

lossy compression. Lossless compression algorithms, such as Huffman coding and

Lempel-Ziv variations, ensure that, after decompression, the reconstructed data is

identical to the original. Unlike lossless compression, lossy compression algorithms,

such as JPEG for images, achieve higher compression ratios but discard some data, so

the reconstructed data may not match the original quality.

1.2 Machine Learning with Data Compression

Machine learning is a field of artificial intelligence (AI) that focuses on enabling

computer systems to learn from data without explicit programming. It involves the

development of algorithms that allow computers to identify patterns, make predictions,

Ref. code: 25686722041214TMO

2

and improve their performance over time based on the input data. Machine learning has

gradually become a powerful tool for solving various modern problems, including data

compression.

In this research, machine learning can be used to learn patterns and entropy of

data in files to improve compression efficiency. Machine learning can analyze file

structures, identify relevant features, and predict the most effective data compression

algorithm for a given file. Burtchell & Burtscher (2024) demonstrated that in traditional

compression algorithms, single compression algorithms might not fit diverse data. It

might have a good compression ratio with most types of files, but it is impossible for

all types of files. Then, the approach of using machine learning has the potential to

outperform using single data compression algorithms, especially for heterogeneous

datasets that diverse data characteristics.

1.3 Problem Statement

Traditional lossless compression algorithms often do not perform consistently

on different kinds of data. Since the structure of files varies a lot, no single algorithm

always gives the best result. This study aims to solve the problem of selecting

algorithms by using machine learning to predict the most effective compression for

each file, based on its structural features.

1.4 Motivation

The motivation for this research stems from the limitations of using one static

compression method for all files. This approach often leads to suboptimal compression

ratios and inefficient system performance, especially when working with diverse

datasets. By applying machine learning, we aim to develop a more adaptive and

intelligent compression system that selects the optimal algorithm dynamically, based

on file structure.

1.5 Objectives

The objective of this research is to develop machine learning models for

predicting the best compression algorithms for specific files in terms of compressed

size and compression time, based on their structural features.

Ref. code: 25686722041214TMO

3

1.6 Expected Outcomes

The expected outcome of this research is a machine learning model that can

intelligently predict the most effective compression algorithm, in terms of compressed

size and compression time, for a given file based on its structural features.

1.7 Scope and Limitation

The scope of this study focuses only on lossless compression algorithms. The

dataset for training will mostly come from financial data. The algorithms within scope

are Zstd, LZ4, Brotli, LZMA (XZ), Bzip2, and Deflate (ZIP, Gzip). We do not focus

on lossy compressions or any data that do not belong to financial type.

1.8 Structure of the Independent Study

This independent study contains 6 chapters.

Chapter 1: Introduction

This chapter introduces data compression techniques, challenges of traditional

data compression algorithms, and the possibility of applying machine learning in data

compression including current problems, the aim and the scope of the research.

Chapter 2: Review Of Literature

This chapter discusses the fundamental tools and techniques of the research.

This chapter

also includes the review and validation of the related previous works.

Chapter 3: Methodology

This chapter describes the dataset creation, feature extraction, model

development, and evaluation process for predicting optimal compression algorithms.

Chapter 4: Experimental Results

Presents the results of the compression testing and machine learning model

performance. Includes performance metrics, model comparisons, and analysis of

feature selection outcomes.

Chapter 5: Conclusion and Future Direction

Ref. code: 25686722041214TMO

4

This chapter is the summarization of the research on applying machine learning

to identify optimal file compression methods and discusses future directions for

improving adaptive data compression.

Ref. code: 25686722041214TMO

5

CHAPTER 2

REVIEW OF LITERATURE

This chapter explains studies related to data compression and reviews previous

work concerning machine learning approaches for identifying optimal file compression

algorithms. This chapter also explains the background knowledge, techniques and tools

that are used in this research.

2.1 Data Compression

Data compression is the technique used to reduce file size by encoding

information efficiently. It is commonly used for optimizing data storage and improving

data transmission. Compression methods are usually divided into two categories:

lossless compression and lossy compression. Lossless methods ensure decompress data

the same as original data, mostly used in scenarios where data integrity is crucial, such

as executable programs, textual information, or archival systems. Lossless compression

algorithms that are currently popular include Huffman coding, DEFLATE (zlib), bzip2,

Lempel-Ziv-Markov chain Algorithm (LZMA), Zstandard (Zstd), LZ4, and Brotli.

2.2 Lossless Compression Algorithms

This study utilizes multiple well-established lossless compression algorithms.

The following subsections provide detailed descriptions of these algorithms, including

their strengths and potential limitations.

2.2.1 zlib (DEFLATE)

The DEFLATE algorithm used in zlib combines the LZ77 algorithm and

Huffman coding. LZ77 does compression by replacing repeated data sequences with

pointers to previously seen sequences, which greatly helps reduce redundancy.

Huffman coding is then applied for entropy encoding, to compress the data even more.

Due to synergy between LZ77 and Huffman coding, zlib achieves a good

balance of speed, memory usage, and compression ratio. It was also widely adopted in

Ref. code: 25686722041214TMO

6

web protocols (HTTP compression, PNG image format, etc.) for its reliability and

performance (Deutsch, 1996).

2.2.1.1 LZ77 Dictionary Encoding

LZ77 (Ziv-Lempel 1977) compresses data by replacing repeated occurrences of

substrings with references to a single copy of that substring existing earlier in the

uncompressed data. Formally, suppose we have an input sequence of bytes:

𝑆 = (𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛), (2.1)

where each 𝑠𝑖 is a symbol (often a byte). Instead of storing a repeated substring

(𝑠𝑘, … , 𝑠𝑘+𝑚−1) in full, LZ77 stores a triple (𝑑, 𝑙, 𝑐):

 𝑑 : The distance backward from the current position (how far back to copy).

 𝑙 : The length of the matched substring.

 𝑐 : The next literal character that follows the matched substring (for the next

symbol).

 Whenever the compressor detects a sequence already seen, it emits (𝑑, 𝑙, 𝑐)

rather than the actual substring. Mathematically, if 𝑠𝑗 = 𝑠𝑗−𝑑 for a match of length 𝑙,

the LZ77 compressor outputs:

(𝑑, 𝑙, 𝑠𝑗+𝑙) (2.2)

These triple references what was already encountered, thus reducing

redundancy.

2.2.1.2 Huffman Entropy Coding

After LZ77, Huffman coding is applied to encode the tokens (distances, lengths,

and literal characters) using shorter bit patterns for more frequent symbols and longer

bit patterns for less frequent ones. If 𝑝(𝑥𝑖) is the probability of symbol 𝑥𝑖, Huffman

coding aims to produce a code of length approximately −log2𝑝(𝑥𝑖) bits for each

symbol. The Huffman algorithm ensures that no code is a prefix of another (prefix-free

Ref. code: 25686722041214TMO

7

property), facilitating optimal or near-optimal entropy encoding under certain

assumptions.

2.2.2 bzip2

The bzip2 algorithm uses the Burrows-Wheeler Transform (BWT), Move-to-

Front (MTF) transformation, Run-length Encoding (RLE), and Huffman encoding.

BWT rearranges data in format that makes compression better, and Huffman encoding

compresses the data very effectively.

bzip2 has better compression ratio than DEFLATE, but it has higher

computational overhead with slower compression speeds, which makes it less suitable

for real-time applications or environments with limited computational resources

(Mahoney, 2012).

2.2.2.1 Burrows–Wheeler Transform (BWT)

The BWT rearranges a block of input data 𝑆 into a form that is more amenable

to compression by grouping repeated characters. Given a block 𝑆 of length 𝑛, the BWT

outputs a transformed block 𝐵𝑊𝑇(𝑆). Briefly:

a. Construct all 𝑛 rotations of 𝑆.

b. Sort these rotations lexicographically.

c. The last column of this sorted matrix is taken as 𝐵𝑊𝑇(𝑆), along with the

index of the original string in the sorted list for use in decompression.

