APPLYING MACHINE LEARNING TO IDENTIFY
OPTIMAL FILE COMPRESSION METHODS

BY

PITAWAT CHAIVUTINUN

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF MASTER OF ENGINEERING (ARTIFICIAL INTELLIGENCE
AND INTERNET OF THINGS)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY
THAMMASAT UNIVERSITY
ACADEMIC YEAR 2025

Ref. code: 25686722041214TMO

THAMMASAT UNIVERSITY
SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

INDEPENDENT STUDY

BY
PITAWAT CHAIVUTINUN
ENTITLED

APPLYING MACHINE LEARNING TO IDENTIFY OPTIMAL FILE
COMPRESSION METHODS

was approved as partial fulfillment of the requirements for

the degree of Master of Engineering (Artificial Intelligence and Internet of Things)

on November 17, 2025

Member and Advisor Cﬁ W

(Associate Professor Cholwich Nattee, D.Eng.)

Member and Co-Advisor N g V\

(Associate Professor Nirattaya Khamsemanan, Ph.D.)

Member W

(Assistant Professor Seksan Laitrakun, Ph.D.)

Director /CZ\(/

(Associate Professor Kriengsak Panuwatwanich, Ph.D.)

(1

Independent Study Title APPLYING MACHINE LEARNING TO
IDENTIFY OPTIMAL FILE COMPRESSION
METHODS

Author Pitawat Chaivutinun

Degree Master of Engineering (Artificial Intelligence

and Internet of Things)
Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Advisor Associate Professor Cholwich Nattee, D.Eng.
Co-Advisor Associate Professor Nirattaya Khamsemanan,
Ph.D.
Academic Years 2025
ABSTRACT

This independent study addresses the inefficiency of using a single lossless
compression algorithm for diverse file types, a common practice in financial reporting
and other domains. We propose an adaptive framework that uses supervised machine
learning to predict the most suitable compression method for each file. A dataset of
approximately 120,000 real-world files (including text, tabular, and semi-structured
formats) was created. Each file was compressed using six major algorithms (Zstd, LZ4,
Brotli, LZMA, Bzip2, and zlib) to determine the "ground-truth" best method based on
the lowest compression ratio achieved within a 30-second time limit. We extracted an
initial set of 15 structural features for each file. A Sequential Feature Selection (SFS)
technique was then employed to identify the most predictive subset of features. The
final model predicts the optimal algorithm, achieving compression ratios close to the
empirical optimum without the high cost of an exhaustive search. This model can be
embedded into existing data pipelines to automatically reduce storage costs and data

transfer times with minimal added latency.

Ref. code: 25686722041214TMO

2

Keywords: Lossless compression, machine learning, algorithm selection, feature

engineering, file storage optimization, data transfer efficiency

Ref. code: 25686722041214TMO

3)

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor,
Assoc. Prof. Cholwich Nattee, and my co-advisor, Assoc. Prof. Nirattaya
Khamsemanan, for their invaluable guidance, encouragement, and continuous support
throughout the course of my Master’s Degree study and research. Their insightful
advice, constructive feedback, and profound knowledge have been the driving force
behind the successful completion of this thesis. I am truly honored to have had the
opportunity to learn under their supervision, and I am deeply thankful for their patience
and inspiration that have shaped both my research and academic growth.

I would also like to express my appreciation to my committee members for their
time, thoughtful comments, and valuable suggestions that helped improve the quality
of this work.

My sincere thanks go to all colleagues and friends at the Artificial Intelligence
and Internet of Things (Al & IoT) program at Sirindhorn International Institute of
Technology (SIIT), Thammasat University, for their encouragement, technical
discussions, and friendship that made my graduate life both productive and enjoyable.

Finally, I would like to extend my heartfelt gratitude to my family for their
unconditional love, patience, and endless support. Their encouragement and belief in

me have been my greatest motivation throughout my academic journey.

Pitawat Chaivutinun

Ref. code: 25686722041214TMO

TABLE OF CONTENTS
ABSTRACT
ACKNOWLEDGEMENTS
LIST OF TABLES
LIST OF FIGURES

LIST OF SYMBOLS/ABBREVIATIONS

CHAPTER 1 INTRODUCTION
1.1 Data Compression
1.2 Machine Learning with Data Compression
1.3 Problem Statement
1.4 Motivation
1.5 Objectives
1.6 Expected Outcomes
1.7 Scope and Limitation

1.8 Structure of the Independent Study

CHAPTER 2 REVIEW OF LITERATURE
2.1 Data Compression
2.2 Lossless Compression Algorithms
2.2.1 zlib (DEFLATE)
2.2.1.1 LZ77 Dictionary Encoding
2.2.1.2 Huffman Entropy Coding
2.2.2 bzip2
2.2.2.1 Burrows—Wheeler Transform (BWT)
2.2.2.2 Move-to-Front (MTF) Coding

“4)

Page
(D

3)

(8)

©)

(10)

W W W N NN

~N 93 Y Y L e D

Ref. code: 25686722041214TMO

)

2.2.2.3 Run-Length Encoding (RLE) 8
2.2.2.4 Huffman Coding 8
223 LZMA 8
2.2.3.1 Dictionary Match Search 8
2.2.3.2 Range Encoding 8
2.2.4 Zstandard (Zstd) 9
225174 9
2.2.6 Brotli 10
2.3 Machine Learning Approaches for Data Compression 10
2.3.1 Decision Tree 11
2.3.2 Random Forest 11
2.3.3 XGBoost 12
2.3.3.1 Ensemble of Decision Trees 12
2.3.3.2 Objective Function 12
2.3.3.3 Regularization 13
2.3.4 Support Vector Machine (SVM) 13
2.3.5 Logistic Regression 13
2.3.6 K-Nearest Neighbors (KNN) 14
2.4 Model Comparison 15
2.5 Related Works 16
2.5.1 Using Machine Learning to Predict Effective Compression Algorithms
for Heterogeneous Datasets (Burtchell and Burtscher, 2024) 16
2.5.2 Adaptive Compression Algorithm Selection Using LSTM Network in
Column-oriented Database (Jin et al., 2019) 17
2.5.3 Compression Selection for Columnar Data using Machine-Learning
(Larsen and Persson, 2023) 17
CHAPTER 3 METHODOLOGY 19
3.1 Data Collection 20
3.2 Feature Extraction 21
3.2.1 File Size (N) 21

3.2.2 Entropy 21

Ref. code: 25686722041214TMO

(6)

3.2.3 Chi-Square () 21
3.2.4 Byte Variance 22
3.2.5 Byte Kurtosis 22
3.2.6 Byte Standard Deviation 23
3.2.7 Longest Repeated Byte Sequence 23
3.2.8 Average Repeat Length 23
3.2.9 Dictionary Fit 24
3.2.10 ASCII Ratio 24
3.2.11 File Type 24
3.2.12 Average Line Length 24
3.2.13 Unique Bytes 25
3.2.14 N-gram Redundancy 25
3.2.15 Proxy Compression Ratio 25
3.3 Compression Testing 26
3.4 Best Algorithm Selection 27
3.5 Feature Selection 29
3.6 Final Dataset 30
3.7 Machine Learning Model Training 31
3.7.1 Classification Setup 31
3.7.2 Hyperparameter Tuning and Validation 31
3.7.3 Model Selection 32
3.8 Summary 32
CHAPTER 4 EXPERIMENTAL RESULTS 34
4.1 Optimal Algorithm Distribution 34
4.2 Feature Importance and Selection Analysis 35
4.3 Hyperparameter Optimization Results 37
4.4 Classification Performance (Confusion Matrix) 39
4.5 Comparison with Baseline Compression 40
CHAPTER 5 CONCLUSION AND FUTURE DIRECTION 43

5.1 Conclusion 43

Ref. code: 25686722041214TMO

(7

5.2 Comparison with Baseline Compression 44

5.3 Future Direction 44

REFERENCES 45

Ref. code: 25686722041214TMO

®)

LIST OF TABLES
Tables Page
2.1 Comparison of Lossless Compression Algorithms 15
2.2 Comparison of Machine Learning Algorithms 16
3.1 Summary of basic file metadata collected during data preparation 20

4.1 Performance Comparison of Machine Learning Algorithm Selector vs. Baseline

ZIP Compression Over Random 1,200 Files 42

Ref. code: 25686722041214TMO

LIST OF FIGURES

Figures

2.1 Decision Tree

2.2 Random Forest

2.3 Support Vector Machine

2.4 Logistic Regression

2.5 K-Nearest Neighbors

3.1 Overview of the methodology

4.1 Optimal algorithm counts

4.2 Feature Selection Performance

4.3 Feature Importance

4.4 Hyperparameter Optimization Results
4.5 Confusion Matrix — Algorithm Families

©)

Page
11
12
13
14
15
19
35
36
37
38
39

Ref. code: 25686722041214TMO

(10)

LIST OF SYMBOLS/ABBREVIATIONS

Symbols/Abbreviations Terms
ASCII American Standard Code for
Information Interchange

ML Machine Learning

Ref. code: 25686722041214TMO

CHAPTER 1
INTRODUCTION

Nowadays, data compression is playing an increasingly important role in
various technologies. It reduces storage costs, lowers data transfer, and optimizes
resource utilization for many enterprises. Yang, Qin and Hu (2023) state that traditional
data compression algorithms work well with specific types of data, but this can cause
problems with heterogeneous datasets and complicated file structures. This research
aims to explore the potential of machine learning to find the most effective compression
method for a given file based on its data structure. By applying machine learning
models, we can achieve higher compression ratios with acceptable compression speeds,

resulting in efficient resource management compared to traditional methods.

