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ABSTRACT 

 

This independent study addresses the inefficiency of using a single lossless 

compression algorithm for diverse file types, a common practice in financial reporting 

and other domains. We propose an adaptive framework that uses supervised machine 

learning to predict the most suitable compression method for each file. A dataset of 

approximately 120,000 real-world files (including text, tabular, and semi-structured 

formats) was created. Each file was compressed using six major algorithms (Zstd, LZ4, 

Brotli, LZMA, Bzip2, and zlib) to determine the "ground-truth" best method based on 

the lowest compression ratio achieved within a 30-second time limit. We extracted an 

initial set of 15 structural features for each file. A Sequential Feature Selection (SFS) 

technique was then employed to identify the most predictive subset of features. The 

final model predicts the optimal algorithm, achieving compression ratios close to the 

empirical optimum without the high cost of an exhaustive search. This model can be 

embedded into existing data pipelines to automatically reduce storage costs and data 

transfer times with minimal added latency. 
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CHAPTER 1 

INTRODUCTION 

 

Nowadays, data compression is playing an increasingly important role in 

various technologies. It reduces storage costs, lowers data transfer, and optimizes 

resource utilization for many enterprises. Yang, Qin and Hu (2023) state that traditional 

data compression algorithms work well with specific types of data, but this can cause 

problems with heterogeneous datasets and complicated file structures. This research 

aims to explore the potential of machine learning to find the most effective compression 

method for a given file based on its data structure. By applying machine learning 

models, we can achieve higher compression ratios with acceptable compression speeds, 

resulting in efficient resource management compared to traditional methods.  

 

1.1 Data Compression   

Data compression is the process of encoding data into a file, producing an output 

with fewer bits than the original file. Data compression reduces the size of data by 

identifying and eliminating redundancy and irrelevancy. Compression techniques are 

essential for various applications. Reducing file size leads to reduced storage space, 

increasing data transfer speeds, lowering bandwidth usage, and enhancing resource 

utilization (Fitriya, Purboyo and Prasasti, 2017). 

Traditional data compression algorithms can be categorized into lossless and 

lossy compression. Lossless compression algorithms, such as Huffman coding and 

Lempel-Ziv variations, ensure that, after decompression, the reconstructed data is 

identical to the original. Unlike lossless compression, lossy compression algorithms, 

such as JPEG for images, achieve higher compression ratios but discard some data, so 

the reconstructed data may not match the original quality. 

 

1.2 Machine Learning with Data Compression 

Machine learning is a field of artificial intelligence (AI) that focuses on enabling 

computer systems to learn from data without explicit programming. It involves the 

development of algorithms that allow computers to identify patterns, make predictions, 
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and improve their performance over time based on the input data. Machine learning has 

gradually become a powerful tool for solving various modern problems, including data 

compression. 

In this research, machine learning can be used to learn patterns and entropy of 

data in files to improve compression efficiency. Machine learning can analyze file 

structures, identify relevant features, and predict the most effective data compression 

algorithm for a given file. Burtchell & Burtscher (2024) demonstrated that in traditional 

compression algorithms, single compression algorithms might not fit diverse data. It 

might have a good compression ratio with most types of files, but it is impossible for 

all types of files. Then, the approach of using machine learning has the potential to 

outperform using single data compression algorithms, especially for heterogeneous 

datasets that diverse data characteristics. 

 

1.3 Problem Statement 

Traditional lossless compression algorithms often do not perform consistently 

on different kinds of data. Since the structure of files varies a lot, no single algorithm 

always gives the best result. This study aims to solve the problem of selecting 

algorithms by using machine learning to predict the most effective compression for 

each file, based on its structural features. 

 

1.4 Motivation  

The motivation for this research stems from the limitations of using one static 

compression method for all files. This approach often leads to suboptimal compression 

ratios and inefficient system performance, especially when working with diverse 

datasets. By applying machine learning, we aim to develop a more adaptive and 

intelligent compression system that selects the optimal algorithm dynamically, based 

on file structure.  

 

1.5 Objectives  

The objective of this research is to develop machine learning models for 

predicting the best compression algorithms for specific files in terms of compressed 

size and compression time, based on their structural features.  
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1.6 Expected Outcomes  

The expected outcome of this research is a machine learning model that can 

intelligently predict the most effective compression algorithm, in terms of compressed 

size and compression time, for a given file based on its structural features.  

 

1.7 Scope and Limitation  

The scope of this study focuses only on lossless compression algorithms. The 

dataset for training will mostly come from financial data. The algorithms within scope 

are Zstd, LZ4, Brotli, LZMA (XZ), Bzip2, and Deflate (ZIP, Gzip). We do not focus 

on lossy compressions or any data that do not belong to financial type.  

 

1.8 Structure of the Independent Study 

This independent study contains 6 chapters. 

Chapter 1: Introduction 

This chapter introduces data compression techniques, challenges of traditional 

data compression algorithms, and the possibility of applying machine learning in data 

compression including current problems, the aim and the scope of the research. 

Chapter 2: Review Of Literature 

This chapter discusses the fundamental tools and techniques of the research. 

This chapter 

also includes the review and validation of the related previous works. 

Chapter 3: Methodology 

This chapter describes the dataset creation, feature extraction, model 

development, and evaluation process for predicting optimal compression algorithms. 

Chapter 4: Experimental Results 

Presents the results of the compression testing and machine learning model 

performance. Includes performance metrics, model comparisons, and analysis of 

feature selection outcomes. 

Chapter 5: Conclusion and Future Direction 
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This chapter is the summarization of the research on applying machine learning 

to identify optimal file compression methods and discusses future directions for 

improving adaptive data compression.   
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CHAPTER 2 

REVIEW OF LITERATURE 

 

 

This chapter explains studies related to data compression and reviews previous 

work concerning machine learning approaches for identifying optimal file compression 

algorithms. This chapter also explains the background knowledge, techniques and tools 

that are used in this research.  

 

2.1 Data Compression  

Data compression is the technique used to reduce file size by encoding 

information efficiently. It is commonly used for optimizing data storage and improving 

data transmission. Compression methods are usually divided into two categories: 

lossless compression and lossy compression. Lossless methods ensure decompress data 

the same as original data, mostly used in scenarios where data integrity is crucial, such 

as executable programs, textual information, or archival systems. Lossless compression 

algorithms that are currently popular include Huffman coding, DEFLATE (zlib), bzip2, 

Lempel-Ziv-Markov chain Algorithm (LZMA), Zstandard (Zstd), LZ4, and Brotli. 

 

2.2 Lossless Compression Algorithms 

This study utilizes multiple well-established lossless compression algorithms. 

The following subsections provide detailed descriptions of these algorithms, including 

their strengths and potential limitations. 

 

2.2.1 zlib (DEFLATE) 

The DEFLATE algorithm used in zlib combines the LZ77 algorithm and 

Huffman coding. LZ77 does compression by replacing repeated data sequences with 

pointers to previously seen sequences, which greatly helps reduce redundancy. 

Huffman coding is then applied for entropy encoding, to compress the data even more. 

Due to synergy between LZ77 and Huffman coding, zlib achieves a good 

balance of speed, memory usage, and compression ratio. It was also widely adopted in 
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web protocols (HTTP compression, PNG image format, etc.) for its reliability and 

performance (Deutsch, 1996). 

 

2.2.1.1 LZ77 Dictionary Encoding 

LZ77 (Ziv-Lempel 1977) compresses data by replacing repeated occurrences of 

substrings with references to a single copy of that substring existing earlier in the 

uncompressed data. Formally, suppose we have an input sequence of bytes: 

 

𝑆 = (𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛), (2.1) 

 

where each 𝑠𝑖 is a symbol (often a byte). Instead of storing a repeated substring 

(𝑠𝑘, … , 𝑠𝑘+𝑚−1) in full, LZ77 stores a triple (𝑑, 𝑙, 𝑐): 

 𝑑 : The distance backward from the current position (how far back to copy). 

 𝑙  : The length of the matched substring. 

