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ABSTRACT 

 

The formulation of resveratrol-loaded polymeric nanoparticles (RES-PNPs) is 

hindered by resveratrol’s low solubility, instability, and rapid clearance. This study 

introduces an integrated hybrid machine-learning (ML), genetic-algorithm (GA), and 

reinforcement-learning (RL) framework to rationally design RES-PNPs and improve 

their anticancer performance. Hybrid ML models combining linear regression (LR), k-

nearest neighbors (k-NN), and artificial neural networks (ANN) were constructed to 

predict particle size (PS), polydispersity index (PDI), zeta potential (ZP), and drug 

loading (%DL). The hybrid models substantially outperformed single learners (e.g., 

ANN RMSE: 69.19 for PS, 0.06 for PDI, 4.28 mV for ZP; k-NN RMSE: 6.69 for %DL), 

reducing error by 15–40% across endpoints. Final hybrid RMSE values were 55.12 

(PS), 0.05 (PDI), 3.90 mV (ZP), and 5.21 (%DL), demonstrating strong predictive 

fidelity. Optimization employed a GA with a population of 100,000 individuals, 100 

generations, and 10 RL-tuned episodes. Fitness was defined as f = –PS – PDI – ZP + 

%DL, with the best episodes achieving a terminal fitness of –1.025. RL adaptively 

refined GA parameters, converging on crossover = 0.10 and mutation = 0.18, which 

improved stability and reduced variance relative to fixed settings. The optimal solution 
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identified (PAA = 0.30, GT = 0.13, P407 = 8.11, Hz = 11.56, Time = 12.50) produced 

PS = 80 nm, PDI = 0.31, ZP = –36.94 mV, and %DL = 68.02%, all within predefined 

feasibility limits. Experimental validation showed no significant differences between 

predicted and measured CQAs (p > 0.05). This AI-augmented workflow establishes a 

robust design space aligned with ICH Q10 and demonstrates a powerful strategy for 

intelligent nanomedicine formulation and optimization. 

 

Keywords: Resveratrol, Polymeric nanoparticles, Hybrid machine learning models, 

Genetic algorithm, Reinforcement learning 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background and statement of the problem 

Pharmaceutical formulation serves as a cornerstone of modern healthcare, 

ensuring that therapeutic agents are delivered in safe, effective, and patient-compliant 

forms. However, the development of such formulations is inherently multifaceted, often 

hindered by factors such as poor drug solubility, chemical instability, limited 

bioavailability, and potential excipient incompatibility. Traditionally, these 

complexities have been addressed using empirical, trial-and-error methods, which are 

not only time-intensive but also costly, ultimately slowing down the progression from 

formulation design to market readiness (L. K. Vora et al., 2023). 

In recent years, Artificial Intelligence (AI) and Machine Learning (ML) have 

emerged as powerful tools for accelerating and enhancing pharmaceutical formulation 

processes. By leveraging large-scale datasets and advanced computational models, 

these technologies enable researchers to uncover intricate relationships among 

formulation variables, forecast formulation outcomes with high accuracy, and identify 

optimal processing conditions. Applications of AI/ML now span diverse 

pharmaceutical domains including drug discovery, design, quality assurance, and scale-

up (Duch et al., 2007; Suriyaamporn, Pamornpathomkul, Patrojanasophon, et al., 2024; 

S. Wang et al., 2022). Despite their transformative potential, the integration of AI/ML 

in formulation development still faces key limitations. These include the scarcity of 

high-quality, standardized data, issues surrounding model accuracy and interpretability, 

and the need to meet stringent regulatory standards that require thorough validation of 

predictive outputs (Ali et al., 2024; M. Abdelhaleem Ali & M. Alrobaian, 2024; 

Suriyaamporn, Pamornpathomkul, Patrojanasophon, et al., 2024).  

Notably, AI is playing an increasingly critical role in pharmaceutical quality 

control. The incorporation of ML algorithms has led to significant advancements in 

areas such as automated defect detection, impurity profiling, and real-time monitoring 

of production processes (Kalyane et al., 2020; Obaido et al., 2024). Hybrid ML 

models—combinations of different algorithmic strategies or integrations with 
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traditional statistical tools—are particularly noteworthy for their superior predictive 

performance and robustness (Azevedo et al., 2024). These models can handle 

heterogeneous and incomplete datasets, and they are especially well-suited for 

capturing nonlinear and dynamic relationships within pharmaceutical systems (Buket 

Aksu et al., 2012; Belič et al., 2009; Y. Li et al., 2015). 

A key component of modern optimization within hybrid frameworks is the 

Genetic Algorithm (GA). Inspired by the principles of natural selection and genetics, 

GAs are heuristic search algorithms that iteratively evolve a population of candidate 

solutions toward an optimal formulation. Through operations such as selection, 

crossover, and mutation, GAs are capable of solving complex, nonlinear, and multi-

objective optimization problems, often outperforming traditional techniques in terms of 

efficiency and convergence to global optima (Rajwar et al., 2023; Tomar et al., 2024). 