1.1 Data Compression

Data compression is the process of encoding data into a file, producing an output
with fewer bits than the original file. Data compression reduces the size of data by
identifying and eliminating redundancy and irrelevancy. Compression techniques are
essential for various applications. Reducing file size leads to reduced storage space,
increasing data transfer speeds, lowering bandwidth usage, and enhancing resource
utilization (Fitriya, Purboyo and Prasasti, 2017).

Traditional data compression algorithms can be categorized into lossless and
lossy compression. Lossless compression algorithms, such as Huffman coding and
Lempel-Ziv variations, ensure that, after decompression, the reconstructed data is
identical to the original. Unlike lossless compression, lossy compression algorithms,
such as JPEG for images, achieve higher compression ratios but discard some data, so

the reconstructed data may not match the original quality.

1.2 Machine Learning with Data Compression
Machine learning is a field of artificial intelligence (Al) that focuses on enabling
computer systems to learn from data without explicit programming. It involves the

development of algorithms that allow computers to identify patterns, make predictions,

Ref. code: 25686722041214TMO

and improve their performance over time based on the input data. Machine learning has
gradually become a powerful tool for solving various modern problems, including data
compression.

In this research, machine learning can be used to learn patterns and entropy of
data in files to improve compression efficiency. Machine learning can analyze file
structures, identify relevant features, and predict the most effective data compression
algorithm for a given file. Burtchell & Burtscher (2024) demonstrated that in traditional
compression algorithms, single compression algorithms might not fit diverse data. It
might have a good compression ratio with most types of files, but it is impossible for
all types of files. Then, the approach of using machine learning has the potential to
outperform using single data compression algorithms, especially for heterogeneous

datasets that diverse data characteristics.

1.3 Problem Statement

Traditional lossless compression algorithms often do not perform consistently
on different kinds of data. Since the structure of files varies a lot, no single algorithm
always gives the best result. This study aims to solve the problem of selecting
algorithms by using machine learning to predict the most effective compression for

each file, based on its structural features.

1.4 Motivation

The motivation for this research stems from the limitations of using one static
compression method for all files. This approach often leads to suboptimal compression
ratios and inefficient system performance, especially when working with diverse
datasets. By applying machine learning, we aim to develop a more adaptive and
intelligent compression system that selects the optimal algorithm dynamically, based

on file structure.

1.5 Objectives
The objective of this research is to develop machine learning models for
predicting the best compression algorithms for specific files in terms of compressed

size and compression time, based on their structural features.

Ref. code: 25686722041214TMO

1.6 Expected Outcomes
The expected outcome of this research is a machine learning model that can
intelligently predict the most effective compression algorithm, in terms of compressed

size and compression time, for a given file based on its structural features.

1.7 Scope and Limitation

The scope of this study focuses only on lossless compression algorithms. The
dataset for training will mostly come from financial data. The algorithms within scope
are Zstd, LZ4, Brotli, LZMA (XZ), Bzip2, and Deflate (ZIP, Gzip). We do not focus

on lossy compressions or any data that do not belong to financial type.

1.8 Structure of the Independent Study

This independent study contains 6 chapters.
Chapter 1: Introduction

This chapter introduces data compression techniques, challenges of traditional
data compression algorithms, and the possibility of applying machine learning in data
compression including current problems, the aim and the scope of the research.
Chapter 2: Review Of Literature

This chapter discusses the fundamental tools and techniques of the research.
This chapter

also includes the review and validation of the related previous works.
Chapter 3: Methodology

This chapter describes the dataset creation, feature extraction, model
development, and evaluation process for predicting optimal compression algorithms.
Chapter 4: Experimental Results

Presents the results of the compression testing and machine learning model
performance. Includes performance metrics, model comparisons, and analysis of
feature selection outcomes.

Chapter 5: Conclusion and Future Direction

Ref. code: 25686722041214TMO

This chapter is the summarization of the research on applying machine learning
to identify optimal file compression methods and discusses future directions for

improving adaptive data compression.

Ref. code: 25686722041214TMO

CHAPTER 2
REVIEW OF LITERATURE

This chapter explains studies related to data compression and reviews previous
work concerning machine learning approaches for identifying optimal file compression
algorithms. This chapter also explains the background knowledge, techniques and tools

that are used in this research.

2.1 Data Compression

Data compression is the technique used to reduce file size by encoding
information efficiently. It is commonly used for optimizing data storage and improving
data transmission. Compression methods are usually divided into two categories:
lossless compression and lossy compression. Lossless methods ensure decompress data
the same as original data, mostly used in scenarios where data integrity is crucial, such
as executable programs, textual information, or archival systems. Lossless compression
algorithms that are currently popular include Huffman coding, DEFLATE (zlib), bzip2,
Lempel-Ziv-Markov chain Algorithm (LZMA), Zstandard (Zstd), LZ4, and Brotli.

2.2 Lossless Compression Algorithms
This study utilizes multiple well-established lossless compression algorithms.
The following subsections provide detailed descriptions of these algorithms, including

their strengths and potential limitations.

2.2.1 zlib (DEFLATE)

The DEFLATE algorithm used in zlib combines the LZ77 algorithm and
Huffman coding. LZ77 does compression by replacing repeated data sequences with
pointers to previously seen sequences, which greatly helps reduce redundancy.
Huffman coding is then applied for entropy encoding, to compress the data even more.

Due to synergy between LZ77 and Huffman coding, zlib achieves a good

balance of speed, memory usage, and compression ratio. It was also widely adopted in

Ref. code: 25686722041214TMO

web protocols (HTTP compression, PNG image format, etc.) for its reliability and

performance (Deutsch, 1996).

2.2.1.1 LZ77 Dictionary Encoding
LZ77 (Ziv-Lempel 1977) compresses data by replacing repeated occurrences of
substrings with references to a single copy of that substring existing earlier in the

uncompressed data. Formally, suppose we have an input sequence of bytes:

S = (51,52,53,) Sn), (2.1)

where each s; is a symbol (often a byte). Instead of storing a repeated substring
(Sky «er» Sk4m—1) in full, LZ77 stores a triple (d, [, ¢):

d : The distance backward from the current position (how far back to copy).

[: The length of the matched substring.

c : The next literal character that follows the matched substring (for the next
symbol).

Whenever the compressor detects a sequence already seen, it emits (d, [, c)
rather than the actual substring. Mathematically, if s; = s;_, for a match of length [,

the LZ77 compressor outputs:

(d,1,si41) (2.2)

These triple references what was already encountered, thus reducing

redundancy.

2.2.1.2 Huffman Entropy Coding

After LZ77, Huffman coding is applied to encode the tokens (distances, lengths,
and literal characters) using shorter bit patterns for more frequent symbols and longer
bit patterns for less frequent ones. If p(x;) is the probability of symbol x;, Huffman
coding aims to produce a code of length approximately —log,p(x;) bits for each

symbol. The Huffman algorithm ensures that no code is a prefix of another (prefix-free

Ref. code: 25686722041214TMO

property), facilitating optimal or near-optimal entropy encoding under certain

assumptions.

2.2.2 bzip2

The bzip2 algorithm uses the Burrows-Wheeler Transform (BWT), Move-to-
Front (MTF) transformation, Run-length Encoding (RLE), and Huffman encoding.
BWT rearranges data in format that makes compression better, and Huffman encoding
compresses the data very effectively.

bzip2 has better compression ratio than DEFLATE, but it has higher
computational overhead with slower compression speeds, which makes it less suitable

for real-time applications or environments with limited computational resources

(Mahoney, 2012).

2.2.2.1 Burrows—Wheeler Transform (BWT)

The BWT rearranges a block of input data S into a form that is more amenable
to compression by grouping repeated characters. Given a block S of length n, the BWT
outputs a transformed block BWT(S). Briefly:

a. Construct all n rotations of S.

b. Sort these rotations lexicographically.

C. The last column of this sorted matrix is taken as BWT(S), along with the

index of the original string in the sorted list for use in decompression.

2.2.2.2 Move-to-Front (MTF) Coding

After BWT, repeated patterns tend to cluster. MTF takes advantage of this by
maintaining a list of symbols and moving any symbol to the front upon its use. If L is
our symbol list and s is the symbol encountered, the MTF-encoded output is the index

of s in L at the time it appears:

MTF(s, L) = indexOf(s, L) (2.3)

Then s is moved to the front of L. Common symbols thus often produce small

Ref. code: 25686722041214TMO

index values, which are more easily compressed.