 𝑐 : The next literal character that follows the matched substring (for the next 

symbol). 

 Whenever the compressor detects a sequence already seen, it emits (𝑑, 𝑙, 𝑐) 

rather than the actual substring. Mathematically, if 𝑠𝑗 = 𝑠𝑗−𝑑 for a match of length 𝑙, 

the LZ77 compressor outputs: 

 

(𝑑, 𝑙, 𝑠𝑗+𝑙) (2.2) 

 

These triple references what was already encountered, thus reducing 

redundancy. 

 

2.2.1.2 Huffman Entropy Coding 

After LZ77, Huffman coding is applied to encode the tokens (distances, lengths, 

and literal characters) using shorter bit patterns for more frequent symbols and longer 

bit patterns for less frequent ones. If 𝑝(𝑥𝑖) is the probability of symbol 𝑥𝑖, Huffman 

coding aims to produce a code of length approximately −log2𝑝(𝑥𝑖) bits for each 

symbol. The Huffman algorithm ensures that no code is a prefix of another (prefix-free 
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property), facilitating optimal or near-optimal entropy encoding under certain 

assumptions.  

 

2.2.2 bzip2 

The bzip2 algorithm uses the Burrows-Wheeler Transform (BWT), Move-to-

Front (MTF) transformation, Run-length Encoding (RLE), and Huffman encoding. 

BWT rearranges data in format that makes compression better, and Huffman encoding 

compresses the data very effectively. 

bzip2 has better compression ratio than DEFLATE, but it has higher 

computational overhead with slower compression speeds, which makes it less suitable 

for real-time applications or environments with limited computational resources 

(Mahoney, 2012). 

 

2.2.2.1 Burrows–Wheeler Transform (BWT) 

The BWT rearranges a block of input data 𝑆 into a form that is more amenable 

to compression by grouping repeated characters. Given a block 𝑆 of length 𝑛, the BWT 

outputs a transformed block 𝐵𝑊𝑇(𝑆). Briefly: 

a. Construct all 𝑛 rotations of 𝑆. 

b. Sort these rotations lexicographically. 

c. The last column of this sorted matrix is taken as 𝐵𝑊𝑇(𝑆), along with the 

index of the original string in the sorted list for use in decompression. 

 

2.2.2.2 Move-to-Front (MTF) Coding 

After BWT, repeated patterns tend to cluster. MTF takes advantage of this by 

maintaining a list of symbols and moving any symbol to the front upon its use. If 𝐿 is 

our symbol list and 𝑠 is the symbol encountered, the MTF-encoded output is the index 

of 𝑠 in 𝐿 at the time it appears: 

 

MTF(𝑠, 𝐿) = indexOf(𝑠, 𝐿) (2.3) 

 

Then 𝑠 is moved to the front of 𝐿. Common symbols thus often produce small 
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index values, which are more easily compressed. 

 

2.2.2.3 Run-Length Encoding (RLE) 

For consecutive repeated symbols in the MTF output, bzip2 applies an RLE step 

to compress runs of the same value. 

 

2.2.2.4 Huffman Coding 

Finally, bzip2 encodes the output using Huffman coding, assigning variable-

length bit patterns to symbol frequencies.  

 

2.2.3 LZMA 

The Lempel-Ziv-Markov chain Algorithm (LZMA) is a dictionary-based 

method that combines range encoding to achieve very high compression ratios. The 

dictionary mechanism is similar in spirit to LZ77, but LZMA refines how matches are 

searched and encoded.  

LZMA takes advantage of past data to encode repeating patterns very 

efficiently. Although LZMA gives great compression, it has very high computational 

usage, so it is not practical for time-critical situations or environment that have limited 

resources (Mahoney, 2012). 

 

2.2.3.1 Dictionary Match Search 

Like LZ77, LZMA maintains a sliding dictionary window of recent data. If a 

substring (𝑠𝑘 , … , 𝑠𝑘+𝑚−1) reappears, it references that substring. However, it employs 

more sophisticated match-finding techniques (e.g., binary tree or hash chain) to speed 

up searching for repeats. 

 

2.2.3.2 Range Encoding 

LZMA replaces Huffman coding with range encoding, which represents 

probabilities by continuously refining a range [𝑙𝑜𝑤, ℎ𝑖𝑔ℎ). Symbols with higher 

probability occupy a larger portion of the range, allowing more efficient representation 
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of data. If 𝑝(𝑠𝑖) is the probability of symbol 𝑠𝑖, the encoder narrows the interval based 

on 𝑝(𝑠𝑖). Mathematically, for a symbol 𝑠𝑖, 

 

range𝑛𝑒𝑤 = range × 𝑝(𝑠𝑖),

low𝑛𝑒𝑤 = low + ∑ (range × 𝑝(𝑠𝑗))𝑗<𝑖
 (2.4) 

 

This process continues iteratively for each symbol 

 

2.2.4 Zstandard (Zstd) 

Zstandard (Zstd) algorithm is a modern lossless compression algorithm that was 

developed by Facebook. It is using dictionary compression techniques combined with 

entropy encoding methods, offering a flexible balance between speed and compression 

ratio by adjusting compression levels. 

a. Dictionary Builder: At higher levels, Zstd can learn an optimal dictionary 

for a specific dataset, improving compression ratio for small or 

homogeneous data. 

b. Entropy Encoding: Zstd uses FSE (Finite State Entropy) or Huff0, both of 

which compress symbols based on their statistical frequencies in a single 

pass. If the probability of a symbol 𝑠𝑖 is 𝑝(𝑠𝑖), the code lengths approach 

−log2𝑝(𝑠𝑖), like Huffman. 

c. Adjustable Levels: Zstd supports numerous compression levels, allowing 

users to trade off speed for higher ratio or vice versa. 

Zstd is popular among big data and cloud storage due to its compression speed 

and compression ratio (Collet & Kucherawy, 2019). 

 

2.2.5 LZ4 

The LZ4 algorithm focuses on speed rather than maximum compression ratio. 

It is applying LZ77 algorithm with optimized way to do very fast compression and 

decompression. It uses an LZ77-style dictionary approach but aggressively optimized 

for real-time operation: 
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a. It maintains a hash table of recent data blocks; upon detecting a match, it 

replaces a substring with a back-reference (𝑑, 𝑙). 

b. The compressed stream is minimal in overhead, focusing on making both 

compression and decompression extremely fast. 

LZ4 is used a lot in situations where compress and decompress time is more 

important than the highest compress ratio (Bartik, Ubik and Kubalík, 2015). 

 

2.2.6 Brotli 

Brotli algorithm was developed by Google mainly for web and text 

compression. It combines LZ77-style dictionary compression, Huffman coding, and 

second-order context modeling to optimize text and web content compression.  

a. Window-Based Dictionary: Brotli maintains a sliding window for repeated 

pattern detection, referencing repeated substrings similarly to LZ77. 

b. Second-Order Context Modeling: Brotli attempts to predict upcoming 

symbols by using context from previously decoded symbols. 

c. Huffman: Once repeated sequences are identified, Brotli employs a 

Huffman-based algorithm to assign variable-length codes to repeated 

patterns. 

Its strength is handling repetitive text data efficiently, which is very common in 

web technologies particularly for text-based data, such as HTML, CSS, and JavaScript, 

where repeated substrings are abundant (Cover & Hart, 1967). 

 

2.3 Machine Learning Approaches for Data Compression 

Recent research indicates that using machine learning can greatly simplify the 

difficulty with data compression by adjusting the algorithm selection automatically to 

the characteristics of the file, including entropy, byte distributions, and file metadata. 

There is a remarkable advancement from the static heuristic-based selections in these 

adaptive data driven methods. 
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2.3.1 Decision Tree 

Decision Tree is a supervised machine learning algorithm used for classifying 

and regression. It works by splitting the data into smaller subsets again and again based 

on feature value. Each split is chosen using metrics such as Gini impurity or information 

gain, which show how good the split makes the data different. Decision Tree is very 

easy to understand but often overfit when dataset is complex, unless controlled with 

techniques like pruning or ensemble methods such as Random Forest and XGBoost. 