2.2.2.2 Move-to-Front (MTF) Coding

After BWT, repeated patterns tend to cluster. MTF takes advantage of this by

maintaining a list of symbols and moving any symbol to the front upon its use. If 𝐿 is

our symbol list and 𝑠 is the symbol encountered, the MTF-encoded output is the index

of 𝑠 in 𝐿 at the time it appears:

MTF(𝑠, 𝐿) = indexOf(𝑠, 𝐿) (2.3)

Then 𝑠 is moved to the front of 𝐿. Common symbols thus often produce small

Ref. code: 25686722041214TMO

8

index values, which are more easily compressed.

2.2.2.3 Run-Length Encoding (RLE)

For consecutive repeated symbols in the MTF output, bzip2 applies an RLE step

to compress runs of the same value.

2.2.2.4 Huffman Coding

Finally, bzip2 encodes the output using Huffman coding, assigning variable-

length bit patterns to symbol frequencies.

2.2.3 LZMA

The Lempel-Ziv-Markov chain Algorithm (LZMA) is a dictionary-based

method that combines range encoding to achieve very high compression ratios. The

dictionary mechanism is similar in spirit to LZ77, but LZMA refines how matches are

searched and encoded.

LZMA takes advantage of past data to encode repeating patterns very

efficiently. Although LZMA gives great compression, it has very high computational

usage, so it is not practical for time-critical situations or environment that have limited

resources (Mahoney, 2012).

2.2.3.1 Dictionary Match Search

Like LZ77, LZMA maintains a sliding dictionary window of recent data. If a

substring (𝑠𝑘 , … , 𝑠𝑘+𝑚−1) reappears, it references that substring. However, it employs

more sophisticated match-finding techniques (e.g., binary tree or hash chain) to speed

up searching for repeats.

2.2.3.2 Range Encoding

LZMA replaces Huffman coding with range encoding, which represents

probabilities by continuously refining a range [𝑙𝑜𝑤, ℎ𝑖𝑔ℎ). Symbols with higher

probability occupy a larger portion of the range, allowing more efficient representation

Ref. code: 25686722041214TMO

9

of data. If 𝑝(𝑠𝑖) is the probability of symbol 𝑠𝑖, the encoder narrows the interval based

on 𝑝(𝑠𝑖). Mathematically, for a symbol 𝑠𝑖,

range𝑛𝑒𝑤 = range × 𝑝(𝑠𝑖),

low𝑛𝑒𝑤 = low + ∑ (range × 𝑝(𝑠𝑗))𝑗<𝑖
 (2.4)

This process continues iteratively for each symbol

2.2.4 Zstandard (Zstd)

Zstandard (Zstd) algorithm is a modern lossless compression algorithm that was

developed by Facebook. It is using dictionary compression techniques combined with

entropy encoding methods, offering a flexible balance between speed and compression

ratio by adjusting compression levels.

a. Dictionary Builder: At higher levels, Zstd can learn an optimal dictionary

for a specific dataset, improving compression ratio for small or

homogeneous data.

b. Entropy Encoding: Zstd uses FSE (Finite State Entropy) or Huff0, both of

which compress symbols based on their statistical frequencies in a single

pass. If the probability of a symbol 𝑠𝑖 is 𝑝(𝑠𝑖), the code lengths approach

−log2𝑝(𝑠𝑖), like Huffman.

c. Adjustable Levels: Zstd supports numerous compression levels, allowing

users to trade off speed for higher ratio or vice versa.

Zstd is popular among big data and cloud storage due to its compression speed

and compression ratio (Collet & Kucherawy, 2019).

2.2.5 LZ4

The LZ4 algorithm focuses on speed rather than maximum compression ratio.

It is applying LZ77 algorithm with optimized way to do very fast compression and

decompression. It uses an LZ77-style dictionary approach but aggressively optimized

for real-time operation:

Ref. code: 25686722041214TMO

10

a. It maintains a hash table of recent data blocks; upon detecting a match, it

replaces a substring with a back-reference (𝑑, 𝑙).

b. The compressed stream is minimal in overhead, focusing on making both

compression and decompression extremely fast.

LZ4 is used a lot in situations where compress and decompress time is more

important than the highest compress ratio (Bartik, Ubik and Kubalík, 2015).

2.2.6 Brotli

Brotli algorithm was developed by Google mainly for web and text

compression. It combines LZ77-style dictionary compression, Huffman coding, and

second-order context modeling to optimize text and web content compression.

a. Window-Based Dictionary: Brotli maintains a sliding window for repeated

pattern detection, referencing repeated substrings similarly to LZ77.

b. Second-Order Context Modeling: Brotli attempts to predict upcoming

symbols by using context from previously decoded symbols.

c. Huffman: Once repeated sequences are identified, Brotli employs a

Huffman-based algorithm to assign variable-length codes to repeated

patterns.

Its strength is handling repetitive text data efficiently, which is very common in

web technologies particularly for text-based data, such as HTML, CSS, and JavaScript,

where repeated substrings are abundant (Cover & Hart, 1967).

2.3 Machine Learning Approaches for Data Compression

Recent research indicates that using machine learning can greatly simplify the

difficulty with data compression by adjusting the algorithm selection automatically to

the characteristics of the file, including entropy, byte distributions, and file metadata.

There is a remarkable advancement from the static heuristic-based selections in these

adaptive data driven methods.

Ref. code: 25686722041214TMO

11

2.3.1 Decision Tree

Decision Tree is a supervised machine learning algorithm used for classifying

and regression. It works by splitting the data into smaller subsets again and again based

on feature value. Each split is chosen using metrics such as Gini impurity or information

gain, which show how good the split makes the data different. Decision Tree is very

easy to understand but often overfit when dataset is complex, unless controlled with

techniques like pruning or ensemble methods such as Random Forest and XGBoost.

Figure 2.1 Decision Tree

2.3.2 Random Forest

Random Forest is made of many decision trees that run in parallel, using random

samples of data. It combines decisions from each tree using majority vote, improving

predictive accuracy and reducing variance. Random Forest works well even when data

are noisy or have missing values. It also gives feature importance, show which input is

most useful for prediction. But it can be slow if it has too many trees or a big dataset

(Biau & Scornet, 2016).

Ref. code: 25686722041214TMO

12

Figure 2.2 Random Forest

2.3.3 XGBoost

Extreme Gradient Boosting (XGBoost) is a very strong ensemble learning

algorithm that uses gradient-boosted decision trees. It builds decision tree step by step,

reducing residual errors in each iteration. XGBoost is known for its efficiency,

scalability, and accuracy, especially on structured datasets. It can handle large and

complex feature interactions (Chen & Guestrin, 2016).

2.3.3.1 Ensemble of Decision Trees

XGBoost iteratively adds new trees to reduce the error of prior trees.

2.3.3.2 Objective Function

If 𝑦 is the real target and 𝑦̂𝑖 is the prediction at the 𝑖-th iteration, XGBoost

updates the model by:

𝑦̂𝑖+1 = 𝑦̂𝑖 + 𝜂 ⋅ 𝑓𝑖(𝐱), (2.5)

where 𝑓𝑖 is a newly added decision tree, and 𝜂 is the learning rate. The final prediction

is the sum of all trees’ outputs.

Ref. code: 25686722041214TMO

13

2.3.3.3 Regularization

XGBoost includes regularization terms on tree complexity to prevent overfitting

and encourage generalization.

2.3.4 Support Vector Machine (SVM)

Support Vector Machines classify data by finding hyperplanes that maximize

separation margin between classes. It uses kernel functions to capture nonlinear

relationships in data. However, SVM can require substantial computational resources

when working with big datasets, making it not the best option for real-time compression

predictions on large-scale data (Guido, Ferrisi, Lofaro and Conforti, 2024).

Figure 2.3 Support Vector Machine

2.3.5 Logistic Regression

Logistic Regression model probabilistic outcomes using linear combination of

input features, which makes it interpretable and fast to compute. However, because it

assumes data is linearly separable, it is not as useful when dealing with high-

dimensional or complex datasets that are typical in compression selection tasks.