2.2.2.3 Run-Length Encoding (RLE)
For consecutive repeated symbols in the MTF output, bzip2 applies an RLE step

to compress runs of the same value.

2.2.2.4 Huffman Coding
Finally, bzip2 encodes the output using Huffman coding, assigning variable-

length bit patterns to symbol frequencies.

2.2.3 LZMA

The Lempel-Ziv-Markov chain Algorithm (LZMA) is a dictionary-based
method that combines range encoding to achieve very high compression ratios. The
dictionary mechanism is similar in spirit to LZ77, but LZMA refines how matches are
searched and encoded.

LZMA takes advantage of past data to encode repeating patterns very
efficiently. Although LZMA gives great compression, it has very high computational
usage, so it is not practical for time-critical situations or environment that have limited

resources (Mahoney, 2012).

2.2.3.1 Dictionary Match Search

Like LZ77, LZMA maintains a sliding dictionary window of recent data. If a
substring (g, ..., Sk+m—1) Teappears, it references that substring. However, it employs
more sophisticated match-finding techniques (e.g., binary tree or hash chain) to speed

up searching for repeats.

2.2.3.2 Range Encoding
LZMA replaces Huffman coding with range encoding, which represents
probabilities by continuously refining a range [low, high). Symbols with higher

probability occupy a larger portion of the range, allowing more efficient representation

Ref. code: 25686722041214TMO

of data. If p(s;) is the probability of symbol s;, the encoder narrows the interval based

on p(s;). Mathematically, for a symbol s;,

range,ew = range X p(s;), 04
lowpey, =low+ X (range X p(sj)))

This process continues iteratively for each symbol

2.2.4 Zstandard (Zstd)

Zstandard (Zstd) algorithm is a modern lossless compression algorithm that was
developed by Facebook. It is using dictionary compression techniques combined with
entropy encoding methods, offering a flexible balance between speed and compression
ratio by adjusting compression levels.

a. Dictionary Builder: At higher levels, Zstd can learn an optimal dictionary
for a specific dataset, improving compression ratio for small or
homogeneous data.

b. Entropy Encoding: Zstd uses FSE (Finite State Entropy) or Huff0, both of
which compress symbols based on their statistical frequencies in a single
pass. If the probability of a symbol s; is p(s;), the code lengths approach
—log,p(s;), like Huffman.

c. Adjustable Levels: Zstd supports numerous compression levels, allowing
users to trade off speed for higher ratio or vice versa.

Zstd is popular among big data and cloud storage due to its compression speed

and compression ratio (Collet & Kucherawy, 2019).

225 LZ4

The LZ4 algorithm focuses on speed rather than maximum compression ratio.
It 1s applying LZ77 algorithm with optimized way to do very fast compression and
decompression. It uses an LZ77-style dictionary approach but aggressively optimized

for real-time operation:

Ref. code: 25686722041214TMO

10

a. It maintains a hash table of recent data blocks; upon detecting a match, it

replaces a substring with a back-reference (d, 1).

b. The compressed stream is minimal in overhead, focusing on making both

compression and decompression extremely fast.

LZ4 is used a lot in situations where compress and decompress time is more

important than the highest compress ratio (Bartik, Ubik and Kubalik, 2015).

2.2.6 Brotli

Brotli algorithm was developed by Google mainly for web and text
compression. It combines L.Z77-style dictionary compression, Huffman coding, and
second-order context modeling to optimize text and web content compression.

a. Window-Based Dictionary: Brotli maintains a sliding window for repeated
pattern detection, referencing repeated substrings similarly to LZ77.

b. Second-Order Context Modeling: Brotli attempts to predict upcoming
symbols by using context from previously decoded symbols.

c. Huffman: Once repeated sequences are identified, Brotli employs a
Huffman-based algorithm to assign variable-length codes to repeated
patterns.

Its strength is handling repetitive text data efficiently, which is very common in

web technologies particularly for text-based data, such as HTML, CSS, and JavaScript,
where repeated substrings are abundant (Cover & Hart, 1967).

2.3 Machine Learning Approaches for Data Compression

Recent research indicates that using machine learning can greatly simplify the
difficulty with data compression by adjusting the algorithm selection automatically to
the characteristics of the file, including entropy, byte distributions, and file metadata.
There is a remarkable advancement from the static heuristic-based selections in these

adaptive data driven methods.

Ref. code: 25686722041214TMO

11

2.3.1 Decision Tree

Decision Tree is a supervised machine learning algorithm used for classifying
and regression. It works by splitting the data into smaller subsets again and again based
on feature value. Each split is chosen using metrics such as Gini impurity or information
gain, which show how good the split makes the data different. Decision Tree is very
easy to understand but often overfit when dataset is complex, unless controlled with

techniques like pruning or ensemble methods such as Random Forest and XGBoost.

Decision

alai

Figure 2.1 Decision Tree

2.3.2 Random Forest

Random Forest is made of many decision trees that run in parallel, using random
samples of data. It combines decisions from each tree using majority vote, improving
predictive accuracy and reducing variance. Random Forest works well even when data
are noisy or have missing values. It also gives feature importance, show which input is
most useful for prediction. But it can be slow if it has too many trees or a big dataset

(Biau & Scornet, 2016).

Ref. code: 25686722041214TMO

12

Decision Tree-1 Decision Tree-2 Decision Tree-N
b
Result-1 Result-2 Result-N
L—»ﬂ Majority Voting / Averaging FJ
Final Result

Figure 2.2 Random Forest

2.3.3 XGBoost

Extreme Gradient Boosting (XGBoost) is a very strong ensemble learning
algorithm that uses gradient-boosted decision trees. It builds decision tree step by step,
reducing residual errors in each iteration. XGBoost is known for its efficiency,
scalability, and accuracy, especially on structured datasets. It can handle large and

complex feature interactions (Chen & Guestrin, 2016).

2.3.3.1 Ensemble of Decision Trees

XGBoost iteratively adds new trees to reduce the error of prior trees.

2.3.3.2 Objective Function
If y is the real target and J; is the prediction at the i-th iteration, XGBoost
updates the model by:

Visn =¥+ i), (2.5)

where f; is a newly added decision tree, and 7 is the learning rate. The final prediction

is the sum of all trees’ outputs.

Ref. code: 25686722041214TMO

13

2.3.3.3 Regularization
XGBoost includes regularization terms on tree complexity to prevent overfitting

and encourage generalization.

2.3.4 Support Vector Machine (SVM)

Support Vector Machines classify data by finding hyperplanes that maximize
separation margin between classes. It uses kernel functions to capture nonlinear
relationships in data. However, SVM can require substantial computational resources
when working with big datasets, making it not the best option for real-time compression

predictions on large-scale data (Guido, Ferrisi, Lofaro and Conforti, 2024).

\E

Figure 2.3 Support Vector Machine

2.3.5 Logistic Regression

Logistic Regression model probabilistic outcomes using linear combination of
input features, which makes it interpretable and fast to compute. However, because it
assumes data is linearly separable, it is not as useful when dealing with high-
dimensional or complex datasets that are typical in compression selection tasks.

Let x € R? be an input vector (file features), then the model predicts:

Ref. code: 25686722041214TMO

14

p = o(w'x + b), where o(z) = 1;_2 (2.6)
Although straightforward and easily interpretable, logistic regression struggles
to capture non-linear relationships unless extended with polynomial or other feature

transformations (James, Witten, Hastie and Tibshirani, 2021).

Figure 2.4 Logistic Regression

2.3.6 K-Nearest Neighbors (KNN)
K-Nearest Neighbors (KNN) makes predictions by looking at the k closest
training examples in feature space. The class is determined by majority vote among

these neighbors. For a query point x:

y(x) = majority{ y; | x; € N ()}, 2.7

where WV} (x) is the set of k closest points to x under a distance metric (often Euclidean

distance).

Ref. code: 25686722041214TMO

Y2

15

Figure 2.5 K-Nearest Neighbors

It is simple and intuitive, but its prediction speed becomes but its prediction

speed degrades with large datasets, making it less practical for real-time or large-scale

compression tasks (Cover & Hart, 1967).

2.4 Model Comparison

This section provides a comparative overview of both compression and machine

learning algorithms used in the study.

Table 2.1 Comparison of Lossless Compression Algorithms

. Compression | Compression | Decompression | Computational
Algorithm Rpatio Sgeed Spléed pCost
zlib Medium High High Low
bzip2 High Medium Medium Medium
LZMA Very High Low Medium High
Zstd High High High Medium
LZ4 Low Very High Very High Very Low
Brotli High Medium High Medium

The compression choice depends heavily on application-specific factors such as

speed and compression efficiency.