 

 

Figure 2.1 Decision Tree 

 

2.3.2 Random Forest 

Random Forest is made of many decision trees that run in parallel, using random 

samples of data. It combines decisions from each tree using majority vote, improving 

predictive accuracy and reducing variance. Random Forest works well even when data 

are noisy or have missing values. It also gives feature importance, show which input is 

most useful for prediction. But it can be slow if it has too many trees or a big dataset 

(Biau & Scornet, 2016). 
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Figure 2.2 Random Forest 

 

2.3.3 XGBoost 

Extreme Gradient Boosting (XGBoost) is a very strong ensemble learning 

algorithm that uses gradient-boosted decision trees. It builds decision tree step by step, 

reducing residual errors in each iteration. XGBoost is known for its efficiency, 

scalability, and accuracy, especially on structured datasets. It can handle large and 

complex feature interactions (Chen & Guestrin, 2016). 

 

2.3.3.1 Ensemble of Decision Trees 

XGBoost iteratively adds new trees to reduce the error of prior trees. 

 

2.3.3.2 Objective Function 

If 𝑦 is the real target and 𝑦̂𝑖 is the prediction at the 𝑖-th iteration, XGBoost 

updates the model by: 

 

𝑦̂𝑖+1 = 𝑦̂𝑖 + 𝜂 ⋅ 𝑓𝑖(𝐱), (2.5) 

 

where 𝑓𝑖 is a newly added decision tree, and 𝜂 is the learning rate. The final prediction 

is the sum of all trees’ outputs. 
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2.3.3.3 Regularization 

XGBoost includes regularization terms on tree complexity to prevent overfitting 

and encourage generalization. 

 

2.3.4 Support Vector Machine (SVM) 

Support Vector Machines classify data by finding hyperplanes that maximize 

separation margin between classes. It uses kernel functions to capture nonlinear 

relationships in data. However, SVM can require substantial computational resources 

when working with big datasets, making it not the best option for real-time compression 

predictions on large-scale data (Guido, Ferrisi, Lofaro and Conforti, 2024). 

 

 

Figure 2.3 Support Vector Machine 

 

2.3.5 Logistic Regression 

Logistic Regression model probabilistic outcomes using linear combination of 

input features, which makes it interpretable and fast to compute. However, because it 

assumes data is linearly separable, it is not as useful when dealing with high-

dimensional or complex datasets that are typical in compression selection tasks. 

Let 𝐱 ∈ ℝ𝑑 be an input vector (file features), then the model predicts: 
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𝑝̂ = 𝜎(𝐰𝑇𝐱 + 𝑏), where 𝜎(𝑧) =
1

1+𝑒−𝑧
 (2.6) 

 

Although straightforward and easily interpretable, logistic regression struggles 

to capture non-linear relationships unless extended with polynomial or other feature 

transformations (James, Witten, Hastie and Tibshirani, 2021). 

 

 

Figure 2.4 Logistic Regression 

 

2.3.6 K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) makes predictions by looking at the 𝑘 closest 

training examples in feature space. The class is determined by majority vote among 

these neighbors. For a query point 𝐱: 

 

𝑦̂(𝐱) = majority{ 𝑦𝑖 ∣ 𝐱𝑖 ∈ 𝒩𝑘(𝐱)}, (2.7) 

 

where 𝒩𝑘(𝐱) is the set of 𝑘 closest points to 𝐱 under a distance metric (often Euclidean 

distance). 
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Figure 2.5 K-Nearest Neighbors 

 

It is simple and intuitive, but its prediction speed becomes but its prediction 

speed degrades with large datasets, making it less practical for real-time or large-scale 

compression tasks (Cover & Hart, 1967). 

 

2.4 Model Comparison 

This section provides a comparative overview of both compression and machine 

learning algorithms used in the study. 

Table 2.1 Comparison of Lossless Compression Algorithms 

Algorithm 
Compression 

Ratio 

Compression 

Speed 

Decompression 

Speed 

Computational 

Cost 

zlib Medium High High Low 

bzip2 High Medium Medium Medium 

LZMA Very High Low Medium High 

Zstd High High High Medium 

LZ4 Low Very High Very High Very Low 

Brotli High Medium High Medium 

 

The compression choice depends heavily on application-specific factors such as 

speed and compression efficiency. 
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Table 2.2 Comparison of Machine Learning Algorithms 

Algorithm Accuracy Interpretability 
Computational 

Cost 

Training 

Speed 

XGBoost Very High Medium High Medium 

Random 

Forest 
High Medium Medium Medium 

Support 

Vector 

Machine 

High Low High Low 

Logistic 

Regression 
Medium High Low High 

Decision 

Trees 
Medium High Low High 

K-Nearest 

Neighbors 
Medium Medium Medium High 

 

2.5 Related Works 

This research reviewed 3 related works that use machine learning techniques 

to select compression algorithms. The following are the descriptions of their works. 

 

2.5.1 Using Machine Learning to Predict Effective Compression Algorithms for 

Heterogeneous Datasets (Burtchell and Burtscher, 2024) 

Burtchell and Burtscher (2024) proposed MLcomp, a method that uses a 

Random Forest classifier to automatically predict optimal compression algorithms for 

heterogeneous datasets. Their model uses the compression ratio from short preliminary 

runs on representative file as input features for predicting the most effective 

compression algorithms among numerous possible combinations. They reported 

achieving approximate 98% of compression performance obtain by exhaustive 

evaluating all possible algorithms. Despite these results, MLcomp methodology only 

focus on optimizing compression ratio, neglecting computational runtime or resource 

usage considerations during compression prediction. This independent study clearly 

addresses this limitation by including both compression effectiveness and 

computational runtime into predictive criteria. 
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2.5.2 Adaptive Compression Algorithm Selection Using LSTM Network in 

Column-oriented Database (Jin et al., 2019) 

Jin et al. (2019) has developed adaptive methods using a Long Short-Term 

Memory (LSTM) neural network models for predicting the optimal compression 

algorithm specifically tailored to column-oriented databases. Their methodology 

involves training LSTM network on sequences of raw data byte extract from database 

columns, enabling models to capture intrinsic data patterns and predicting the most 

efficient compression algorithm for each data block. Their result showed prediction 

accuracy around 64% in training set and approximate 55% in heterogeneous testing 

datasets. Despite moderate predictive performance, the LSTM-driven adaptive 

selection consistently yielded better compression outcome compared to fixed heuristic 

method typically employed in database systems. Their study highlights both the 

potential and challenges of applying ML-based selection approach, particularly 

emphasizing complexity and computational overhead associated with deep learning 

method for real-time predictions scenario. 

Unlike this deep learning approach for databases, this independent study 

focuses on a broader range of heterogeneous file types and uses computationally lighter 

machine learning models to ensure minimal prediction latency. 

 

2.5.3 Compression Selection for Columnar Data using Machine-Learning 

(Larsen and Persson, 2023) 

Larsen and Persson (2023) have introduced a machine learning-driven 

framework that uses XGBoost algorithm for automatically selecting most cost-effective 

compression algorithm and encoding combination specific tailored columnar database. 

Their research utilizes carefully design cost functions that integrate three critical 

factors: compression ratio, compression time and decompression time. This enables the 

system to optimize compression not just data size but explicitly balance storage 

efficiency and processing overhead. Using extensive feature engineering based on real-

world IoT telemetry data store in ClickHouse database, their model achieves impressive 

predictive accuracy approximately 99% on their test dataset, with around 90% accuracy 

when predicting compression strategies for unseen data columns. Furthermore, 

deployment of their machine learning recommendations significant enhanced system 

Ref. code: 25686722041214TMO



18 

 

 

 

 

performance, achieved roughly 95% increase in compression speed and nearly 60% 

improvement in decompression speed. However, this improvement came at the expense 

of storage efficiency, resulting in about 66% reduction in compression ratio compared 

highest possible compression scenario. Their study highlights strength and potential 

trade-off involved when applying machine learning models for adaptive compression 

decisions, particularly emphasizing computational efficiency and feature relevance 

maintaining high predictive accuracy in column-oriented storage environment. 