Let 𝐱 ∈ ℝ𝑑 be an input vector (file features), then the model predicts:

Ref. code: 25686722041214TMO

14

𝑝̂ = 𝜎(𝐰𝑇𝐱 + 𝑏), where 𝜎(𝑧) =
1

1+𝑒−𝑧
 (2.6)

Although straightforward and easily interpretable, logistic regression struggles

to capture non-linear relationships unless extended with polynomial or other feature

transformations (James, Witten, Hastie and Tibshirani, 2021).

Figure 2.4 Logistic Regression

2.3.6 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) makes predictions by looking at the 𝑘 closest

training examples in feature space. The class is determined by majority vote among

these neighbors. For a query point 𝐱:

𝑦̂(𝐱) = majority{ 𝑦𝑖 ∣ 𝐱𝑖 ∈ 𝒩𝑘(𝐱)}, (2.7)

where 𝒩𝑘(𝐱) is the set of 𝑘 closest points to 𝐱 under a distance metric (often Euclidean

distance).

Ref. code: 25686722041214TMO

15

Figure 2.5 K-Nearest Neighbors

It is simple and intuitive, but its prediction speed becomes but its prediction

speed degrades with large datasets, making it less practical for real-time or large-scale

compression tasks (Cover & Hart, 1967).

2.4 Model Comparison

This section provides a comparative overview of both compression and machine

learning algorithms used in the study.

Table 2.1 Comparison of Lossless Compression Algorithms

Algorithm
Compression

Ratio

Compression

Speed

Decompression

Speed

Computational

Cost

zlib Medium High High Low

bzip2 High Medium Medium Medium

LZMA Very High Low Medium High

Zstd High High High Medium

LZ4 Low Very High Very High Very Low

Brotli High Medium High Medium

The compression choice depends heavily on application-specific factors such as

speed and compression efficiency.

Ref. code: 25686722041214TMO

16

Table 2.2 Comparison of Machine Learning Algorithms

Algorithm Accuracy Interpretability
Computational

Cost

Training

Speed

XGBoost Very High Medium High Medium

Random

Forest
High Medium Medium Medium

Support

Vector

Machine

High Low High Low

Logistic

Regression
Medium High Low High

Decision

Trees
Medium High Low High

K-Nearest

Neighbors
Medium Medium Medium High

2.5 Related Works

This research reviewed 3 related works that use machine learning techniques

to select compression algorithms. The following are the descriptions of their works.

2.5.1 Using Machine Learning to Predict Effective Compression Algorithms for

Heterogeneous Datasets (Burtchell and Burtscher, 2024)

Burtchell and Burtscher (2024) proposed MLcomp, a method that uses a

Random Forest classifier to automatically predict optimal compression algorithms for

heterogeneous datasets. Their model uses the compression ratio from short preliminary

runs on representative file as input features for predicting the most effective

compression algorithms among numerous possible combinations. They reported

achieving approximate 98% of compression performance obtain by exhaustive

evaluating all possible algorithms. Despite these results, MLcomp methodology only

focus on optimizing compression ratio, neglecting computational runtime or resource

usage considerations during compression prediction. This independent study clearly

addresses this limitation by including both compression effectiveness and

computational runtime into predictive criteria.

Ref. code: 25686722041214TMO

17

2.5.2 Adaptive Compression Algorithm Selection Using LSTM Network in

Column-oriented Database (Jin et al., 2019)

Jin et al. (2019) has developed adaptive methods using a Long Short-Term

Memory (LSTM) neural network models for predicting the optimal compression

algorithm specifically tailored to column-oriented databases. Their methodology

involves training LSTM network on sequences of raw data byte extract from database

columns, enabling models to capture intrinsic data patterns and predicting the most

efficient compression algorithm for each data block. Their result showed prediction

accuracy around 64% in training set and approximate 55% in heterogeneous testing

datasets. Despite moderate predictive performance, the LSTM-driven adaptive

selection consistently yielded better compression outcome compared to fixed heuristic

method typically employed in database systems. Their study highlights both the

potential and challenges of applying ML-based selection approach, particularly

emphasizing complexity and computational overhead associated with deep learning

method for real-time predictions scenario.

Unlike this deep learning approach for databases, this independent study

focuses on a broader range of heterogeneous file types and uses computationally lighter

machine learning models to ensure minimal prediction latency.

2.5.3 Compression Selection for Columnar Data using Machine-Learning

(Larsen and Persson, 2023)

Larsen and Persson (2023) have introduced a machine learning-driven

framework that uses XGBoost algorithm for automatically selecting most cost-effective

compression algorithm and encoding combination specific tailored columnar database.

Their research utilizes carefully design cost functions that integrate three critical

factors: compression ratio, compression time and decompression time. This enables the

system to optimize compression not just data size but explicitly balance storage

efficiency and processing overhead. Using extensive feature engineering based on real-

world IoT telemetry data store in ClickHouse database, their model achieves impressive

predictive accuracy approximately 99% on their test dataset, with around 90% accuracy

when predicting compression strategies for unseen data columns. Furthermore,

deployment of their machine learning recommendations significant enhanced system

Ref. code: 25686722041214TMO

18

performance, achieved roughly 95% increase in compression speed and nearly 60%

improvement in decompression speed. However, this improvement came at the expense

of storage efficiency, resulting in about 66% reduction in compression ratio compared

highest possible compression scenario. Their study highlights strength and potential

trade-off involved when applying machine learning models for adaptive compression

decisions, particularly emphasizing computational efficiency and feature relevance

maintaining high predictive accuracy in column-oriented storage environment.

While their work balances compression ratio with both compression and

decompression time, this study prioritizes achieving the maximum compression ratio

(lowest size) within a strict upload time budget (30 seconds), a constraint more relevant

to file transfer and storage pipelines.

Ref. code: 25686722041214TMO

19

CHAPTER 3

METHODOLOGY

This chapter details the experimental framework for predicting the optimal

compression algorithm for a given file. The process spans data collection, feature

extraction, compression benchmarking, labeling of best algorithms per file, feature

selection, and machine learning model training. Each step is described in sequence,

with a particular focus on the features extracted from files and the rationale behind

them.

Figure 3.1 shows a conceptual flow diagram representing the methodological

pipeline from data gathering to machine learning-based decision-making:

Figure 3.1 Overview of the methodology

Figure 3.1 illustrates the complete methodology pipeline. The process begins

with Data Collection. From this data, two parallel processes are initiated: Feature

Extraction, which identifies 15 initial features to create "Feature Data”, and

Ref. code: 25686722041214TMO

20

Compression Testing, which runs all compression algorithms on the files to generate

"Compression Metrics".

These metrics are then used for Best Algorithm Selection to determine the

single best algorithm for each file. This best algorithm label is combined with the

"Feature Data" and passed to Feature Selection, which narrows the features down to

the 4 most predictive ones. This creates the final Dataset, which is used for Model

Training & Validation. Finally, the trained model undergoes Evaluation to produce

the deployable Machine learning model.

3.1 Data Collection

A large dataset of 120,263 files, denoted as set ℱ = {𝑓₁, 𝑓₂, …, 𝑓ₙ} with n =

120,263 was compiled to capture diverse real-world data. These files cover a broad

range of types, including plain text, structured documents, images, and other common

formats. Each file underwent an integrity check to ensure it was not corrupted or

incomplete, as corrupted data could bias the results. Basic metadata recorded for each

file included the file name, file size (|𝑓ᵢ|), file extension, and file type (a coarse category

label). These metadata fields are summarized in Table 3.1 below, which presents a clear

overview of the information collected during data preparation.

Table 3.1 Summary of basic file metadata collected during data preparation

Metadata Description

File name The original name of the file (used for identification).

File size The size of the file in bytes, denoted as |𝑓𝑖| .

File extension The file’s extension (e.g., .txt, .jpg) indicating format.

File type
A coarse category of the file (e.g., Text, Image, Archive) based

on its format or content.