Ref. code: 25686722041214TMO

16

Table 2.2 Comparison of Machine Learning Algorithms

. o Computational Training
Algorithm Accuracy Interpretability Cost Speed
XGBoost Very High Medium High Medium
Random High Medium Medium Medium
Forest
Support
Vector High Low High Low
Machine
LOngt%C Medium High Low High
Regression
Decision . . .
Trees Medium High Low High
K-Nearest 3 .) .
Neighbors Medium Medium Medium High
2.5 Related Works

This research reviewed 3 related works that use machine learning techniques

to select compression algorithms. The following are the descriptions of their works.

2.5.1 Using Machine Learning to Predict Effective Compression Algorithms for

Heterogeneous Datasets (Burtchell and Burtscher, 2024)

Burtchell and Burtscher (2024) proposed MLcomp, a method that uses a
Random Forest classifier to automatically predict optimal compression algorithms for
heterogeneous datasets. Their model uses the compression ratio from short preliminary
runs on representative file as input features for predicting the most effective
compression algorithms among numerous possible combinations. They reported
achieving approximate 98% of compression performance obtain by exhaustive
evaluating all possible algorithms. Despite these results, MLcomp methodology only
focus on optimizing compression ratio, neglecting computational runtime or resource
usage considerations during compression prediction. This independent study clearly
addresses this limitation by including both compression effectiveness and

computational runtime into predictive criteria.

Ref. code: 25686722041214TMO

17

2.5.2 Adaptive Compression Algorithm Selection Using LSTM Network in

Column-oriented Database (Jin et al., 2019)

Jin et al. (2019) has developed adaptive methods using a Long Short-Term
Memory (LSTM) neural network models for predicting the optimal compression
algorithm specifically tailored to column-oriented databases. Their methodology
involves training LSTM network on sequences of raw data byte extract from database
columns, enabling models to capture intrinsic data patterns and predicting the most
efficient compression algorithm for each data block. Their result showed prediction
accuracy around 64% in training set and approximate 55% in heterogeneous testing
datasets. Despite moderate predictive performance, the LSTM-driven adaptive
selection consistently yielded better compression outcome compared to fixed heuristic
method typically employed in database systems. Their study highlights both the
potential and challenges of applying ML-based selection approach, particularly
emphasizing complexity and computational overhead associated with deep learning
method for real-time predictions scenario.

Unlike this deep learning approach for databases, this independent study
focuses on a broader range of heterogeneous file types and uses computationally lighter

machine learning models to ensure minimal prediction latency.

2.5.3 Compression Selection for Columnar Data using Machine-Learning

(Larsen and Persson, 2023)

Larsen and Persson (2023) have introduced a machine learning-driven
framework that uses XGBoost algorithm for automatically selecting most cost-effective
compression algorithm and encoding combination specific tailored columnar database.
Their research utilizes carefully design cost functions that integrate three critical
factors: compression ratio, compression time and decompression time. This enables the
system to optimize compression not just data size but explicitly balance storage
efficiency and processing overhead. Using extensive feature engineering based on real-
world IoT telemetry data store in ClickHouse database, their model achieves impressive
predictive accuracy approximately 99% on their test dataset, with around 90% accuracy
when predicting compression strategies for unseen data columns. Furthermore,

deployment of their machine learning recommendations significant enhanced system

Ref. code: 25686722041214TMO

18

performance, achieved roughly 95% increase in compression speed and nearly 60%
improvement in decompression speed. However, this improvement came at the expense
of storage efficiency, resulting in about 66% reduction in compression ratio compared
highest possible compression scenario. Their study highlights strength and potential
trade-off involved when applying machine learning models for adaptive compression
decisions, particularly emphasizing computational efficiency and feature relevance
maintaining high predictive accuracy in column-oriented storage environment.

While their work balances compression ratio with both compression and
decompression time, this study prioritizes achieving the maximum compression ratio
(lowest size) within a strict upload time budget (30 seconds), a constraint more relevant

to file transfer and storage pipelines.

Ref. code: 25686722041214TMO

19

CHAPTER 3
METHODOLOGY

This chapter details the experimental framework for predicting the optimal
compression algorithm for a given file. The process spans data collection, feature
extraction, compression benchmarking, labeling of best algorithms per file, feature
selection, and machine learning model training. Each step is described in sequence,
with a particular focus on the features extracted from files and the rationale behind
them.

Figure 3.1 shows a conceptual flow diagram representing the methodological

pipeline from data gathering to machine learning-based decision-making:

Compression Compress all compression
Testing algorithm with all level

Data Collection

Feature
: Feature ICompression
Extraction | 15 Features Data Metrics
l L
Feature Selection peet ,ﬁ.lgc_-nthm
Selection

4 Fealures 1 Best Eum ression
i Algorithm

Machine
learming ' Model Training &
maodel Validation Dataset

Figure 3.1 Overview of the methodology
Figure 3.1 illustrates the complete methodology pipeline. The process begins

with Data Collection. From this data, two parallel processes are initiated: Feature

Extraction, which identifies 15 initial features to create "Feature Data”, and

Ref. code: 25686722041214TMO

20

Compression Testing, which runs all compression algorithms on the files to generate
"Compression Metrics".

These metrics are then used for Best Algorithm Selection to determine the
single best algorithm for each file. This best algorithm label is combined with the
"Feature Data" and passed to Feature Selection, which narrows the features down to
the 4 most predictive ones. This creates the final Dataset, which is used for Model
Training & Validation. Finally, the trained model undergoes Evaluation to produce

the deployable Machine learning model.

3.1 Data Collection

A large dataset of 120,263 files, denoted as set = {f1, f2, ..., fn} Withn =
120,263 was compiled to capture diverse real-world data. These files cover a broad
range of types, including plain text, structured documents, images, and other common
formats. Each file underwent an integrity check to ensure it was not corrupted or
incomplete, as corrupted data could bias the results. Basic metadata recorded for each
file included the file name, file size (|fi|), file extension, and file type (a coarse category
label). These metadata fields are summarized in Table 3.1 below, which presents a clear
overview of the information collected during data preparation.

Table 3.1 Summary of basic file metadata collected during data preparation

Metadata Description
File name The original name of the file (used for identification).
File size The size of the file in bytes, denoted as |f;| .

File extension The file’s extension (e.g., .txt, .jpg) indicating format.

. A coarse category of the file (e.g., Text, Image, Archive) based
File type

on its format or content.

By assembling a wide variety of file types and sizes (ranging from ~1 KB up to
2 GB), the study ensures that the subsequent analysis reflects realistic and
heterogeneous scenarios. This diversity is important because compression effectiveness

can vary greatly with file structure and content.

Ref. code: 25686722041214TMO

21

3.2 Feature Extraction

For every file fi € F, a feature vector x; was generated to capture key
characteristics that might influence compressibility. Formally, each file is transformed
into x; = (X1, Xiz, ..., Xid), where d is the total number of extracted features. In total, 15
numeric features were extracted from each file. These features encompass basic
metadata, statistical properties of the byte content, and measures of redundancy or
structure in the file. Before modeling, all feature values were scaled to a consistent
range because their magnitudes differ. The description of all extracted features is shown

below:

3.2.1 File Size (N)
The total number of bytes in the file. This is a basic attribute given by the length

of the byte sequence. This feature simply captures the file’s size.

3.2.2 Entropy

The Shannon entropy of the file’s byte-value distribution, measuring the
randomness or unpredictability of bytes. We compute this by treating the file as a
sequence of symbols (0-255) and calculating the entropy of their frequency
distribution. Let p; be the probability of byte value i (estimated as the frequency of i
divided by N). The entropy is then:

H = —-Y%5plog,p; (3.1)

where the sum is taken over all byte values that occur in the file. A higher H (up to 8
bits for 256 uniform symbols) indicates more uniform and random byte content,

whereas lower values indicate more structured or repetitive content.
3.2.3 Chi-Square (x?)

A chi-square goodness-of-fit statistic comparing the file’s byte frequency

distribution to a uniform distribution. It is defined as:

Ref. code: 25686722041214TMO

22

2 _ w255 (count;—N/256)?
X~ = Li=o N/256

(3.2)
where count; is the observed frequency of byte value i and N/256 is the expected
frequency for a uniform distribution (with N total bytes and 256 possible values). A
larger y? indicates the byte frequencies deviate more from uniform. Therefore, certain

byte values appear often than expected by chance.

3.2.4 Byte Variance

The statistical variance of the byte values interpreted as numerical 0-255. This
" 1 .
feature measures the spread of byte values around their mean. If b = ;Zliv=1 b;is the

mean byte value, the variance is:

o? =213, (b; - b)’ (33)

Higher variance means the byte values are more widely distributed across the

0-255 range, whereas low variance means the bytes cluster around a certain value.