While their work balances compression ratio with both compression and 

decompression time, this study prioritizes achieving the maximum compression ratio 

(lowest size) within a strict upload time budget (30 seconds), a constraint more relevant 

to file transfer and storage pipelines. 
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CHAPTER 3 

METHODOLOGY 

 

This chapter details the experimental framework for predicting the optimal 

compression algorithm for a given file. The process spans data collection, feature 

extraction, compression benchmarking, labeling of best algorithms per file, feature 

selection, and machine learning model training. Each step is described in sequence, 

with a particular focus on the features extracted from files and the rationale behind 

them. 

Figure 3.1 shows a conceptual flow diagram representing the methodological 

pipeline from data gathering to machine learning-based decision-making: 

 

 
Figure 3.1 Overview of the methodology 

 

Figure 3.1 illustrates the complete methodology pipeline. The process begins 

with Data Collection. From this data, two parallel processes are initiated: Feature 

Extraction, which identifies 15 initial features to create "Feature Data”, and 
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Compression Testing, which runs all compression algorithms on the files to generate 

"Compression Metrics". 

These metrics are then used for Best Algorithm Selection to determine the 

single best algorithm for each file. This best algorithm label is combined with the 

"Feature Data" and passed to Feature Selection, which narrows the features down to 

the 4 most predictive ones. This creates the final Dataset, which is used for Model 

Training & Validation. Finally, the trained model undergoes Evaluation to produce 

the deployable Machine learning model. 

 

3.1 Data Collection 

A large dataset of 120,263 files, denoted as set ℱ = {𝑓₁, 𝑓₂, …, 𝑓ₙ} with n = 

120,263 was compiled to capture diverse real-world data. These files cover a broad 

range of types, including plain text, structured documents, images, and other common 

formats. Each file underwent an integrity check to ensure it was not corrupted or 

incomplete, as corrupted data could bias the results. Basic metadata recorded for each 

file included the file name, file size (|𝑓ᵢ|), file extension, and file type (a coarse category 

label). These metadata fields are summarized in Table 3.1 below, which presents a clear 

overview of the information collected during data preparation.  

Table 3.1 Summary of basic file metadata collected during data preparation 

Metadata Description 

File name The original name of the file (used for identification). 

File size The size of the file in bytes, denoted as |𝑓𝑖| . 

File extension The file’s extension (e.g., .txt, .jpg) indicating format. 

File type 
A coarse category of the file (e.g., Text, Image, Archive) based 

on its format or content. 

 

By assembling a wide variety of file types and sizes (ranging from ~1 KB up to 

2 GB), the study ensures that the subsequent analysis reflects realistic and 

heterogeneous scenarios. This diversity is important because compression effectiveness 

can vary greatly with file structure and content. 
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3.2 Feature Extraction 

For every file 𝑓ᵢ ∈ ℱ, a feature vector xᵢ was generated to capture key 

characteristics that might influence compressibility. Formally, each file is transformed 

into xᵢ = (𝑥ᵢ₁, 𝑥ᵢ₂, …, 𝑥ᵢd), where d is the total number of extracted features. In total, 15 

numeric features were extracted from each file. These features encompass basic 

metadata, statistical properties of the byte content, and measures of redundancy or 

structure in the file. Before modeling, all feature values were scaled to a consistent 

range because their magnitudes differ. The description of all extracted features is shown 

below: 

 

3.2.1 File Size (N) 

The total number of bytes in the file. This is a basic attribute given by the length 

of the byte sequence. This feature simply captures the file’s size. 

 

3.2.2 Entropy 

The Shannon entropy of the file’s byte-value distribution, measuring the 

randomness or unpredictability of bytes. We compute this by treating the file as a 

sequence of symbols (0–255) and calculating the entropy of their frequency 

distribution. Let 𝑝𝑖 be the probability of byte value 𝑖 (estimated as the frequency of 𝑖 

divided by 𝑁). The entropy is then: 

 

𝐻 = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖
255
𝑖=0  (3.1) 

 

where the sum is taken over all byte values that occur in the file. A higher 𝐻 (up to 8 

bits for 256 uniform symbols) indicates more uniform and random byte content, 

whereas lower values indicate more structured or repetitive content. 

 

3.2.3 Chi-Square (𝝌𝟐) 

A chi-square goodness-of-fit statistic comparing the file’s byte frequency 

distribution to a uniform distribution. It is defined as: 
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𝜒2 = ∑
(𝑐𝑜𝑢𝑛𝑡𝑖−𝑁/256)2

 𝑁/256
 255

𝑖=0  (3.2) 

 

where 𝑐𝑜𝑢𝑛𝑡𝑖 is the observed frequency of byte value 𝑖 and 𝑁/256 is the expected 

frequency for a uniform distribution (with 𝑁 total bytes and 256 possible values). A 

larger 𝜒2 indicates the byte frequencies deviate more from uniform. Therefore, certain 

byte values appear often than expected by chance. 

 

3.2.4 Byte Variance 

The statistical variance of the byte values interpreted as numerical 0–255. This 

feature measures the spread of byte values around their mean. If 𝑏 =
1

𝑁
∑ 𝑏𝑖

𝑁
𝑖=1 is the 

mean byte value, the variance is: 

 

𝜎2 =
1

𝑁
∑ (𝑏𝑖 − 𝑏̅)

2𝑁
𝑖=1  (3.3) 

 

Higher variance means the byte values are more widely distributed across the 

0–255 range, whereas low variance means the bytes cluster around a certain value. 

 

3.2.5 Byte Kurtosis 

This feature measures how “peaky/heavy-tailed” the file’s byte-value 

distribution is. If ByteKurtosis is high, this indicates a few byte values dominate (often 

more compressible). If it is low, bytes are spread more evenly (usually less obvious 

redundancy). The formula can be explained as: 

 

ByteKurtosis =
1

𝑁
∑ (𝑏𝑗−𝜇)

4𝑁
𝑗=1

(
1

𝑁
∑ (𝑏𝑗−𝜇)

2𝑁
𝑗=1 )

2 (3.4) 

 

where: 

𝑁 = number of bytes in the file 

𝑏𝑗 = value of the 𝑗-th byte (0–255) 
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𝜇 =
1

𝑁
∑ 𝑏𝑗

𝑁
𝑗=1  (mean byte value) 

 

3.2.6 Byte Standard Deviation 

The standard deviation of byte values, defined as the square root of the byte 

variance. It is given by: 

 

𝜎 = √
1

𝑁
∑ (𝑏𝑖 − 𝑏̅)

2𝑁
𝑖=1  (3.5) 

 

This provides the dispersion of byte values in the same units as the byte values 

themselves. 

 

3.2.7 Longest Repeated Byte Sequence 

The length of the longest run of identical bytes in the file (also referred to in 

code as the “LongestRepeatedSubstring”). This feature captures the longest consecutive 

sequence of the same byte value. Formally, if we define a run as a maximal substring 

of the form 𝑏𝑖 = 𝑏𝑖+1 = ⋯ = 𝑏𝑖+ℓ−1, then this feature is the maximum length ℓ over 

all such runs in the file: 

 

𝐿𝑚𝑎𝑥  =  𝑚𝑎𝑥 {ℓ ∣ ∃ 𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑏𝑖 = 𝑏𝑖+1 = ⋯ = 𝑏𝑖+ℓ−1}  (3.6) 

 

A larger value indicates that some byte is repeated many times in a row (e.g. a 

long sequence of zeros). 

 

3.2.8 Average Repeat Length 

The average length of repeated byte runs in the file. We compute the lengths of 

all consecutive byte runs and then take the average of those lengths that are greater than 

1. Let 𝑅1, 𝑅2, … , 𝑅𝑘 be the lengths of all runs of identical bytes (with 𝑅𝑗 ≥ 2 for each, 

i.e. we consider only runs of length at least 2). Then the feature is 

 

𝐿𝑎𝑣𝑔  =
 1

𝑘
∑ 𝑅𝑗

𝑘
𝑗=1    (3.7) 
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In case there is at least one repeated run (𝑘 > 0). If the file contains no 

consecutive repeated bytes (i.e. all runs are of length 1), we define this feature as 0. A 

higher 𝐿𝑎𝑣𝑔 means that on average, repeating sequences tend to be longer. 