By assembling a wide variety of file types and sizes (ranging from ~1 KB up to

2 GB), the study ensures that the subsequent analysis reflects realistic and

heterogeneous scenarios. This diversity is important because compression effectiveness

can vary greatly with file structure and content.

Ref. code: 25686722041214TMO

21

3.2 Feature Extraction

For every file 𝑓ᵢ ∈ ℱ, a feature vector xᵢ was generated to capture key

characteristics that might influence compressibility. Formally, each file is transformed

into xᵢ = (𝑥ᵢ₁, 𝑥ᵢ₂, …, 𝑥ᵢd), where d is the total number of extracted features. In total, 15

numeric features were extracted from each file. These features encompass basic

metadata, statistical properties of the byte content, and measures of redundancy or

structure in the file. Before modeling, all feature values were scaled to a consistent

range because their magnitudes differ. The description of all extracted features is shown

below:

3.2.1 File Size (N)

The total number of bytes in the file. This is a basic attribute given by the length

of the byte sequence. This feature simply captures the file’s size.

3.2.2 Entropy

The Shannon entropy of the file’s byte-value distribution, measuring the

randomness or unpredictability of bytes. We compute this by treating the file as a

sequence of symbols (0–255) and calculating the entropy of their frequency

distribution. Let 𝑝𝑖 be the probability of byte value 𝑖 (estimated as the frequency of 𝑖

divided by 𝑁). The entropy is then:

𝐻 = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖
255
𝑖=0 (3.1)

where the sum is taken over all byte values that occur in the file. A higher 𝐻 (up to 8

bits for 256 uniform symbols) indicates more uniform and random byte content,

whereas lower values indicate more structured or repetitive content.

3.2.3 Chi-Square (𝝌𝟐)

A chi-square goodness-of-fit statistic comparing the file’s byte frequency

distribution to a uniform distribution. It is defined as:

Ref. code: 25686722041214TMO

22

𝜒2 = ∑
(𝑐𝑜𝑢𝑛𝑡𝑖−𝑁/256)2

 𝑁/256
 255

𝑖=0 (3.2)

where 𝑐𝑜𝑢𝑛𝑡𝑖 is the observed frequency of byte value 𝑖 and 𝑁/256 is the expected

frequency for a uniform distribution (with 𝑁 total bytes and 256 possible values). A

larger 𝜒2 indicates the byte frequencies deviate more from uniform. Therefore, certain

byte values appear often than expected by chance.

3.2.4 Byte Variance

The statistical variance of the byte values interpreted as numerical 0–255. This

feature measures the spread of byte values around their mean. If 𝑏 =
1

𝑁
∑ 𝑏𝑖

𝑁
𝑖=1 is the

mean byte value, the variance is:

𝜎2 =
1

𝑁
∑ (𝑏𝑖 − 𝑏̅)

2𝑁
𝑖=1 (3.3)

Higher variance means the byte values are more widely distributed across the

0–255 range, whereas low variance means the bytes cluster around a certain value.

3.2.5 Byte Kurtosis

This feature measures how “peaky/heavy-tailed” the file’s byte-value

distribution is. If ByteKurtosis is high, this indicates a few byte values dominate (often

more compressible). If it is low, bytes are spread more evenly (usually less obvious

redundancy). The formula can be explained as:

ByteKurtosis =
1

𝑁
∑ (𝑏𝑗−𝜇)

4𝑁
𝑗=1

(
1

𝑁
∑ (𝑏𝑗−𝜇)

2𝑁
𝑗=1)

2 (3.4)

where:

𝑁 = number of bytes in the file

𝑏𝑗 = value of the 𝑗-th byte (0–255)

Ref. code: 25686722041214TMO

23

𝜇 =
1

𝑁
∑ 𝑏𝑗

𝑁
𝑗=1 (mean byte value)

3.2.6 Byte Standard Deviation

The standard deviation of byte values, defined as the square root of the byte

variance. It is given by:

𝜎 = √
1

𝑁
∑ (𝑏𝑖 − 𝑏̅)

2𝑁
𝑖=1 (3.5)

This provides the dispersion of byte values in the same units as the byte values

themselves.

3.2.7 Longest Repeated Byte Sequence

The length of the longest run of identical bytes in the file (also referred to in

code as the “LongestRepeatedSubstring”). This feature captures the longest consecutive

sequence of the same byte value. Formally, if we define a run as a maximal substring

of the form 𝑏𝑖 = 𝑏𝑖+1 = ⋯ = 𝑏𝑖+ℓ−1, then this feature is the maximum length ℓ over

all such runs in the file:

𝐿𝑚𝑎𝑥 = 𝑚𝑎𝑥 {ℓ ∣ ∃ 𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑏𝑖 = 𝑏𝑖+1 = ⋯ = 𝑏𝑖+ℓ−1}  (3.6)

A larger value indicates that some byte is repeated many times in a row (e.g. a

long sequence of zeros).

3.2.8 Average Repeat Length

The average length of repeated byte runs in the file. We compute the lengths of

all consecutive byte runs and then take the average of those lengths that are greater than

1. Let 𝑅1, 𝑅2, … , 𝑅𝑘 be the lengths of all runs of identical bytes (with 𝑅𝑗 ≥ 2 for each,

i.e. we consider only runs of length at least 2). Then the feature is

𝐿𝑎𝑣𝑔 =
 1

𝑘
∑ 𝑅𝑗

𝑘
𝑗=1   (3.7)

Ref. code: 25686722041214TMO

24

In case there is at least one repeated run (𝑘 > 0). If the file contains no

consecutive repeated bytes (i.e. all runs are of length 1), we define this feature as 0. A

higher 𝐿𝑎𝑣𝑔 means that on average, repeating sequences tend to be longer.

3.2.9 Dictionary Fit

The number of unique byte values present in the file. This essentially is |{unique

bytes} | and reflects how large a “dictionary” an algorithm would need to encode the

file’s content. A smaller unique byte set (for instance, a file that contains only 10

distinct byte values) often compresses better than a file using the full 0–255 range of

bytes.

3.2.10 ASCII Ratio

The proportion of bytes in the file that fall within the ASCII printable character

range (byte values 32 through 126 inclusive). This feature gauges how “text-like” the

file is. It is computed as:

𝐴𝑠𝑐𝑖𝑖𝑅𝑎𝑡𝑖𝑜 =
# {𝑖:32≤𝑏𝑖≤126}

 𝑁
 (3.8)

the count of bytes in the ASCII printable range divided by the file size 𝑁. The ratio

approaches 1 for plain text files (comprised mostly of readable characters) and 0 for

data with mostly non-printable bytes (such as compressed or encrypted files).

3.2.11 File Type

A binary indicator derived from content, used to roughly distinguish text from

binary files. The FileType will be set to 1 if the AsciiRatio > 0.8 (meaning the file is

likely text-heavy) and 0 otherwise. This feature provides the model with a simple

categorical flag about the file’s nature.

3.2.12 Average Line Length

The average number of characters per line when interpreting the file as text. To

calculate this, the file’s bytes are decoded as UTF-8 text (ignoring decoding errors),

Ref. code: 25686722041214TMO

25

split into lines on newline characters, and the lengths of these lines are averaged. If

𝐿1, 𝐿2, … , 𝐿𝑚 are the lines obtained, then it is defined as:

𝐴𝑣𝑔𝐿𝑖𝑛𝑒𝐿𝑒𝑛𝑔𝑡ℎ =
1

𝑚
∑ |𝐿𝑗|𝑚

𝑗=1 (3.9)

provided 𝑚 > 0. (If the file cannot be decoded into any lines, we define this value as

0.) This feature is meaningful for text files, indicating typical line length, and is 0 for

files that are not interpretable as text.

3.2.13 Unique Bytes

The number of distinct byte values in the file. This is effectively the same as

DictionaryFit. It was extracted as a separate feature but duplicates the information of

DictionaryFit. A lower UniqueBytes count means the file’s content is composed of a

limited alphabet of bytes, which can be advantageous for certain compression

algorithms.