3.2.5 Byte Kurtosis

This feature measures how “peaky/heavy-tailed” the file’s byte-value
distribution is. If ByteKurtosis is high, this indicates a few byte values dominate (often
more compressible). If it is low, bytes are spread more evenly (usually less obvious

redundancy). The formula can be explained as:

4
%Zj'vﬂ(bj i)

(B (o-n)7)

ByteKurtosis = (3.4)

where:
N = number of bytes in the file
b; = value of the j-th byte (0-255)

Ref. code: 25686722041214TMO

23
U= % y=1 b; (mean byte value)

3.2.6 Byte Standard Deviation
The standard deviation of byte values, defined as the square root of the byte

variance. It is given by:

o= \/%Zﬁ‘;l(bi - b)" (3.5)

This provides the dispersion of byte values in the same units as the byte values

themselves.

3.2.7 Longest Repeated Byte Sequence

The length of the longest run of identical bytes in the file (also referred to in
code as the “LongestRepeatedSubstring™). This feature captures the longest consecutive
sequence of the same byte value. Formally, if we define a run as a maximal substring
of the form b; = b; 1 = - = b;44_1, then this feature is the maximum length £ over

all such runs in the file:

Limax = max{f|3isuchthatb; = b;;1 = =b;j1p_1} (3.6)

A larger value indicates that some byte is repeated many times in a row (e.g. a

long sequence of zeros).

3.2.8 Average Repeat Length
The average length of repeated byte runs in the file. We compute the lengths of
all consecutive byte runs and then take the average of those lengths that are greater than

1. Let Ry, Ry, ..., Ry be the lengths of all runs of identical bytes (with R; = 2 for each,

1.e. we consider only runs of length at least 2). Then the feature is

1
Layg % ?=1Rj 3.7)

Ref. code: 25686722041214TMO

24

In case there is at least one repeated run (k > 0). If the file contains no
consecutive repeated bytes (i.e. all runs are of length 1), we define this feature as 0. A

higher L,,,; means that on average, repeating sequences tend to be longer.

3.2.9 Dictionary Fit

The number of unique byte values present in the file. This essentially is |{unique
bytes} | and reflects how large a “dictionary” an algorithm would need to encode the
file’s content. A smaller unique byte set (for instance, a file that contains only 10
distinct byte values) often compresses better than a file using the full 0-255 range of

bytes.

3.2.10 ASCII Ratio
The proportion of bytes in the file that fall within the ASCII printable character
range (byte values 32 through 126 inclusive). This feature gauges how “text-like” the

file is. It is computed as:

#{i:32<b;<126}
N

AsciiRatio = (3.8)
the count of bytes in the ASCII printable range divided by the file size N. The ratio

approaches 1 for plain text files (comprised mostly of readable characters) and 0 for

data with mostly non-printable bytes (such as compressed or encrypted files).

3.2.11 File Type

A binary indicator derived from content, used to roughly distinguish text from
binary files. The FileType will be set to 1 if the AsciiRatio > 0.8 (meaning the file is
likely text-heavy) and O otherwise. This feature provides the model with a simple

categorical flag about the file’s nature.
3.2.12 Average Line Length

The average number of characters per line when interpreting the file as text. To

calculate this, the file’s bytes are decoded as UTF-8 text (ignoring decoding errors),

Ref. code: 25686722041214TMO

25

split into lines on newline characters, and the lengths of these lines are averaged. If

Ly, Lo, ..., L, are the lines obtained, then it is defined as:
AvglinelLength = % }”=1|L]-| (3.9)

provided m > 0. (If the file cannot be decoded into any lines, we define this value as
0.) This feature is meaningful for text files, indicating typical line length, and is O for

files that are not interpretable as text.

3.2.13 Unique Bytes

The number of distinct byte values in the file. This is effectively the same as
DictionaryFit. It was extracted as a separate feature but duplicates the information of
DictionaryFit. A lower UniqueBytes count means the file’s content is composed of a
limited alphabet of bytes, which can be advantageous for certain compression

algorithms.

3.2.14 N-gram Redundancy

An approximate measure of repeated byte patterns, using 2-byte sequences as a
default. This is computed by sampling pairs of consecutive bytes (2-grams) throughout
the file and finding the most frequent 2-byte sequence. The feature value is the
frequency of that most common 2-byte pattern divided by the total number of sampled
pairs. A higher NgramRedundancy means a particular byte pair occurs very often
relative to file length, indicating repetitive structure that could be exploited by

compression.

3.2.15 Proxy Compression Ratio
A simple proxy for the file’s compressibility, defined as the ratio of the original

size to a hypothetical slightly larger size. We calculate it as:

ProxyCompressRatio = % (3.10)

Ref. code: 25686722041214TMO

26

This formula yields a value very close to 1 for any non-trivial file (e.g. 0.999
for N = 999). In practice, this proxy does not depend on content and varies only with
N (smaller files get slightly lower values). It was used as a placeholder approximation
of compressibility — a higher value (closer to 1) would intuitively correspond to files
that are not easily compressible, though here it is essentially always near 1 except for

very small files.

3.3 Compression Testing

In the next phase, each file f; was subjected to compression by a set of candidate
algorithms to observe compression performance. We selected six widely used lossless
compression algorithms: zlib, Bzip2, LZMA, Zstandard (Zstd), LZ4, and Brotli. Each
algorithm was applied to every file at multiple compression levels or settings (for
example, level 1 through 9 for those that support levels, or fast vs. slow modes). This
exhaustive benchmarking yields empirical data on how well each method compresses
each file. For a given file f; and compression algorithm instance a; (where j might
represent a specific algorithm at a certain compression level), we recorded two primary
metrics:

e Timej: the compression time in seconds for algorithm a; on file fi. This
measures how long the algorithm took to compress the file (since some
algorithms trade speed for ratio).

e Sizejj: the resulting compressed file size in bytes when using a; on fi.

From these we derive the compression ratio p;; defined as:

Size; i
Pij :Ti|] (3.11)

The compressed size divided by the original file size. A ratio p < 1.0 indicates
that compression was effective (the file became smaller), whereas p = 1.0 means no
size reduction, and p > 1.0 would mean the output is actually larger, this indicates
compression failed to reduce size, which can happen with already compressed or very
random data. Along with ratio, the raw compressed size and time are important for

evaluating trade-offs. We carried out this compression testing for all files across all

Ref. code: 25686722041214TMO

27

chosen algorithms/levels, producing a comprehensive set C = {(fi, a;, Timeij, pij) for 1
<i<n,1<j<m} where m is the total number of algorithm configurations tested. This
data allowed analysis of how different algorithms perform on the same file and
highlighted the variation in outcomes. For example, some algorithms (like LZ4) are
very fast but may not compress as tightly, yielding higher p (closer to 1), while others
(like Brotli) produce very low p (smaller size) but at the cost of longer Time.

It was observed that there is a clear trade-off: methods like LZ4 or Zstd in fast
mode execute in fractions of a second but sometimes produce larger outputs, whereas
methods like Brotli or LZMA at max settings yield the smallest sizes but can take
significantly longer. Understanding these trade-offs was essential for defining what
optimal means in context and ensuring our automatic selection does not choose an
impractical solution, i.e., one that saves only a few bytes at the cost of an extremely

long runtime.

3.4 Best Algorithm Selection

After gathering compression results, we needed to determine, for each file,
which algorithm was considered the best (ground truth optimal) under practical
constraints. A rule-based selection procedure was applied to each file’s results to choose
its optimal algorithm a;*:

a. Time Constraint: Any algorithm run that took more than 30 seconds on a
given file was disqualified. Formally, for each fi, we discarded all a; such
that Time; > 30 seconds. The 30-second threshold was chosen based on
practical system considerations. In our real-world use case, users often
upload up to 5-6 files simultaneously at most, and compression is followed
by an encryption step. To maintain responsiveness, the total additional time
introduced by the compression stage should not exceed 3 minutes (180
seconds). Therefore, we decided that each individual file must not require
more than 30 seconds of processing. By enforcing this cutoff, we ensure that
extremely slow algorithms are not labeled as optimal, even if they achieve
slightly better compression ratios, since their runtime would be impractical

in an operational setting.

Ref. code: 25686722041214TMO

28

b. Outlier Exclusion: We also removed extreme outlier runs in terms of
compression time. For each file, we examined the distribution of
compression times {Time;i;} across algorithms and flagged any that were
abnormally high compared to the others. Specifically, we used the
interquartile range (IQR) rule: any algorithm whose Time fell above Q3 +
3(Q3-Ql) was excluded. This guards against algorithms that, while not
exceeding 30s outright, are still disproportionately slow outliers for that file.
The intuition is that if one algorithm takes much longer than the rest on the
same data (perhaps due to some pathological case or inefficiency), it is not a
practical choice even if our fixed threshold did not catch it. Removing such
outliers yields a set of feasible algorithms A*; for each file fi.

c. Effective Compression Only: We ensure that the algorithm really achieves
compression. Any result where the compressed size was larger than the
original (pj;>1.0) is disregarded. In other words, we only consider algorithms
that produce p < 1 for that file. This avoids ever labeling a method as best if
it did even compress the data. After this step, for each file we have a filtered
set of viable algorithm options that ran within time limits and produced a
smaller output.