 

3.2.9 Dictionary Fit 

The number of unique byte values present in the file. This essentially is |{unique 

bytes} | and reflects how large a “dictionary” an algorithm would need to encode the 

file’s content. A smaller unique byte set (for instance, a file that contains only 10 

distinct byte values) often compresses better than a file using the full 0–255 range of 

bytes. 

 

3.2.10 ASCII Ratio 

The proportion of bytes in the file that fall within the ASCII printable character 

range (byte values 32 through 126 inclusive). This feature gauges how “text-like” the 

file is. It is computed as: 

 

𝐴𝑠𝑐𝑖𝑖𝑅𝑎𝑡𝑖𝑜 =
# {𝑖:32≤𝑏𝑖≤126}

 𝑁
  (3.8) 

 

the count of bytes in the ASCII printable range divided by the file size 𝑁. The ratio 

approaches 1 for plain text files (comprised mostly of readable characters) and 0 for 

data with mostly non-printable bytes (such as compressed or encrypted files). 

 

3.2.11 File Type 

A binary indicator derived from content, used to roughly distinguish text from 

binary files. The FileType will be set to 1 if the AsciiRatio > 0.8 (meaning the file is 

likely text-heavy) and 0 otherwise. This feature provides the model with a simple 

categorical flag about the file’s nature. 

 

3.2.12 Average Line Length 

The average number of characters per line when interpreting the file as text. To 

calculate this, the file’s bytes are decoded as UTF-8 text (ignoring decoding errors), 
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split into lines on newline characters, and the lengths of these lines are averaged. If 

𝐿1, 𝐿2, … , 𝐿𝑚 are the lines obtained, then it is defined as: 

 

𝐴𝑣𝑔𝐿𝑖𝑛𝑒𝐿𝑒𝑛𝑔𝑡ℎ =
1

𝑚
∑ |𝐿𝑗|𝑚

𝑗=1   (3.9) 

 

provided 𝑚 > 0. (If the file cannot be decoded into any lines, we define this value as 

0.) This feature is meaningful for text files, indicating typical line length, and is 0 for 

files that are not interpretable as text. 

 

3.2.13 Unique Bytes 

The number of distinct byte values in the file. This is effectively the same as 

DictionaryFit. It was extracted as a separate feature but duplicates the information of 

DictionaryFit. A lower UniqueBytes count means the file’s content is composed of a 

limited alphabet of bytes, which can be advantageous for certain compression 

algorithms. 

 

3.2.14 N-gram Redundancy 

An approximate measure of repeated byte patterns, using 2-byte sequences as a 

default. This is computed by sampling pairs of consecutive bytes (2-grams) throughout 

the file and finding the most frequent 2-byte sequence. The feature value is the 

frequency of that most common 2-byte pattern divided by the total number of sampled 

pairs. A higher NgramRedundancy means a particular byte pair occurs very often 

relative to file length, indicating repetitive structure that could be exploited by 

compression. 

 

3.2.15 Proxy Compression Ratio 

A simple proxy for the file’s compressibility, defined as the ratio of the original 

size to a hypothetical slightly larger size. We calculate it as: 

 

𝑃𝑟𝑜𝑥𝑦𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑅𝑎𝑡𝑖𝑜 =
𝑁

𝑁+1
  (3.10) 
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This formula yields a value very close to 1 for any non-trivial file (e.g. 0.999 

for 𝑁 = 999). In practice, this proxy does not depend on content and varies only with 

𝑁 (smaller files get slightly lower values). It was used as a placeholder approximation 

of compressibility – a higher value (closer to 1) would intuitively correspond to files 

that are not easily compressible, though here it is essentially always near 1 except for 

very small files. 

 

3.3 Compression Testing 

In the next phase, each file 𝑓ᵢ was subjected to compression by a set of candidate 

algorithms to observe compression performance. We selected six widely used lossless 

compression algorithms: zlib, Bzip2, LZMA, Zstandard (Zstd), LZ4, and Brotli. Each 

algorithm was applied to every file at multiple compression levels or settings (for 

example, level 1 through 9 for those that support levels, or fast vs. slow modes). This 

exhaustive benchmarking yields empirical data on how well each method compresses 

each file. For a given file 𝑓ᵢ and compression algorithm instance 𝑎ⱼ (where 𝑗 might 

represent a specific algorithm at a certain compression level), we recorded two primary 

metrics: 

• Timeᵢⱼ: the compression time in seconds for algorithm 𝑎ⱼ on file 𝑓ᵢ. This 

measures how long the algorithm took to compress the file (since some 

algorithms trade speed for ratio). 

• Sizeᵢⱼ: the resulting compressed file size in bytes when using 𝑎ⱼ on 𝑓ᵢ. 

From these we derive the compression ratio ρᵢⱼ defined as: 

 

𝜌𝑖𝑗 =
Size𝑖𝑗

|𝑓𝑖|
  (3.11) 

 

The compressed size divided by the original file size. A ratio ρ < 1.0 indicates 

that compression was effective (the file became smaller), whereas ρ = 1.0 means no 

size reduction, and ρ > 1.0 would mean the output is actually larger, this indicates 

compression failed to reduce size, which can happen with already compressed or very 

random data. Along with ratio, the raw compressed size and time are important for 

evaluating trade-offs. We carried out this compression testing for all files across all 
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chosen algorithms/levels, producing a comprehensive set C = {(𝑓ᵢ, 𝑎ⱼ, Timeᵢⱼ, ρᵢⱼ) for 1 

≤ i ≤ n, 1 ≤ j ≤ m} where m is the total number of algorithm configurations tested. This 

data allowed analysis of how different algorithms perform on the same file and 

highlighted the variation in outcomes. For example, some algorithms (like LZ4) are 

very fast but may not compress as tightly, yielding higher ρ (closer to 1), while others 

(like Brotli) produce very low ρ (smaller size) but at the cost of longer Time. 

It was observed that there is a clear trade-off: methods like LZ4 or Zstd in fast 

mode execute in fractions of a second but sometimes produce larger outputs, whereas 

methods like Brotli or LZMA at max settings yield the smallest sizes but can take 

significantly longer. Understanding these trade-offs was essential for defining what 

optimal means in context and ensuring our automatic selection does not choose an 

impractical solution, i.e., one that saves only a few bytes at the cost of an extremely 

long runtime. 

 

3.4 Best Algorithm Selection 

After gathering compression results, we needed to determine, for each file, 

which algorithm was considered the best (ground truth optimal) under practical 

constraints. A rule-based selection procedure was applied to each file’s results to choose 

its optimal algorithm 𝑎ᵢ*: 

a. Time Constraint: Any algorithm run that took more than 30 seconds on a 

given file was disqualified. Formally, for each 𝑓ᵢ, we discarded all 𝑎ⱼ such 

that Timeᵢⱼ > 30 seconds. The 30-second threshold was chosen based on 

practical system considerations. In our real-world use case, users often 

upload up to 5–6 files simultaneously at most, and compression is followed 

by an encryption step. To maintain responsiveness, the total additional time 

introduced by the compression stage should not exceed 3 minutes (180 

seconds). Therefore, we decided that each individual file must not require 

more than 30 seconds of processing. By enforcing this cutoff, we ensure that 

extremely slow algorithms are not labeled as optimal, even if they achieve 

slightly better compression ratios, since their runtime would be impractical 

in an operational setting. 
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b. Outlier Exclusion: We also removed extreme outlier runs in terms of 

compression time. For each file, we examined the distribution of 

compression times {Timeᵢⱼ} across algorithms and flagged any that were 

abnormally high compared to the others. Specifically, we used the 

interquartile range (IQR) rule: any algorithm whose Time fell above Q3 + 

3(Q3–Q1) was excluded. This guards against algorithms that, while not 

exceeding 30s outright, are still disproportionately slow outliers for that file. 