3.2.14 N-gram Redundancy

An approximate measure of repeated byte patterns, using 2-byte sequences as a

default. This is computed by sampling pairs of consecutive bytes (2-grams) throughout

the file and finding the most frequent 2-byte sequence. The feature value is the

frequency of that most common 2-byte pattern divided by the total number of sampled

pairs. A higher NgramRedundancy means a particular byte pair occurs very often

relative to file length, indicating repetitive structure that could be exploited by

compression.

3.2.15 Proxy Compression Ratio

A simple proxy for the file’s compressibility, defined as the ratio of the original

size to a hypothetical slightly larger size. We calculate it as:

𝑃𝑟𝑜𝑥𝑦𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑅𝑎𝑡𝑖𝑜 =
𝑁

𝑁+1
 (3.10)

Ref. code: 25686722041214TMO

26

This formula yields a value very close to 1 for any non-trivial file (e.g. 0.999

for 𝑁 = 999). In practice, this proxy does not depend on content and varies only with

𝑁 (smaller files get slightly lower values). It was used as a placeholder approximation

of compressibility – a higher value (closer to 1) would intuitively correspond to files

that are not easily compressible, though here it is essentially always near 1 except for

very small files.

3.3 Compression Testing

In the next phase, each file 𝑓ᵢ was subjected to compression by a set of candidate

algorithms to observe compression performance. We selected six widely used lossless

compression algorithms: zlib, Bzip2, LZMA, Zstandard (Zstd), LZ4, and Brotli. Each

algorithm was applied to every file at multiple compression levels or settings (for

example, level 1 through 9 for those that support levels, or fast vs. slow modes). This

exhaustive benchmarking yields empirical data on how well each method compresses

each file. For a given file 𝑓ᵢ and compression algorithm instance 𝑎ⱼ (where 𝑗 might

represent a specific algorithm at a certain compression level), we recorded two primary

metrics:

• Timeᵢⱼ: the compression time in seconds for algorithm 𝑎ⱼ on file 𝑓ᵢ. This

measures how long the algorithm took to compress the file (since some

algorithms trade speed for ratio).

• Sizeᵢⱼ: the resulting compressed file size in bytes when using 𝑎ⱼ on 𝑓ᵢ.

From these we derive the compression ratio ρᵢⱼ defined as:

𝜌𝑖𝑗 =
Size𝑖𝑗

|𝑓𝑖|
 (3.11)

The compressed size divided by the original file size. A ratio ρ < 1.0 indicates

that compression was effective (the file became smaller), whereas ρ = 1.0 means no

size reduction, and ρ > 1.0 would mean the output is actually larger, this indicates

compression failed to reduce size, which can happen with already compressed or very

random data. Along with ratio, the raw compressed size and time are important for

evaluating trade-offs. We carried out this compression testing for all files across all

Ref. code: 25686722041214TMO

27

chosen algorithms/levels, producing a comprehensive set C = {(𝑓ᵢ, 𝑎ⱼ, Timeᵢⱼ, ρᵢⱼ) for 1

≤ i ≤ n, 1 ≤ j ≤ m} where m is the total number of algorithm configurations tested. This

data allowed analysis of how different algorithms perform on the same file and

highlighted the variation in outcomes. For example, some algorithms (like LZ4) are

very fast but may not compress as tightly, yielding higher ρ (closer to 1), while others

(like Brotli) produce very low ρ (smaller size) but at the cost of longer Time.

It was observed that there is a clear trade-off: methods like LZ4 or Zstd in fast

mode execute in fractions of a second but sometimes produce larger outputs, whereas

methods like Brotli or LZMA at max settings yield the smallest sizes but can take

significantly longer. Understanding these trade-offs was essential for defining what

optimal means in context and ensuring our automatic selection does not choose an

impractical solution, i.e., one that saves only a few bytes at the cost of an extremely

long runtime.

3.4 Best Algorithm Selection

After gathering compression results, we needed to determine, for each file,

which algorithm was considered the best (ground truth optimal) under practical

constraints. A rule-based selection procedure was applied to each file’s results to choose

its optimal algorithm 𝑎ᵢ*:

a. Time Constraint: Any algorithm run that took more than 30 seconds on a

given file was disqualified. Formally, for each 𝑓ᵢ, we discarded all 𝑎ⱼ such

that Timeᵢⱼ > 30 seconds. The 30-second threshold was chosen based on

practical system considerations. In our real-world use case, users often

upload up to 5–6 files simultaneously at most, and compression is followed

by an encryption step. To maintain responsiveness, the total additional time

introduced by the compression stage should not exceed 3 minutes (180

seconds). Therefore, we decided that each individual file must not require

more than 30 seconds of processing. By enforcing this cutoff, we ensure that

extremely slow algorithms are not labeled as optimal, even if they achieve

slightly better compression ratios, since their runtime would be impractical

in an operational setting.

Ref. code: 25686722041214TMO

28

b. Outlier Exclusion: We also removed extreme outlier runs in terms of

compression time. For each file, we examined the distribution of

compression times {Timeᵢⱼ} across algorithms and flagged any that were

abnormally high compared to the others. Specifically, we used the

interquartile range (IQR) rule: any algorithm whose Time fell above Q3 +

3(Q3–Q1) was excluded. This guards against algorithms that, while not

exceeding 30s outright, are still disproportionately slow outliers for that file.

The intuition is that if one algorithm takes much longer than the rest on the

same data (perhaps due to some pathological case or inefficiency), it is not a

practical choice even if our fixed threshold did not catch it. Removing such

outliers yields a set of feasible algorithms A*ᵢ for each file 𝑓ᵢ.

c. Effective Compression Only: We ensure that the algorithm really achieves

compression. Any result where the compressed size was larger than the

original (ρᵢⱼ ≥ 1.0) is disregarded. In other words, we only consider algorithms

that produce ρ < 1 for that file. This avoids ever labeling a method as best if

it did even compress the data. After this step, for each file we have a filtered

set of viable algorithm options that ran within time limits and produced a

smaller output.

After applying (a), (b), and (c), each file 𝑓ᵢ has a subset Aᵢ of algorithms that

passed all criteria. From this subset, we select the algorithm with the lowest

compression ratio ρ:

𝑎𝑖
∗ = arg min

𝑎𝑗∈𝐴𝑖

 𝜌𝑖𝑗 (3.12)

In summary, 𝑎ᵢ is the algorithm that achieved the highest compression (greatest

size reduction) on file 𝑓ᵢ. Ties are rare but if they occur, one could choose the faster

algorithm among the tie, though in our case the continuous nature of ratio usually yields

a unique minimum. Each file is thus assigned a single “optimal” algorithm label 𝑎ᵢ. This

algorithm is considered the ground-truth best choice for that file in the context of our

study. It represents the ideal outcome we want a predictive model to achieve. It is worth

noting that the best algorithm here is defined purely by compression ratio after filtering

Ref. code: 25686722041214TMO

29

out unrealistic options. This implies we favor maximum compression as long as it is

within the time budget. This selection method yielded a mapping from each file to its

optimal compression algorithm. This mapping becomes the target variable for the

machine learning stage.

3.5 Feature Selection

Initially, we considered all 15 features described in Section 3.2 for use in the

model. However, not all features provide unique or useful information; some may be

redundant or contribute very little to predictive accuracy. Using too many features can

also risk overfitting and slow down model training and operation. Therefore, a

Sequential Feature Selection (SFS) procedure was employed to reduce the feature set

to the most informative subset. Sequential Feature Selection is a greedy algorithm that

builds a feature subset step by step:

a. Initialization: Start with no features selected (an empty set S = Ø).

b. Iterative Addition: Iteratively add one feature at a time, choosing the feature

that, when combined with the currently selected set S, yields the highest

improvement in model performance (typically measured by validation

accuracy in our case). That is, in each round, we pick the feature that most

boosts the predictive power alongside those already chosen.

c. Stopping Criterion: Continue adding features until adding any remaining

feature does not appreciably improve performance, or until a predefined

number of features is reached.