After applying (a), (b), and (c), each file f; has a subset A; of algorithms that

passed all criteria. From this subset, we select the algorithm with the lowest

compression ratio p:

a; = argéneig Pij (3.12)
JjEAai

In summary, ai is the algorithm that achieved the highest compression (greatest
size reduction) on file fi. Ties are rare but if they occur, one could choose the faster
algorithm among the tie, though in our case the continuous nature of ratio usually yields
a unique minimum. Each file is thus assigned a single “optimal” algorithm label ai. This
algorithm is considered the ground-truth best choice for that file in the context of our
study. It represents the ideal outcome we want a predictive model to achieve. It is worth

noting that the best algorithm here is defined purely by compression ratio after filtering

Ref. code: 25686722041214TMO

29

out unrealistic options. This implies we favor maximum compression as long as it is
within the time budget. This selection method yielded a mapping from each file to its
optimal compression algorithm. This mapping becomes the target variable for the

machine learning stage.

3.5 Feature Selection

Initially, we considered all 15 features described in Section 3.2 for use in the
model. However, not all features provide unique or useful information; some may be
redundant or contribute very little to predictive accuracy. Using too many features can
also risk overfitting and slow down model training and operation. Therefore, a
Sequential Feature Selection (SFS) procedure was employed to reduce the feature set
to the most informative subset. Sequential Feature Selection is a greedy algorithm that
builds a feature subset step by step:

a. Initialization: Start with no features selected (an empty set S = Q).

b. Iterative Addition: Iteratively add one feature at a time, choosing the feature
that, when combined with the currently selected set S, yields the highest
improvement in model performance (typically measured by validation
accuracy in our case). That is, in each round, we pick the feature that most
boosts the predictive power alongside those already chosen.

c. Stopping Criterion: Continue adding features until adding any remaining
feature does not appreciably improve performance, or until a predefined
number of features is reached.

Formally, given a universal feature set {1,2, ..., d}, SFS attempts to identify:
S* =arg sg{r?,?,)f.,d} D (S) (3.13)

where @(S) is the performance metric for a model built using the feature indices in S.
Commonly, @ is the average classification accuracy across a validation set. By pruning
away less informative features, SFS not only reduces the risk of overfitting but also

improves computational efficiency, both during training and at inference time. This step

Ref. code: 25686722041214TMO

30

is crucial because large-scale datasets might originally have included dozens of

potential feature dimensions, many of which offer minimal incremental benefit.
Through this process, we found that the first few features added contributed the

most to accuracy, and additional features after a point gave negligible gains. Ultimately,

four features were selected: FileSize, AvgLineLength, AsciiRatio, ByteKurtosis.

3.6 Final Dataset
After the feature selection process, the dataset was reduced into a more compact
and structured form which is used for model training. Each record in this final dataset
corresponds to a single file and contains the essential information needed for supervised
learning. The attributes kept are:
a. Filename: the identifier of the file, which allows traceability but not used as
predictive input.
b. FileSize: numerical value representing the total bytes in the file.
c. AvglineLength: the average number of characters per line, capturing
structure of text data.
d. AsciiRatio: proportion of printable ASCII characters in the file, reflecting
whether the content is mainly textual or binary.
e. ByteKurtosis: the kurtosis of byte distribution, measuring if a few values
dominate or bytes are evenly spread.
f. Optimal Algorithm Label: categorical value indicating the best compression
algorithm chosen for that file under the criteria explained in Section 3.4.
Thus, each row in the dataset can be represented as d; = {Filename, FileSize,
AvgLineLength, AsciiRatio, ByteKurtosis, BestAlgo} where d; is the i-th record and
BestAlgo is the ground-truth class label for supervised training.
The features were normalized before training to ensure that large values such as
file size did not dominate the learning process. Standardization places them on a
comparable scale. The final dataset therefore represents a balanced and concise
summary: the most informative four numerical features plus the assigned algorithm
label. This structure provides enough discriminatory power to the model while avoiding

redundant or noisy dimensions.

Ref. code: 25686722041214TMO

31

In summary, the final dataset is both simple and expressive. It captures the
essential factors influencing compression performance in four numerical descriptors,
and it pairs them with the optimal algorithm outcome. This dataset is the foundation for
the machine learning phase that follows in Section 3.7, where classifiers are trained to
map features to algorithm labels. It ensures that the training focuses only on meaningful
information and avoids unnecessary complexity, leading to more efficient and accurate

prediction.

3.7 Machine Learning Model Training

With each file now represented by a feature vector (using the reduced feature
set S) and a known optimal algorithm label ai, we set up a supervised learning task.
This is a multi-class classification problem: the model must learn to map a file’s
features to the correct compression algorithm. There are six possible algorithm classes
in our case (Zlib, Bzip2, LZMA, Zstd, LZ4, Brotli). We prepared the final dataset D =
{(xi(S), yi) | 1 £1<n}, where x;(S) is the feature vector of file f; restricted to the selected

feature subset and y; is the class label (the index of the optimal algorithm for file f5).

3.7.1 Classification Setup

A variety of candidate classification algorithms were explored to find the best
predictor for this problem. We evaluated common machine learning models including
Decision Tree, Random Forest, Support Vector Machine (SVM), k-Nearest Neighbors
(k-NN), Logistic Regression, and XGBoost (Extreme Gradient Boosting). We trained
each model on the training dataset and assessed their accuracy in predicting the correct

algorithm class.

3.7.2 Hyperparameter Tuning and Validation

To fairly compare models and tune them, we used cross-validation. The dataset
was split into k& folds. Here we used 5-fold cross-validation in most cases, and model
performance was averaged across different splits to ensure it generalizes. We also
performed hyperparameter optimization for each model. We searched for the

hyperparameter combination that gave the highest validation accuracy. The use of

Ref. code: 25686722041214TMO

32

cross-validation provided an estimate of how well each model would perform on unseen
data, mitigating overfitting during the tuning process. Formally, if 8 represents a set of

hyperparameters for a given model, we evaluate an average accuracy:

Acc(0) = %Zﬁl Accuracy (9; Dj) (3.14)

where Dj is the j-th fold used as a validation set. We chose the 6 that maximize this
Acc(0). Additionally, this process helped decide which type of model is inherently

best for our task.

3.7.3 Model Selection

After training and tuning, we found that an XGBoost classifier performed the
best in terms of accuracy in predicting the optimal compression algorithm, outshining
the other approaches. The XGBoost model was able to reliably learn the relationship
between our file features and the best algorithm choice. It achieved the highest cross-
validation accuracy, meaning it most often predicted the correct algorithm label for files
in the validation folds. This model benefits from the ensemble of trees, capturing non-
linear interactions among features. Moreover, XGBoost provides feature importance
scores, which aligned with our expectations.

The chosen XGBoost model was then trained on the entire training dataset,
using the selected features to finalize it. The model’s hyperparameters were tuned for a
balance of accuracy and complexity to avoid overfitting. Finally, this model was saved
for integration. It will be embedded into a C# application to automatically decide
compression algorithms before encryption in a real system. Therefore, we ensure the
research outcomes can be applied in practice, compressing files on-the-fly with the

learned optimal choices.

3.8 Summary
In summary, the methodology involved gathering a rich dataset of files,
extracting a diverse set of features to characterize each file’s content and structure,

determining the ground-truth best compression algorithm for each file through

Ref. code: 25686722041214TMO

33

comprehensive testing, and then training a machine learning model to predict that
choice using only the file’s features. Careful feature selection and model tuning were
key to achieving high prediction accuracy. The result is an adaptive compression
decision system that aims to yield compression ratios close to the optimal achieved by
exhaustive search, but much more efficiently by leveraging learning instead of brute-

force trial of every algorithm on every file.

Ref. code: 25686722041214TMO

34

CHAPTER 4
EXPERIMENTAL RESULTS

This chapter presents the results of our experiments, evaluating both the
compression algorithms performance and the accuracy of the machine learning model.
We analyze the data collected in the methodology and demonstrate the benefits of the
proposed approach using charts and figures. Key evaluation aspects include the
distribution of optimal algorithms, the predictive performance of the model, and

comparisons to non-adaptive compression strategies.

4.1 Optimal Algorithm Distribution

First, we examine which algorithms were most often the optimal choice across
the dataset. Figure 4.1 shows the frequency of each algorithm being the winning choice
for files in the dataset. This is presented as a bar chart, where the x-axis lists the six
compression algorithms (aggregating levels for simplicity), and the y-axis shows the
number of files for which each algorithm produced the smallest compressed size under
constraints. This chart reveals the overall winner distribution. We found that Zstd and
LZMA dominate a large portion of files, especially large text-heavy files. Meanwhile,
LZ4 and zlib are rarely the best in terms of compression ratio, because we favored speed

over ratio in this setup.