The intuition is that if one algorithm takes much longer than the rest on the 

same data (perhaps due to some pathological case or inefficiency), it is not a 

practical choice even if our fixed threshold did not catch it. Removing such 

outliers yields a set of feasible algorithms A*ᵢ for each file 𝑓ᵢ. 

c. Effective Compression Only: We ensure that the algorithm really achieves 

compression. Any result where the compressed size was larger than the 

original (ρᵢⱼ ≥ 1.0) is disregarded. In other words, we only consider algorithms 

that produce ρ < 1 for that file. This avoids ever labeling a method as best if 

it did even compress the data. After this step, for each file we have a filtered 

set of viable algorithm options that ran within time limits and produced a 

smaller output. 

After applying (a), (b), and (c), each file 𝑓ᵢ has a subset Aᵢ of algorithms that 

passed all criteria. From this subset, we select the algorithm with the lowest 

compression ratio ρ: 

 

𝑎𝑖
∗ = arg min

𝑎𝑗∈𝐴𝑖

 𝜌𝑖𝑗  (3.12) 

 

In summary, 𝑎ᵢ is the algorithm that achieved the highest compression (greatest 

size reduction) on file 𝑓ᵢ. Ties are rare but if they occur, one could choose the faster 

algorithm among the tie, though in our case the continuous nature of ratio usually yields 

a unique minimum. Each file is thus assigned a single “optimal” algorithm label 𝑎ᵢ. This 

algorithm is considered the ground-truth best choice for that file in the context of our 

study. It represents the ideal outcome we want a predictive model to achieve. It is worth 

noting that the best algorithm here is defined purely by compression ratio after filtering 
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out unrealistic options. This implies we favor maximum compression as long as it is 

within the time budget. This selection method yielded a mapping from each file to its 

optimal compression algorithm. This mapping becomes the target variable for the 

machine learning stage. 

 

3.5 Feature Selection 

Initially, we considered all 15 features described in Section 3.2 for use in the 

model. However, not all features provide unique or useful information; some may be 

redundant or contribute very little to predictive accuracy. Using too many features can 

also risk overfitting and slow down model training and operation. Therefore, a 

Sequential Feature Selection (SFS) procedure was employed to reduce the feature set 

to the most informative subset. Sequential Feature Selection is a greedy algorithm that 

builds a feature subset step by step: 

a. Initialization: Start with no features selected (an empty set S = Ø). 

b. Iterative Addition: Iteratively add one feature at a time, choosing the feature 

that, when combined with the currently selected set S, yields the highest 

improvement in model performance (typically measured by validation 

accuracy in our case). That is, in each round, we pick the feature that most 

boosts the predictive power alongside those already chosen. 

c. Stopping Criterion: Continue adding features until adding any remaining 

feature does not appreciably improve performance, or until a predefined 

number of features is reached. 

Formally, given a universal feature set {1,2, … , 𝑑}, SFS attempts to identify: 

 

𝑆∗ = arg max
𝑆⊆{1,2,…,𝑑}

Φ (𝑆)  (3.13) 

 

where 𝛷(𝑆) is the performance metric for a model built using the feature indices in 𝑆. 

Commonly, 𝛷 is the average classification accuracy across a validation set. By pruning 

away less informative features, SFS not only reduces the risk of overfitting but also 

improves computational efficiency, both during training and at inference time. This step 
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is crucial because large-scale datasets might originally have included dozens of 

potential feature dimensions, many of which offer minimal incremental benefit. 

Through this process, we found that the first few features added contributed the 

most to accuracy, and additional features after a point gave negligible gains. Ultimately, 

four features were selected: FileSize, AvgLineLength, AsciiRatio, ByteKurtosis. 

 

3.6 Final Dataset 

After the feature selection process, the dataset was reduced into a more compact 

and structured form which is used for model training. Each record in this final dataset 

corresponds to a single file and contains the essential information needed for supervised 

learning. The attributes kept are: 

a. Filename: the identifier of the file, which allows traceability but not used as 

predictive input. 

b. FileSize: numerical value representing the total bytes in the file. 

c. AvgLineLength: the average number of characters per line, capturing 

structure of text data. 

d. AsciiRatio: proportion of printable ASCII characters in the file, reflecting 

whether the content is mainly textual or binary. 

e. ByteKurtosis: the kurtosis of byte distribution, measuring if a few values 

dominate or bytes are evenly spread. 

f. Optimal Algorithm Label: categorical value indicating the best compression 

algorithm chosen for that file under the criteria explained in Section 3.4. 

Thus, each row in the dataset can be represented as dᵢ = {Filename, FileSize, 

AvgLineLength, AsciiRatio, ByteKurtosis, BestAlgo} where dᵢ is the i-th record and 

BestAlgo is the ground-truth class label for supervised training. 

The features were normalized before training to ensure that large values such as 

file size did not dominate the learning process. Standardization places them on a 

comparable scale. The final dataset therefore represents a balanced and concise 

summary: the most informative four numerical features plus the assigned algorithm 

label. This structure provides enough discriminatory power to the model while avoiding 

redundant or noisy dimensions. 
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In summary, the final dataset is both simple and expressive. It captures the 

essential factors influencing compression performance in four numerical descriptors, 

and it pairs them with the optimal algorithm outcome. This dataset is the foundation for 

the machine learning phase that follows in Section 3.7, where classifiers are trained to 

map features to algorithm labels. It ensures that the training focuses only on meaningful 

information and avoids unnecessary complexity, leading to more efficient and accurate 

prediction.  

 

3.7 Machine Learning Model Training 

With each file now represented by a feature vector (using the reduced feature 

set S) and a known optimal algorithm label 𝑎ᵢ, we set up a supervised learning task. 

This is a multi-class classification problem: the model must learn to map a file’s 

features to the correct compression algorithm. There are six possible algorithm classes 

in our case (Zlib, Bzip2, LZMA, Zstd, LZ4, Brotli). We prepared the final dataset D = 

{(xᵢ(S), yᵢ) | 1 ≤ i ≤ n}, where xᵢ(S) is the feature vector of file 𝑓ᵢ restricted to the selected 

feature subset and yᵢ is the class label (the index of the optimal algorithm for file 𝑓ᵢ). 

 

3.7.1 Classification Setup  

A variety of candidate classification algorithms were explored to find the best 

predictor for this problem. We evaluated common machine learning models including 

Decision Tree, Random Forest, Support Vector Machine (SVM), k-Nearest Neighbors 

(k-NN), Logistic Regression, and XGBoost (Extreme Gradient Boosting). We trained 

each model on the training dataset and assessed their accuracy in predicting the correct 

algorithm class. 

 

3.7.2 Hyperparameter Tuning and Validation  

To fairly compare models and tune them, we used cross-validation. The dataset 

was split into k folds. Here we used 5-fold cross-validation in most cases, and model 

performance was averaged across different splits to ensure it generalizes. We also 

performed hyperparameter optimization for each model. We searched for the 

hyperparameter combination that gave the highest validation accuracy. The use of 
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cross-validation provided an estimate of how well each model would perform on unseen 

data, mitigating overfitting during the tuning process. Formally, if 𝜃 represents a set of 

hyperparameters for a given model, we evaluate an average accuracy: 

 

Acc(𝜃) =
1

𝑘
∑ Accuracy𝑘

𝑗=1 (𝜃; 𝐷𝑗)  (3.14) 

 

where Dj is the j-th fold used as a validation set. We chose the 𝜃 that maximize this 

Acc(𝜃). Additionally, this process helped decide which type of model is inherently 

best for our task. 

 

3.7.3 Model Selection  

After training and tuning, we found that an XGBoost classifier performed the 

best in terms of accuracy in predicting the optimal compression algorithm, outshining 

the other approaches. The XGBoost model was able to reliably learn the relationship 

between our file features and the best algorithm choice. It achieved the highest cross-

validation accuracy, meaning it most often predicted the correct algorithm label for files 

in the validation folds. This model benefits from the ensemble of trees, capturing non-

linear interactions among features. Moreover, XGBoost provides feature importance 

scores, which aligned with our expectations. 