Formally, given a universal feature set {1,2, … , 𝑑}, SFS attempts to identify:

𝑆∗ = arg max
𝑆⊆{1,2,…,𝑑}

Φ (𝑆) (3.13)

where 𝛷(𝑆) is the performance metric for a model built using the feature indices in 𝑆.

Commonly, 𝛷 is the average classification accuracy across a validation set. By pruning

away less informative features, SFS not only reduces the risk of overfitting but also

improves computational efficiency, both during training and at inference time. This step

Ref. code: 25686722041214TMO

30

is crucial because large-scale datasets might originally have included dozens of

potential feature dimensions, many of which offer minimal incremental benefit.

Through this process, we found that the first few features added contributed the

most to accuracy, and additional features after a point gave negligible gains. Ultimately,

four features were selected: FileSize, AvgLineLength, AsciiRatio, ByteKurtosis.

3.6 Final Dataset

After the feature selection process, the dataset was reduced into a more compact

and structured form which is used for model training. Each record in this final dataset

corresponds to a single file and contains the essential information needed for supervised

learning. The attributes kept are:

a. Filename: the identifier of the file, which allows traceability but not used as

predictive input.

b. FileSize: numerical value representing the total bytes in the file.

c. AvgLineLength: the average number of characters per line, capturing

structure of text data.

d. AsciiRatio: proportion of printable ASCII characters in the file, reflecting

whether the content is mainly textual or binary.

e. ByteKurtosis: the kurtosis of byte distribution, measuring if a few values

dominate or bytes are evenly spread.

f. Optimal Algorithm Label: categorical value indicating the best compression

algorithm chosen for that file under the criteria explained in Section 3.4.

Thus, each row in the dataset can be represented as dᵢ = {Filename, FileSize,

AvgLineLength, AsciiRatio, ByteKurtosis, BestAlgo} where dᵢ is the i-th record and

BestAlgo is the ground-truth class label for supervised training.

The features were normalized before training to ensure that large values such as

file size did not dominate the learning process. Standardization places them on a

comparable scale. The final dataset therefore represents a balanced and concise

summary: the most informative four numerical features plus the assigned algorithm

label. This structure provides enough discriminatory power to the model while avoiding

redundant or noisy dimensions.

Ref. code: 25686722041214TMO

31

In summary, the final dataset is both simple and expressive. It captures the

essential factors influencing compression performance in four numerical descriptors,

and it pairs them with the optimal algorithm outcome. This dataset is the foundation for

the machine learning phase that follows in Section 3.7, where classifiers are trained to

map features to algorithm labels. It ensures that the training focuses only on meaningful

information and avoids unnecessary complexity, leading to more efficient and accurate

prediction.

3.7 Machine Learning Model Training

With each file now represented by a feature vector (using the reduced feature

set S) and a known optimal algorithm label 𝑎ᵢ, we set up a supervised learning task.

This is a multi-class classification problem: the model must learn to map a file’s

features to the correct compression algorithm. There are six possible algorithm classes

in our case (Zlib, Bzip2, LZMA, Zstd, LZ4, Brotli). We prepared the final dataset D =

{(xᵢ(S), yᵢ) | 1 ≤ i ≤ n}, where xᵢ(S) is the feature vector of file 𝑓ᵢ restricted to the selected

feature subset and yᵢ is the class label (the index of the optimal algorithm for file 𝑓ᵢ).

3.7.1 Classification Setup

A variety of candidate classification algorithms were explored to find the best

predictor for this problem. We evaluated common machine learning models including

Decision Tree, Random Forest, Support Vector Machine (SVM), k-Nearest Neighbors

(k-NN), Logistic Regression, and XGBoost (Extreme Gradient Boosting). We trained

each model on the training dataset and assessed their accuracy in predicting the correct

algorithm class.

3.7.2 Hyperparameter Tuning and Validation

To fairly compare models and tune them, we used cross-validation. The dataset

was split into k folds. Here we used 5-fold cross-validation in most cases, and model

performance was averaged across different splits to ensure it generalizes. We also

performed hyperparameter optimization for each model. We searched for the

hyperparameter combination that gave the highest validation accuracy. The use of

Ref. code: 25686722041214TMO

32

cross-validation provided an estimate of how well each model would perform on unseen

data, mitigating overfitting during the tuning process. Formally, if 𝜃 represents a set of

hyperparameters for a given model, we evaluate an average accuracy:

Acc(𝜃) =
1

𝑘
∑ Accuracy𝑘

𝑗=1 (𝜃; 𝐷𝑗) (3.14)

where Dj is the j-th fold used as a validation set. We chose the 𝜃 that maximize this

Acc(𝜃). Additionally, this process helped decide which type of model is inherently

best for our task.

3.7.3 Model Selection

After training and tuning, we found that an XGBoost classifier performed the

best in terms of accuracy in predicting the optimal compression algorithm, outshining

the other approaches. The XGBoost model was able to reliably learn the relationship

between our file features and the best algorithm choice. It achieved the highest cross-

validation accuracy, meaning it most often predicted the correct algorithm label for files

in the validation folds. This model benefits from the ensemble of trees, capturing non-

linear interactions among features. Moreover, XGBoost provides feature importance

scores, which aligned with our expectations.

The chosen XGBoost model was then trained on the entire training dataset,

using the selected features to finalize it. The model’s hyperparameters were tuned for a

balance of accuracy and complexity to avoid overfitting. Finally, this model was saved

for integration. It will be embedded into a C# application to automatically decide

compression algorithms before encryption in a real system. Therefore, we ensure the

research outcomes can be applied in practice, compressing files on-the-fly with the

learned optimal choices.

3.8 Summary

In summary, the methodology involved gathering a rich dataset of files,

extracting a diverse set of features to characterize each file’s content and structure,

determining the ground-truth best compression algorithm for each file through

Ref. code: 25686722041214TMO

33

comprehensive testing, and then training a machine learning model to predict that

choice using only the file’s features. Careful feature selection and model tuning were

key to achieving high prediction accuracy. The result is an adaptive compression

decision system that aims to yield compression ratios close to the optimal achieved by

exhaustive search, but much more efficiently by leveraging learning instead of brute-

force trial of every algorithm on every file.

Ref. code: 25686722041214TMO

34

CHAPTER 4

EXPERIMENTAL RESULTS

This chapter presents the results of our experiments, evaluating both the

compression algorithms performance and the accuracy of the machine learning model.

We analyze the data collected in the methodology and demonstrate the benefits of the

proposed approach using charts and figures. Key evaluation aspects include the

distribution of optimal algorithms, the predictive performance of the model, and

comparisons to non-adaptive compression strategies.

4.1 Optimal Algorithm Distribution

First, we examine which algorithms were most often the optimal choice across

the dataset. Figure 4.1 shows the frequency of each algorithm being the winning choice

for files in the dataset. This is presented as a bar chart, where the x-axis lists the six

compression algorithms (aggregating levels for simplicity), and the y-axis shows the

number of files for which each algorithm produced the smallest compressed size under

constraints. This chart reveals the overall winner distribution. We found that Zstd and

LZMA dominate a large portion of files, especially large text-heavy files. Meanwhile,

LZ4 and zlib are rarely the best in terms of compression ratio, because we favored speed

over ratio in this setup.

Ref. code: 25686722041214TMO

35

Figure 4.1 Optimal algorithm counts

In addition to overall counts, the detailed breakdown indicates which

compression level for each algorithm was most often optimal. In our results, we

observed that for algorithms like Zstd and Brotli, higher frequently provided the best

compression within 30s for many files. LZMA at a mid-level (around preset 6) also

appeared frequently, likely because it balances speed and ratio. On the other hand,

algorithms known for speed (LZ4) never appear as the best ratio-wise. They are more

likely to win in a time-constrained scenario not focused purely on size. This justifies

the need for an intelligent selection: the optimal choice varies considerably from file to

file.