Ref. code: 25686722041214TMO

35

Number of Files Where Algorithm Is Optimal (Ground Truth)
57012

50000 A

40000 A

30000 A

20000 -

Number of files where optimal

10000 ~

lei b Bzip2 LZMA Zstd LZ4 Brotli
Algorithm

Figure 4.1 Optimal algorithm counts

In addition to overall counts, the detailed breakdown indicates which
compression level for each algorithm was most often optimal. In our results, we
observed that for algorithms like Zstd and Brotli, higher frequently provided the best
compression within 30s for many files. LZMA at a mid-level (around preset 6) also
appeared frequently, likely because it balances speed and ratio. On the other hand,
algorithms known for speed (LZ4) never appear as the best ratio-wise. They are more
likely to win in a time-constrained scenario not focused purely on size. This justifies
the need for an intelligent selection: the optimal choice varies considerably from file to

file.

4.2 Feature Importance and Selection Analysis

We do analyze how each feature contributes to the model. Results in Figure 4.2
show the incremental benefit of adding features during the feature selection process. In
this figure we start with no feature and then add them one-by-one in order that maximize
accuracy. The x-axis shows the number of features used, from 0 up to 14, and the y-
axis is the classification accuracy we got. The curve in Figure 4.2 rises steeply at first,
the first feature added gives a big jump in accuracy, meaning that feature alone carry

significant predictive power. In our case the single most informative feature was

Ref. code: 25686722041214TMO

36

FileSize, it already let the model make a decent guess. When the second and third
features are added, accuracy improves further. By around four features the gains
basically plateau, confirming the top 4-5 features already capture most necessary
information. Adding features beyond the fifth does not improve accuracy, the curve
flattens in the figure and in some trials even cause small dips because of noise. This

analysis validates our choice to focus on a small set of features

Feature Selection Performance

0.8 ./.———0—41 i g * o - * - - - o

Cross-Validation Accuracy
o ° ° o o °
N w £ w (=1 ~

o
b

Recommended: 4

0.0

2 4 6 8 10 12 14
Number of Features

Figure 4.2 Feature Selection Performance

Moreover, the final trained XGBoost model feature importance is shown in
Figure 4.3. This figure is a bar chart showing the relative importance of each selected
feature as model assesses them. The features in final model are FileSize,
AvgLineLength, AsciiRatio and ByteKurtosis. According to the plot, FileSize is most
influenced feature, which is expected. File size has strong impact on which algorithm
is best. The next most important feature is ByteKurtosis, it helps models to recognize
files that have highly skewed byte distribution. AvgLineLength and AsciiRatio also
have notable importance. AvgLineLength, even less dominant than FileSize or
ByteKurtosis, still contributes by identifying files with many short lines compared to
files with continuous stream data. The AsciiRatio helps to differentiate text-heavy file

from binary file. The percentages in Figure 4.3 confirm that no single feature dominates

Ref. code: 25686722041214TMO

37

the decision completely; the model really uses a combination. FileSize take around 30%
importance, and the rest shared by ByteKurtosis, AvgLineLength and AsciiRatio. This
balance reliance is good sign that the model considers multiple aspects of file structure,
not just based everything on size or entropy. In summary, the feature importance
reinforces our understanding: the model focuses on how large the file is and how text-

like or repetitive the content is, to predict which compression method is best.

XGBoost Feature Importance

0.310
0.30 ~ 0.287

0.25 -

0.20

Gain

0.15 ~

0.10 -

0.05 +

0.00 -

'\‘Le Qé\(’
?\\86 ‘(\0(& ; 3\’6‘\

Figure 4.3 Feature Importance

4.3 Hyperparameter Optimization Results
This section reports the best validated performance obtained by each candidate
classifier after tuning its hyperparameters. The summary bar chart in Figure 4.4 shows

the best cross-validation accuracy achieved by each model:

Ref. code: 25686722041214TMO

38

Hyperparameter Optimization Results
Best Accuracy for Each Algorithm

0 0.7966 0.7963

o
~

o
o

o
n

0.4189

14
IS
s

Best Cross-Validation Accuracy
o
w

0.24

0.14

0.0-

Machine Learning Algorithm

Figure 4.4 Hyperparameter Optimization Results

Figure 4.4 shows that Tree-based learners (XGBoost, Random Forest, Decision
Tree) and the instance-based KNN substantially outperform the linear baseline
(Logistic Regression) and the tested SVC configuration. The margin is small but steady
in favor of XGBoost over the two ensemble/tree competitors and KNN, indicating
boosted trees extract a bit more signal from interactions among features. Meanwhile,
the poor accuracy of SVC and Logistic suggests the decision boundary in this task is
highly non-linear and not well modeled by linear separators; they tend to underfit even
when tuned.

Although Random Forest and KNN are close, XGBoost attains the highest
validated score at 0.8053 and is selected as the final predictor. This choice also offers
practical benefits: built-in feature importance for interpretability, good control of
capacity via depth/regularization to avoid overfitting, and efficient inference time
suitable for integration into the C# pipeline.

The optimization results demonstrate that boosted decision trees provide the
best trade-off for this problem, high accuracy with manageable complexity. Linear and

margin-based baselines do not capture the structure of the features well, while XGBoost

Ref. code: 25686722041214TMO

39

reliably generalizes and will be used as the core predictive model in the subsequent

evaluations.

4.4 Classification Performance (Confusion Matrix)

To evaluate how well the trained model performs in practice, we look at the
confusion matrix of its predictions on a test set (or via cross-validation). The matrix is
visualized in Figure 4.5, which shows predicted algorithm classes versus actual optimal
algorithm classes for a set of files. Each row of the matrix corresponds to the true
algorithm (ground truth a;* for files), and each column corresponds to the algorithm
predicted by the model. The diagonal entries (where prediction matches actual)
represent correct predictions, while off-diagonals indicate mistakes, with the intensity

or number in each cell showing how many files fall into that category.

Confusion Matrix - Algorithm Families

10000
brotli - 2552 3 269 0 165
8000
bz2 - 14 1613 170 0 39
> 6000
€
L Izma - 46 231 0 135
[
2
|_
- 4000
zlib - 0 0 0 1 0
- 2000
zstd - 77 41 962 0
] | 1 1 = O
N " 2 30
6\0‘ v \,1,6‘ A

Predicted Family

Figure 4.5 Confusion Matrix — Algorithm Families

Ref. code: 25686722041214TMO

40

The confusion matrix reveals that the model achieves a high overall accuracy —
the majority of files lie on the diagonal, meaning the model correctly predicts their
optimal compression algorithm. The few errors the model makes are mostly between
algorithms that have somewhat similar performance profiles or occur in borderline
cases. One noticeable pattern is a slight confusion between Brotli and Zstd for some
files: these are both modern algorithms that compress well, and a few files that are
actually best compressed by Brotli were predicted to use Zstd by the model or vice
versa. Another area of confusion occurs between LZMA and Bzip2 on certain files.
These two algorithms are somewhat similar in that they aim for high compression at
the cost of speed, and for some text-heavy data the model might misidentify which of
the two will edge out the other. These off-diagonal entries in the confusion matrix are
relatively small compared to the correct predictions, indicating the error rate is low.
Importantly, when the model predicts wrong, it usually picks an algorithm that is the
second-best for that file rather than something completely unsuitable. Therefore, the
impact on compression ratio is minor in those cases. The confusion matrix confirms the
model predicts the optimal algorithm in most cases and only occasionally swaps
between algorithms that are in the same category of performance for a file. Overall,
Figure 4.5 demonstrates strong classification performance, with high true positive rates
for each compression algorithm class and misclassification errors that are infrequent

and mostly between similar algorithm choices.

4.5 Comparison with Baseline Compression

We evaluate the machine learning based compression strategy compared to a
traditional baseline compression (standard ZIP) over random 1,200 files to see their
performance. The comparison looks at compression effectiveness (compressed size)
and compression speed, also if machine learning method can improve both at the same
time. For fair analysis, we group test files by size: small (<10 MB), medium (10-300
MB), and large (>300 MB). This helps reveal trends that depend on input scale. The
results are summarized in Table 4.1, showing if machine learning -based method is
better, worse or similar to baseline in each case.

For small files (<10 MB), the machine learning selector is usually better than

baseline in both. Most of the time it produces a bit smaller compressed size than ZIP.

Ref. code: 25686722041214TMO

41

More importantly, it compresses much faster for this small input. The baseline has more
overhead on tiny file, machine learning approach often finishes quicker. In fact, for
almost every small file test, the model method gives smaller output and also less time.
This means on small data the machine learning approach gives consistent benefit in
both efficiency and speed.

For medium files (10-300 MB), the result are mixed. The machine learning
method still usually gets better compression ratio compared to baseline. But this comes
with cost of speed. The model method was slower. In fact, in our test it slowed on all
medium files, therefore the conventional compressor finishes faster. There is no case
where machine learning approach was better in both size and speed together for
medium. It usually gives gain in size reduction but sacrifices speed. For medium-sized
input, machine learning methods offer small benefits in size reduction but cannot match
baseline time.