The chosen XGBoost model was then trained on the entire training dataset, 

using the selected features to finalize it. The model’s hyperparameters were tuned for a 

balance of accuracy and complexity to avoid overfitting. Finally, this model was saved 

for integration. It will be embedded into a C# application to automatically decide 

compression algorithms before encryption in a real system. Therefore, we ensure the 

research outcomes can be applied in practice, compressing files on-the-fly with the 

learned optimal choices. 

 

3.8 Summary  

In summary, the methodology involved gathering a rich dataset of files, 

extracting a diverse set of features to characterize each file’s content and structure, 

determining the ground-truth best compression algorithm for each file through 
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comprehensive testing, and then training a machine learning model to predict that 

choice using only the file’s features. Careful feature selection and model tuning were 

key to achieving high prediction accuracy. The result is an adaptive compression 

decision system that aims to yield compression ratios close to the optimal achieved by 

exhaustive search, but much more efficiently by leveraging learning instead of brute-

force trial of every algorithm on every file. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

 

This chapter presents the results of our experiments, evaluating both the 

compression algorithms performance and the accuracy of the machine learning model. 

We analyze the data collected in the methodology and demonstrate the benefits of the 

proposed approach using charts and figures. Key evaluation aspects include the 

distribution of optimal algorithms, the predictive performance of the model, and 

comparisons to non-adaptive compression strategies. 

 

4.1 Optimal Algorithm Distribution 

First, we examine which algorithms were most often the optimal choice across 

the dataset. Figure 4.1 shows the frequency of each algorithm being the winning choice 

for files in the dataset. This is presented as a bar chart, where the x-axis lists the six 

compression algorithms (aggregating levels for simplicity), and the y-axis shows the 

number of files for which each algorithm produced the smallest compressed size under 

constraints. This chart reveals the overall winner distribution. We found that Zstd and 

LZMA dominate a large portion of files, especially large text-heavy files. Meanwhile, 

LZ4 and zlib are rarely the best in terms of compression ratio, because we favored speed 

over ratio in this setup. 
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Figure 4.1 Optimal algorithm counts 

 

In addition to overall counts, the detailed breakdown indicates which 

compression level for each algorithm was most often optimal. In our results, we 

observed that for algorithms like Zstd and Brotli, higher frequently provided the best 

compression within 30s for many files. LZMA at a mid-level (around preset 6) also 

appeared frequently, likely because it balances speed and ratio. On the other hand, 

algorithms known for speed (LZ4) never appear as the best ratio-wise. They are more 

likely to win in a time-constrained scenario not focused purely on size. This justifies 

the need for an intelligent selection: the optimal choice varies considerably from file to 

file. 

 

4.2 Feature Importance and Selection Analysis 

We do analyze how each feature contributes to the model. Results in Figure 4.2 

show the incremental benefit of adding features during the feature selection process. In 

this figure we start with no feature and then add them one-by-one in order that maximize 

accuracy. The x-axis shows the number of features used, from 0 up to 14, and the y-

axis is the classification accuracy we got. The curve in Figure 4.2 rises steeply at first, 

the first feature added gives a big jump in accuracy, meaning that feature alone carry 

significant predictive power. In our case the single most informative feature was 
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FileSize, it already let the model make a decent guess. When the second and third 

features are added, accuracy improves further. By around four features the gains 

basically plateau, confirming the top 4–5 features already capture most necessary 

information. Adding features beyond the fifth does not improve accuracy, the curve 

flattens in the figure and in some trials even cause small dips because of noise. This 

analysis validates our choice to focus on a small set of features 

 

 

Figure 4.2 Feature Selection Performance 

 

Moreover, the final trained XGBoost model feature importance is shown in 

Figure 4.3. This figure is a bar chart showing the relative importance of each selected 

feature as model assesses them. The features in final model are FileSize, 

AvgLineLength, AsciiRatio and ByteKurtosis. According to the plot, FileSize is most 

influenced feature, which is expected. File size has strong impact on which algorithm 

is best. The next most important feature is ByteKurtosis, it helps models to recognize 

files that have highly skewed byte distribution. AvgLineLength and AsciiRatio also 

have notable importance. AvgLineLength, even less dominant than FileSize or 

ByteKurtosis, still contributes by identifying files with many short lines compared to 

files with continuous stream data. The AsciiRatio helps to differentiate text-heavy file 

from binary file. The percentages in Figure 4.3 confirm that no single feature dominates 
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the decision completely; the model really uses a combination. FileSize take around 30% 

importance, and the rest shared by ByteKurtosis, AvgLineLength and AsciiRatio. This 

balance reliance is good sign that the model considers multiple aspects of file structure, 

not just based everything on size or entropy. In summary, the feature importance 

reinforces our understanding: the model focuses on how large the file is and how text-

like or repetitive the content is, to predict which compression method is best. 

 

 

Figure 4.3 Feature Importance 

 

4.3 Hyperparameter Optimization Results  

This section reports the best validated performance obtained by each candidate 

classifier after tuning its hyperparameters. The summary bar chart in Figure 4.4 shows 

the best cross-validation accuracy achieved by each model: 
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Figure 4.4 Hyperparameter Optimization Results 

 

Figure 4.4 shows that Tree-based learners (XGBoost, Random Forest, Decision 

Tree) and the instance-based KNN substantially outperform the linear baseline 

(Logistic Regression) and the tested SVC configuration. The margin is small but steady 

in favor of XGBoost over the two ensemble/tree competitors and KNN, indicating 

boosted trees extract a bit more signal from interactions among features. Meanwhile, 

the poor accuracy of SVC and Logistic suggests the decision boundary in this task is 

highly non-linear and not well modeled by linear separators; they tend to underfit even 

when tuned. 

Although Random Forest and KNN are close, XGBoost attains the highest 

validated score at 0.8053 and is selected as the final predictor. This choice also offers 

practical benefits: built-in feature importance for interpretability, good control of 

capacity via depth/regularization to avoid overfitting, and efficient inference time 

suitable for integration into the C# pipeline.  

The optimization results demonstrate that boosted decision trees provide the 

best trade-off for this problem, high accuracy with manageable complexity. Linear and 

margin-based baselines do not capture the structure of the features well, while XGBoost 
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reliably generalizes and will be used as the core predictive model in the subsequent 

evaluations. 

 

4.4 Classification Performance (Confusion Matrix)  

To evaluate how well the trained model performs in practice, we look at the 

confusion matrix of its predictions on a test set (or via cross-validation). The matrix is 

visualized in Figure 4.5, which shows predicted algorithm classes versus actual optimal 

algorithm classes for a set of files. Each row of the matrix corresponds to the true 

algorithm (ground truth 𝑎ᵢ* for files), and each column corresponds to the algorithm 

predicted by the model. The diagonal entries (where prediction matches actual) 

represent correct predictions, while off-diagonals indicate mistakes, with the intensity 

or number in each cell showing how many files fall into that category. 

 

 

Figure 4.5 Confusion Matrix – Algorithm Families 
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The confusion matrix reveals that the model achieves a high overall accuracy – 

the majority of files lie on the diagonal, meaning the model correctly predicts their 

optimal compression algorithm. The few errors the model makes are mostly between 

algorithms that have somewhat similar performance profiles or occur in borderline 

cases. One noticeable pattern is a slight confusion between Brotli and Zstd for some 

files: these are both modern algorithms that compress well, and a few files that are 

actually best compressed by Brotli were predicted to use Zstd by the model or vice 

versa. Another area of confusion occurs between LZMA and Bzip2 on certain files. 

These two algorithms are somewhat similar in that they aim for high compression at 

the cost of speed, and for some text-heavy data the model might misidentify which of 

the two will edge out the other. These off-diagonal entries in the confusion matrix are 

relatively small compared to the correct predictions, indicating the error rate is low. 