4.2 Feature Importance and Selection Analysis

We do analyze how each feature contributes to the model. Results in Figure 4.2

show the incremental benefit of adding features during the feature selection process. In

this figure we start with no feature and then add them one-by-one in order that maximize

accuracy. The x-axis shows the number of features used, from 0 up to 14, and the y-

axis is the classification accuracy we got. The curve in Figure 4.2 rises steeply at first,

the first feature added gives a big jump in accuracy, meaning that feature alone carry

significant predictive power. In our case the single most informative feature was

Ref. code: 25686722041214TMO

36

FileSize, it already let the model make a decent guess. When the second and third

features are added, accuracy improves further. By around four features the gains

basically plateau, confirming the top 4–5 features already capture most necessary

information. Adding features beyond the fifth does not improve accuracy, the curve

flattens in the figure and in some trials even cause small dips because of noise. This

analysis validates our choice to focus on a small set of features

Figure 4.2 Feature Selection Performance

Moreover, the final trained XGBoost model feature importance is shown in

Figure 4.3. This figure is a bar chart showing the relative importance of each selected

feature as model assesses them. The features in final model are FileSize,

AvgLineLength, AsciiRatio and ByteKurtosis. According to the plot, FileSize is most

influenced feature, which is expected. File size has strong impact on which algorithm

is best. The next most important feature is ByteKurtosis, it helps models to recognize

files that have highly skewed byte distribution. AvgLineLength and AsciiRatio also

have notable importance. AvgLineLength, even less dominant than FileSize or

ByteKurtosis, still contributes by identifying files with many short lines compared to

files with continuous stream data. The AsciiRatio helps to differentiate text-heavy file

from binary file. The percentages in Figure 4.3 confirm that no single feature dominates

Ref. code: 25686722041214TMO

37

the decision completely; the model really uses a combination. FileSize take around 30%

importance, and the rest shared by ByteKurtosis, AvgLineLength and AsciiRatio. This

balance reliance is good sign that the model considers multiple aspects of file structure,

not just based everything on size or entropy. In summary, the feature importance

reinforces our understanding: the model focuses on how large the file is and how text-

like or repetitive the content is, to predict which compression method is best.

Figure 4.3 Feature Importance

4.3 Hyperparameter Optimization Results

This section reports the best validated performance obtained by each candidate

classifier after tuning its hyperparameters. The summary bar chart in Figure 4.4 shows

the best cross-validation accuracy achieved by each model:

Ref. code: 25686722041214TMO

38

Figure 4.4 Hyperparameter Optimization Results

Figure 4.4 shows that Tree-based learners (XGBoost, Random Forest, Decision

Tree) and the instance-based KNN substantially outperform the linear baseline

(Logistic Regression) and the tested SVC configuration. The margin is small but steady

in favor of XGBoost over the two ensemble/tree competitors and KNN, indicating

boosted trees extract a bit more signal from interactions among features. Meanwhile,

the poor accuracy of SVC and Logistic suggests the decision boundary in this task is

highly non-linear and not well modeled by linear separators; they tend to underfit even

when tuned.

Although Random Forest and KNN are close, XGBoost attains the highest

validated score at 0.8053 and is selected as the final predictor. This choice also offers

practical benefits: built-in feature importance for interpretability, good control of

capacity via depth/regularization to avoid overfitting, and efficient inference time

suitable for integration into the C# pipeline.

The optimization results demonstrate that boosted decision trees provide the

best trade-off for this problem, high accuracy with manageable complexity. Linear and

margin-based baselines do not capture the structure of the features well, while XGBoost

Ref. code: 25686722041214TMO

39

reliably generalizes and will be used as the core predictive model in the subsequent

evaluations.

4.4 Classification Performance (Confusion Matrix)

To evaluate how well the trained model performs in practice, we look at the

confusion matrix of its predictions on a test set (or via cross-validation). The matrix is

visualized in Figure 4.5, which shows predicted algorithm classes versus actual optimal

algorithm classes for a set of files. Each row of the matrix corresponds to the true

algorithm (ground truth 𝑎ᵢ* for files), and each column corresponds to the algorithm

predicted by the model. The diagonal entries (where prediction matches actual)

represent correct predictions, while off-diagonals indicate mistakes, with the intensity

or number in each cell showing how many files fall into that category.

Figure 4.5 Confusion Matrix – Algorithm Families

Ref. code: 25686722041214TMO

40

The confusion matrix reveals that the model achieves a high overall accuracy –

the majority of files lie on the diagonal, meaning the model correctly predicts their

optimal compression algorithm. The few errors the model makes are mostly between

algorithms that have somewhat similar performance profiles or occur in borderline

cases. One noticeable pattern is a slight confusion between Brotli and Zstd for some

files: these are both modern algorithms that compress well, and a few files that are

actually best compressed by Brotli were predicted to use Zstd by the model or vice

versa. Another area of confusion occurs between LZMA and Bzip2 on certain files.

These two algorithms are somewhat similar in that they aim for high compression at

the cost of speed, and for some text-heavy data the model might misidentify which of

the two will edge out the other. These off-diagonal entries in the confusion matrix are

relatively small compared to the correct predictions, indicating the error rate is low.

Importantly, when the model predicts wrong, it usually picks an algorithm that is the

second-best for that file rather than something completely unsuitable. Therefore, the

impact on compression ratio is minor in those cases. The confusion matrix confirms the

model predicts the optimal algorithm in most cases and only occasionally swaps

between algorithms that are in the same category of performance for a file. Overall,

Figure 4.5 demonstrates strong classification performance, with high true positive rates

for each compression algorithm class and misclassification errors that are infrequent

and mostly between similar algorithm choices.

4.5 Comparison with Baseline Compression

We evaluate the machine learning based compression strategy compared to a

traditional baseline compression (standard ZIP) over random 1,200 files to see their

performance. The comparison looks at compression effectiveness (compressed size)

and compression speed, also if machine learning method can improve both at the same

time. For fair analysis, we group test files by size: small (<10 MB), medium (10-300

MB), and large (>300 MB). This helps reveal trends that depend on input scale. The

results are summarized in Table 4.1, showing if machine learning -based method is

better, worse or similar to baseline in each case.

For small files (<10 MB), the machine learning selector is usually better than

baseline in both. Most of the time it produces a bit smaller compressed size than ZIP.

Ref. code: 25686722041214TMO

41

More importantly, it compresses much faster for this small input. The baseline has more

overhead on tiny file, machine learning approach often finishes quicker. In fact, for

almost every small file test, the model method gives smaller output and also less time.

This means on small data the machine learning approach gives consistent benefit in

both efficiency and speed.

For medium files (10-300 MB), the result are mixed. The machine learning

method still usually gets better compression ratio compared to baseline. But this comes

with cost of speed. The model method was slower. In fact, in our test it slowed on all

medium files, therefore the conventional compressor finishes faster. There is no case

where machine learning approach was better in both size and speed together for

medium. It usually gives gain in size reduction but sacrifices speed. For medium-sized

input, machine learning methods offer small benefits in size reduction but cannot match

baseline time.

For large files (>300 MB), the trade-off is clear. The machine learning method

always makes smaller archive than baseline, that is often much smaller for big files,

showing strength in effectiveness. But it compresses much slower on these large inputs.

The baseline was far faster, while machine learning method took much longer to finish.

Therefore, there was no case where machine learning improves metric for large files; it

always trades huge increase in time for smaller sizes. This suggests that while the model

reduces size substantially for large data, the time cost increases and may be impractical

when speed is important.

Overall, the machine learning algorithm selection outperformed baseline in

most cases when looking at individual metrics, especially for small files. It got smaller

size in majority and also faster compression for most inputs. The baseline only clearly

wins in speed for medium and large files, where model overhead is high. Importantly,

across all file tests, machine learning approach led to much smaller total compressed

data size while the total compression time is about same as baseline. In summary, the

machine learning method gives big benefits in compression effectiveness and often

improves speed, but the advantage depends on file size, and it may slow down on larger

data.

Ref. code: 25686722041214TMO

42

Table 4.1 Performance Comparison of Machine Learning Algorithm Selector vs.