For large files (>300 MB), the trade-off is clear. The machine learning method
always makes smaller archive than baseline, that is often much smaller for big files,
showing strength in effectiveness. But it compresses much slower on these large inputs.
The baseline was far faster, while machine learning method took much longer to finish.
Therefore, there was no case where machine learning improves metric for large files; it
always trades huge increase in time for smaller sizes. This suggests that while the model
reduces size substantially for large data, the time cost increases and may be impractical
when speed 1s important.

Overall, the machine learning algorithm selection outperformed baseline in
most cases when looking at individual metrics, especially for small files. It got smaller
size in majority and also faster compression for most inputs. The baseline only clearly
wins in speed for medium and large files, where model overhead is high. Importantly,
across all file tests, machine learning approach led to much smaller total compressed
data size while the total compression time is about same as baseline. In summary, the
machine learning method gives big benefits in compression effectiveness and often
improves speed, but the advantage depends on file size, and it may slow down on larger

data.

Ref. code: 25686722041214TMO

42

Table 4.1 Performance Comparison of Machine Learning Algorithm Selector vs.

Baseline ZIP Compression Over Random 1,200 Files

File Size Compression Size Compression Speed | Both Size & Speed
Group (Output) vs Baseline vs Baseline Improved?
Better — output is Better — compresses
commonly smaller faster in almost all | Yes — both better tin
(<?I(:l§/1[1B) than baseline cases speed and output
Size Save: 17% Time Save: 95% size
(7064 KB) (434 s)
Better — output Worse — compresses
Medium slightly smaller in slower for virtually | No — only better in
(10— most cases all files output size but
300 MB) Size Save: 13% Time Save: -1360% | slightly worse speed
(25 MB) (91 s)
Better — output Worse — compresses
Ve significantly smaller much slower on No — only better in
for all tested files large files output size but got
(>300 MB)
Size Save: 50% Time Save: -3173% worse speed
(158.66 MB) (-236 s)
Total Size Save: 36% Time Save: 107 s Yes — both better

In conclusion, the experiment comparison shows that machine learning base

selection systems give strong advantage on compression effectiveness, especially for
small input where both size and speed improve. For medium and large files, the model
still gives better output size, but runtime becomes slower. However, this trade-off is not
big problem for our target case. In real practice, most files submit to system are small,
usually less than 10 MB. Since the model works best in this range by making
compression faster and output smaller, it fits well with real operational needs. Even
though the method loses speed when handling very large files, the design is still very

suitable and effective for the actual data profile we face in application.

Ref. code: 25686722041214TMO

43

CHAPTER S
CONCLUSION AND FUTURE DIRECTION

5.1 Conclusion

Many studies have been conducted to explore ways to improve data
compression and reduce file transfer overhead. Traditional methods typically apply one
compression algorithm uniformly to all files, which may not be optimal for every file
type. Some approaches require manual user effort or complicated content analysis to
choose an algorithm, making them impractical. This independent study presents an
intelligent system that addresses these limitations by automatically selecting the
optimal compression method for each file using machine learning.

This independent study aims to develop an adaptive compression framework
that integrates machine learning with feature analysis of files. We assembled a large
corpus of real-world files from the SEC database and other sources, covering a variety
of file formats. For each file, various structural features (such as file size, entropy, and
byte distribution statistics) were extracted, and the best compression algorithm was
identified via exhaustive tests under practical time constraints. Then a predictive model
was trained to learn the relationship between file features and the optimal algorithm.

The experimental results show that the proposed model can reliably predict the
most effective compression algorithm for a given file. The model achieved around 80%
accuracy in cross-validation, meaning it correctly selected the best algorithm for most
files. As a result, the system often achieved compression ratios close to the theoretical
optimum for each file without needing to try all algorithms. Our approach clearly
outperforms the single-algorithm baseline: it yields smaller compressed files on
average, and for many cases (especially with smaller files) it also compresses faster
than using a fixed method. This confirms that an adaptive, file-specific compression
strategy can significantly improve efficiency of storage and transmission while keeping
processing time within acceptable limits.

However, the benefits vary depending on file characteristics. The results also
reveal that for extremely large files, the selected algorithm (often a slower but high-

compression method) sometimes leads to longer processing time compared to a fast

Ref. code: 25686722041214TMO

44

baseline like standard Zip. This trade-off indicates that while our method maximizes
compression, it may sacrifice speed on very large data. Fortunately, even in such cases,
the chosen algorithm is usually the second-best alternative and the impact on final size
remains beneficial. The study confirms that no single compression algorithm is
universally optimal — the best choice differs from file to file, validating the core premise

of this research.

5.2 Limitations

Despite the model's successful performance, this study has several limitations.
First, the training dataset was composed mostly of financial data, which creates a
potential domain bias; the model may not perform as well on files from vastly different
fields, such as genomics or multimedia. Second, a clear trade-off was observed for large
files, where the model's optimal choice "compresses much slower on these large inputs"
to achieve a smaller size, a trade-off that may not be acceptable in all time-sensitive
applications. Finally, the scope was limited to six specific lossless compression

algorithms; other modern or specialized algorithms were not included in the analysis.

5.3 Future Direction

The Future work will focus on techniques to further improve the system, such
as integrating compression speed prediction into the decision-making, which will help
optimize both compression ratio and time performance especially for large files.
Another enhancement is to expand the feature set or use deeper learning techniques,
which might increase prediction accuracy beyond the current 80%. For instance,
including content-specific features or training specialized models for certain file
categories might help the model differentiate algorithm choices even better.
Additionally, evaluating the approach on broader types of data or under different
operational constraints (such as streaming data or more stringent time limits) will be
valuable. These improvements will help increase the practicality and robustness of the
system. Ultimately, the framework introduced by this independent study provides a
foundation for intelligent compression in data pipelines, and future developments will

aim to make it even more accurate, faster and widely applicable.

Ref. code: 25686722041214TMO

45

REFERENCES

Alakuijala, J., & Szabadka, Z. (2016). Brotli compressed data format (RFC
7932). Internet Engineering Task Force. doi: 10.17487/RFC7932

Bartik, M., Ubik, S., & Kubalik, P. (2015). LZ4 compression algorithm on FPGA.
Proceedings of the 2015 IEEE International Conference on Electronics,
Circuits, and Systems (ICECS) (pp. 179-182). Cairo, Egypt: IEEE. doi:
10.1109/ICECS.2015.7440278

Biau, G., & Scornet, E. (2016). A random forest guided tour. TEST, 25(2), 197-227.
doi: 10.1007/s11749-016-0481-7

Burtchell, B. A., & Burtscher, M. (2024). Using machine learning to predict
effective compression algorithms for heterogeneous datasets.
Proceedings of the 2024 Data Compression Conference (DCC) (pp. 183-
192). Snowbird, UT, USA: IEEE. doi: 10.1109/DCC58796.2024.00026

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system.
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2016) (pp. 785-794). San
Francisco, CA, USA: ACM. doi: 10.1145/2939672.2939785

Collet, Y., & Kucherawy, M. (2018). Zstandard compression and the
application/zstd media type (RFC 8478). Internet Engineering Task
Force. doi: 10.17487/RFC8478

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, 13(1), 21-27. doi:
10.1109/TIT.1967.1053964

Deutsch, P. (1996). DEFLATE compressed data format specification version
1.3 (RFC 1951). Internet Engineering Task Force. doi:
10.17487/RFC1951

Fitriya, L. A., Purboyo, T. W., & Prasasti, A. L. (2017). A review of data
compression techniques. International Journal of Applied Engineering
Research, 12(19), 8956-8963.

Guido, R., Ferrisi, S., Lofaro, D., & Conforti, D. (2024). An overview on the

Ref. code: 25686722041214TMO

46

advancements of support vector machine models in healthcare
applications: A review. Information, 15(4), 235. doi:
10.3390/info15040235

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical
learning: With applications in R (2nd ed.). New York, NY: Springer.

Jin, Y., Fu, Y., Liu, T., & Dong, L. (2019). Adaptive compression algorithm
selection wusing LSTM network in column-oriented database.
Proceedings of the 2019 IEEE 3rd Information Technology, Networking,
Electronic and Automation Control Conference (ITNEC) (pp. 652-656).
Chengdu, China: IEEE. doi: 10.1109/ITNEC.2019.8729341

Juelsson Larsen, L., & Persson, D. (2023). Compression selection for columnar
data using machine-learning and feature engineering (Master's thesis).
Malmo, Sweden: Malmo University. Retrieved from
https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-61266

Mahoney, M. (2012). Data compression explained. Round Rock, TX: Dell Inc.
Retrieved from https://mattmahoney.net/dc/dce.html

Yang, H., Qin, G., & Hu, Y. (2023). Compression performance analysis of
different file formats. arXiv preprint arXiv:2308.12275. Retrieved from
https://arxiv.org/abs/2308.12275

Ref. code: 25686722041214TMO