Importantly, when the model predicts wrong, it usually picks an algorithm that is the 

second-best for that file rather than something completely unsuitable. Therefore, the 

impact on compression ratio is minor in those cases. The confusion matrix confirms the 

model predicts the optimal algorithm in most cases and only occasionally swaps 

between algorithms that are in the same category of performance for a file. Overall, 

Figure 4.5 demonstrates strong classification performance, with high true positive rates 

for each compression algorithm class and misclassification errors that are infrequent 

and mostly between similar algorithm choices. 

 

4.5 Comparison with Baseline Compression  

We evaluate the machine learning based compression strategy compared to a 

traditional baseline compression (standard ZIP) over random 1,200 files to see their 

performance. The comparison looks at compression effectiveness (compressed size) 

and compression speed, also if machine learning method can improve both at the same 

time. For fair analysis, we group test files by size: small (<10 MB), medium (10-300 

MB), and large (>300 MB). This helps reveal trends that depend on input scale. The 

results are summarized in Table 4.1, showing if machine learning -based method is 

better, worse or similar to baseline in each case. 

For small files (<10 MB), the machine learning selector is usually better than 

baseline in both. Most of the time it produces a bit smaller compressed size than ZIP. 
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More importantly, it compresses much faster for this small input. The baseline has more 

overhead on tiny file, machine learning approach often finishes quicker. In fact, for 

almost every small file test, the model method gives smaller output and also less time. 

This means on small data the machine learning approach gives consistent benefit in 

both efficiency and speed. 

For medium files (10-300 MB), the result are mixed. The machine learning 

method still usually gets better compression ratio compared to baseline. But this comes 

with cost of speed. The model method was slower. In fact, in our test it slowed on all 

medium files, therefore the conventional compressor finishes faster. There is no case 

where machine learning approach was better in both size and speed together for 

medium. It usually gives gain in size reduction but sacrifices speed. For medium-sized 

input, machine learning methods offer small benefits in size reduction but cannot match 

baseline time. 

For large files (>300 MB), the trade-off is clear. The machine learning method 

always makes smaller archive than baseline, that is often much smaller for big files, 

showing strength in effectiveness. But it compresses much slower on these large inputs. 

The baseline was far faster, while machine learning method took much longer to finish. 

Therefore, there was no case where machine learning improves metric for large files; it 

always trades huge increase in time for smaller sizes. This suggests that while the model 

reduces size substantially for large data, the time cost increases and may be impractical 

when speed is important. 

Overall, the machine learning algorithm selection outperformed baseline in 

most cases when looking at individual metrics, especially for small files. It got smaller 

size in majority and also faster compression for most inputs. The baseline only clearly 

wins in speed for medium and large files, where model overhead is high. Importantly, 

across all file tests, machine learning approach led to much smaller total compressed 

data size while the total compression time is about same as baseline. In summary, the 

machine learning method gives big benefits in compression effectiveness and often 

improves speed, but the advantage depends on file size, and it may slow down on larger 

data.  
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Table 4.1 Performance Comparison of Machine Learning Algorithm Selector vs. 

Baseline ZIP Compression Over Random 1,200 Files 

File Size 

Group 

Compression Size 

(Output) vs Baseline 

Compression Speed 

vs Baseline 

Both Size & Speed 

Improved? 

Small 

(<10 MB) 

Better – output is 

commonly smaller 

than baseline 

Size Save: 17% 

(7064 KB) 

Better – compresses 

faster in almost all 

cases 

Time Save: 95% 

(434 s) 

Yes – both better tin 

speed and output 

size 

Medium 

(10 – 

300 MB) 

Better – output 

slightly smaller in 

most cases 

Size Save: 13% 

(25 MB) 

Worse – compresses 

slower for virtually 

all files 

Time Save: -1360% 

(-91 s) 

No – only better in 

output size but 

slightly worse speed 

Large 

(>300 MB) 

Better – output 

significantly smaller 

for all tested files 

Size Save: 50% 

(158.66 MB) 

Worse – compresses 

much slower on 

large files 

Time Save: -3173% 

(-236 s) 

No – only better in 

output size but got 

worse speed 

Total Size Save: 36% Time Save: 107 s Yes – both better 

 

In conclusion, the experiment comparison shows that machine learning base 

selection systems give strong advantage on compression effectiveness, especially for 

small input where both size and speed improve. For medium and large files, the model 

still gives better output size, but runtime becomes slower. However, this trade-off is not 

big problem for our target case. In real practice, most files submit to system are small, 

usually less than 10 MB. Since the model works best in this range by making 

compression faster and output smaller, it fits well with real operational needs. Even 

though the method loses speed when handling very large files, the design is still very 

suitable and effective for the actual data profile we face in application.  
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CHAPTER 5 

CONCLUSION AND FUTURE DIRECTION 

 

5.1 Conclusion 

Many studies have been conducted to explore ways to improve data 

compression and reduce file transfer overhead. Traditional methods typically apply one 

compression algorithm uniformly to all files, which may not be optimal for every file 

type. Some approaches require manual user effort or complicated content analysis to 

choose an algorithm, making them impractical. This independent study presents an 

intelligent system that addresses these limitations by automatically selecting the 

optimal compression method for each file using machine learning. 

This independent study aims to develop an adaptive compression framework 

that integrates machine learning with feature analysis of files. We assembled a large 

corpus of real-world files from the SEC database and other sources, covering a variety 

of file formats. For each file, various structural features (such as file size, entropy, and 

byte distribution statistics) were extracted, and the best compression algorithm was 

identified via exhaustive tests under practical time constraints. Then a predictive model 

was trained to learn the relationship between file features and the optimal algorithm. 

The experimental results show that the proposed model can reliably predict the 

most effective compression algorithm for a given file. The model achieved around 80% 

accuracy in cross-validation, meaning it correctly selected the best algorithm for most 

files. As a result, the system often achieved compression ratios close to the theoretical 

optimum for each file without needing to try all algorithms. Our approach clearly 

outperforms the single-algorithm baseline: it yields smaller compressed files on 

average, and for many cases (especially with smaller files) it also compresses faster 

than using a fixed method. This confirms that an adaptive, file-specific compression 

strategy can significantly improve efficiency of storage and transmission while keeping 

processing time within acceptable limits. 

However, the benefits vary depending on file characteristics. The results also 

reveal that for extremely large files, the selected algorithm (often a slower but high-

compression method) sometimes leads to longer processing time compared to a fast 
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baseline like standard Zip. This trade-off indicates that while our method maximizes 

compression, it may sacrifice speed on very large data. Fortunately, even in such cases, 

the chosen algorithm is usually the second-best alternative and the impact on final size 

remains beneficial. The study confirms that no single compression algorithm is 

universally optimal – the best choice differs from file to file, validating the core premise 

of this research.  

 

5.2 Limitations 

Despite the model's successful performance, this study has several limitations. 

First, the training dataset was composed mostly of financial data, which creates a 

potential domain bias; the model may not perform as well on files from vastly different 

fields, such as genomics or multimedia. Second, a clear trade-off was observed for large 

files, where the model's optimal choice "compresses much slower on these large inputs" 

to achieve a smaller size, a trade-off that may not be acceptable in all time-sensitive 

applications. Finally, the scope was limited to six specific lossless compression 

algorithms; other modern or specialized algorithms were not included in the analysis. 

 

5.3 Future Direction 

The Future work will focus on techniques to further improve the system, such 

as integrating compression speed prediction into the decision-making, which will help 

optimize both compression ratio and time performance especially for large files. 

Another enhancement is to expand the feature set or use deeper learning techniques, 

which might increase prediction accuracy beyond the current 80%. For instance, 

including content-specific features or training specialized models for certain file 

categories might help the model differentiate algorithm choices even better. 

Additionally, evaluating the approach on broader types of data or under different 

operational constraints (such as streaming data or more stringent time limits) will be 

valuable. These improvements will help increase the practicality and robustness of the 

system. Ultimately, the framework introduced by this independent study provides a 

foundation for intelligent compression in data pipelines, and future developments will 

aim to make it even more accurate, faster and widely applicable. 
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