Baseline ZIP Compression Over Random 1,200 Files

File Size

Group

Compression Size

(Output) vs Baseline

Compression Speed

vs Baseline

Both Size & Speed

Improved?

Small

(<10 MB)

Better – output is

commonly smaller

than baseline

Size Save: 17%

(7064 KB)

Better – compresses

faster in almost all

cases

Time Save: 95%

(434 s)

Yes – both better tin

speed and output

size

Medium

(10 –

300 MB)

Better – output

slightly smaller in

most cases

Size Save: 13%

(25 MB)

Worse – compresses

slower for virtually

all files

Time Save: -1360%

(-91 s)

No – only better in

output size but

slightly worse speed

Large

(>300 MB)

Better – output

significantly smaller

for all tested files

Size Save: 50%

(158.66 MB)

Worse – compresses

much slower on

large files

Time Save: -3173%

(-236 s)

No – only better in

output size but got

worse speed

Total Size Save: 36% Time Save: 107 s Yes – both better

In conclusion, the experiment comparison shows that machine learning base

selection systems give strong advantage on compression effectiveness, especially for

small input where both size and speed improve. For medium and large files, the model

still gives better output size, but runtime becomes slower. However, this trade-off is not

big problem for our target case. In real practice, most files submit to system are small,

usually less than 10 MB. Since the model works best in this range by making

compression faster and output smaller, it fits well with real operational needs. Even

though the method loses speed when handling very large files, the design is still very

suitable and effective for the actual data profile we face in application.

Ref. code: 25686722041214TMO

43

CHAPTER 5

CONCLUSION AND FUTURE DIRECTION

5.1 Conclusion

Many studies have been conducted to explore ways to improve data

compression and reduce file transfer overhead. Traditional methods typically apply one

compression algorithm uniformly to all files, which may not be optimal for every file

type. Some approaches require manual user effort or complicated content analysis to

choose an algorithm, making them impractical. This independent study presents an

intelligent system that addresses these limitations by automatically selecting the

optimal compression method for each file using machine learning.

This independent study aims to develop an adaptive compression framework

that integrates machine learning with feature analysis of files. We assembled a large

corpus of real-world files from the SEC database and other sources, covering a variety

of file formats. For each file, various structural features (such as file size, entropy, and

byte distribution statistics) were extracted, and the best compression algorithm was

identified via exhaustive tests under practical time constraints. Then a predictive model

was trained to learn the relationship between file features and the optimal algorithm.

The experimental results show that the proposed model can reliably predict the

most effective compression algorithm for a given file. The model achieved around 80%

accuracy in cross-validation, meaning it correctly selected the best algorithm for most

files. As a result, the system often achieved compression ratios close to the theoretical

optimum for each file without needing to try all algorithms. Our approach clearly

outperforms the single-algorithm baseline: it yields smaller compressed files on

average, and for many cases (especially with smaller files) it also compresses faster

than using a fixed method. This confirms that an adaptive, file-specific compression

strategy can significantly improve efficiency of storage and transmission while keeping

processing time within acceptable limits.

However, the benefits vary depending on file characteristics. The results also

reveal that for extremely large files, the selected algorithm (often a slower but high-

compression method) sometimes leads to longer processing time compared to a fast

Ref. code: 25686722041214TMO

44

baseline like standard Zip. This trade-off indicates that while our method maximizes

compression, it may sacrifice speed on very large data. Fortunately, even in such cases,

the chosen algorithm is usually the second-best alternative and the impact on final size

remains beneficial. The study confirms that no single compression algorithm is

universally optimal – the best choice differs from file to file, validating the core premise

of this research.

5.2 Limitations

Despite the model's successful performance, this study has several limitations.

First, the training dataset was composed mostly of financial data, which creates a

potential domain bias; the model may not perform as well on files from vastly different

fields, such as genomics or multimedia. Second, a clear trade-off was observed for large

files, where the model's optimal choice "compresses much slower on these large inputs"

to achieve a smaller size, a trade-off that may not be acceptable in all time-sensitive

applications. Finally, the scope was limited to six specific lossless compression

algorithms; other modern or specialized algorithms were not included in the analysis.

5.3 Future Direction

The Future work will focus on techniques to further improve the system, such

as integrating compression speed prediction into the decision-making, which will help

optimize both compression ratio and time performance especially for large files.

Another enhancement is to expand the feature set or use deeper learning techniques,

which might increase prediction accuracy beyond the current 80%. For instance,

including content-specific features or training specialized models for certain file

categories might help the model differentiate algorithm choices even better.

Additionally, evaluating the approach on broader types of data or under different

operational constraints (such as streaming data or more stringent time limits) will be

valuable. These improvements will help increase the practicality and robustness of the

system. Ultimately, the framework introduced by this independent study provides a

foundation for intelligent compression in data pipelines, and future developments will

aim to make it even more accurate, faster and widely applicable.

Ref. code: 25686722041214TMO

45

REFERENCES

Alakuijala, J., & Szabadka, Z. (2016). Brotli compressed data format (RFC

7932). Internet Engineering Task Force. doi: 10.17487/RFC7932

Bartik, M., Ubik, S., & Kubalík, P. (2015). LZ4 compression algorithm on FPGA.

Proceedings of the 2015 IEEE International Conference on Electronics,

Circuits, and Systems (ICECS) (pp. 179-182). Cairo, Egypt: IEEE. doi:

10.1109/ICECS.2015.7440278

Biau, G., & Scornet, E. (2016). A random forest guided tour. TEST, 25(2), 197–227.

doi: 10.1007/s11749-016-0481-7

Burtchell, B. A., & Burtscher, M. (2024). Using machine learning to predict

effective compression algorithms for heterogeneous datasets.

Proceedings of the 2024 Data Compression Conference (DCC) (pp. 183-

192). Snowbird, UT, USA: IEEE. doi: 10.1109/DCC58796.2024.00026

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system.

Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD 2016) (pp. 785-794). San

Francisco, CA, USA: ACM. doi: 10.1145/2939672.2939785

Collet, Y., & Kucherawy, M. (2018). Zstandard compression and the

application/zstd media type (RFC 8478). Internet Engineering Task

Force. doi: 10.17487/RFC8478

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification.

IEEE Transactions on Information Theory, 13(1), 21-27. doi:

10.1109/TIT.1967.1053964

Deutsch, P. (1996). DEFLATE compressed data format specification version

1.3 (RFC 1951). Internet Engineering Task Force. doi:

10.17487/RFC1951

Fitriya, L. A., Purboyo, T. W., & Prasasti , A. L. (2017). A review of data

compression techniques. International Journal of Applied Engineering

Research, 12(19), 8956-8963.

Guido, R., Ferrisi, S., Lofaro, D., & Conforti, D. (2024). An overview on the

Ref. code: 25686722041214TMO

46

advancements of support vector machine models in healthcare

applications: A review. Information, 15(4), 235. doi:

10.3390/info15040235

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical

learning: With applications in R (2nd ed.). New York, NY: Springer.

Jin, Y., Fu, Y., Liu, T., & Dong, L. (2019). Adaptive compression algorithm

selection using LSTM network in column-oriented database.

Proceedings of the 2019 IEEE 3rd Information Technology, Networking,

Electronic and Automation Control Conference (ITNEC) (pp. 652-656).

Chengdu, China: IEEE. doi: 10.1109/ITNEC.2019.8729341

Juelsson Larsen, L., & Persson, D. (2023). Compression selection for columnar

data using machine-learning and feature engineering (Master's thesis).

Malmö, Sweden: Malmö University. Retrieved from

https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-61266

Mahoney, M. (2012). Data compression explained. Round Rock, TX: Dell Inc.

Retrieved from https://mattmahoney.net/dc/dce.html

Yang, H., Qin, G., & Hu, Y. (2023). Compression performance analysis of

different file formats. arXiv preprint arXiv:2308.12275. Retrieved from

https://arxiv.org/abs/2308.12275

Ref. code: 25686722041214TMO