To further improve the adaptability and performance of GAs, Reinforcement Learning 

(RL) has been increasingly employed. RL is a type of machine learning in which an 

agent learns to make sequential decisions through interaction with an environment, 

guided by feedback in the form of rewards or penalties. In the context of formulation 

optimization, RL can dynamically tune GA hyperparameters (Brzęk et al., 2025)—such 

as crossover and mutation probabilities—based on observed optimization performance, 

thereby enabling more efficient exploration and exploitation of the search space (Gao 

& Schweidtmann, 2024; Martins et al., 2025).  

Recent studies have highlighted the advantages of such integrations. Li et al. 

demonstrated the successful optimization of polymer–lipid hybrid nanoparticles for 

verapamil hydrochloride using a combined ANN and GA approach, achieving superior 

drug loading and nanoscale particle size compared to traditional response surface 

methodology (Y. Li et al., 2015). Similarly, Aksu et al. applied a hybrid model 

integrating ANN with genetic programming and neuro-fuzzy logic to optimize ramipril 

tablets, effectively predicting CQAs and reducing formulation development time 

(Buket Aksu et al., 2012). Moreover, Fu et al. investigated a reinforced genetic 

algorithm (RGA) that combined reinforcement learning with genetic algorithms for 

structure-based drug design. By optimizing crossover and mutation strategies via neural 

networks, RGA improved molecule generation efficiency. Experimental results 
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demonstrated that RGA outperformed baseline methods in generating high-affinity, 

diverse compounds across multiple protein targets (Fu et al., 2022). 

The Quality-by-Design (QbD) framework has increasingly incorporated AI 

tools to define and expand design spaces, thereby improving control over product 

quality (Yu et al., 2014). AI-enhanced methods are more capable than traditional 

statistics in identifying CMAs and CPPs, particularly in the context of complex and 

nonlinear formulation data (Huanbutta et al., 2024; Suriyaamporn, Pamornpathomkul, 

Patrojanasophon, et al., 2024; Walsh et al., 2022). In a related application, 

Suriyaamporn et al. used ANN models to optimize progesterone-loaded solid lipid 

nanoparticles for transdermal delivery, achieving predictive accuracy above 94% across 

key parameters (Suriyaamporn, Pamornpathomkul, Wongprayoon, et al., 2024). 

Likewise, Simões applied ANN to accurately predict the dissolution profiles of a BCS 

class IV drug, demonstrating high R² values (>0.94) and minimal prediction error, 

highlighting AI’s ability to handle multicollinearity and nonlinear effects (Simões et 

al., 2020). These developments underscore the growing role of hybrid AI models in 

transforming quality control and formulation optimization processes across the 

pharmaceutical industry, providing a foundation for digital transformation and 

improved regulatory compliance (Miozza et al., 2024). 

Resveratrol (RES), a polyphenol found in grapes and blueberries, has garnered 

interest due to its cardioprotective, antioxidant, anti-inflammatory, and anticancer 

activities (Liu et al., 2015; Robinson et al., 2015). Its activity is largely attributed to the 

presence of three hydroxyl groups, which enable free radical neutralization and metal 

ion chelation—mechanisms implicated in cancer prevention (Imran et al., 2020). 

Moreover, resveratrol has been shown to modulate several signaling pathways such as 

p53, mTOR, STAT3, and NF-κB, and to promote apoptosis via caspase activation and 

Bax upregulation (Kelkel et al., 2010; Shukla & Singh, 2011; Zhang et al., 2013). 

Despite its therapeutic potential, resveratrol's clinical use is hampered by its 

lipophilicity, poor aqueous solubility (~0.05 mg/mL), environmental instability, and 

rapid systemic clearance (Aung et al., 2021). These physicochemical limitations 

necessitate the development of advanced drug delivery systems, such as nanoparticles, 

to enhance its bioavailability and protect it from degradation (Zupančič et al., 2015). 
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Polymeric nanoparticles (PNPs), with sizes ranging from 10–1000 nm, offer 

promising solutions for improving drug delivery efficiency and stability. Their 

advantages include enhanced solubility, targeted delivery, prolonged circulation time, 

and reduced systemic toxicity (Soares et al., 2018; Suriyaamporn et al., 2023). Various 

biodegradable and non-biodegradable polymers—including PVA, PVP, PLGA, 

chitosan, and PCL—are employed in their formulation, often alongside stabilizers or 

surfactants to improve stability (Lôbo et al., 2021). 

Nevertheless, challenges remain in PNP production, such as structural 

complexity, batch variability, and purity concerns. These issues can be addressed by 

applying AI-based methods to systematically optimize formulation design, predict 

performance, and improve reproducibility (Adir et al., 2020; Aumklad et al., 

2024/07/18; Habeeb et al., 2024). Therefore, the present study aims to develop and 

apply hybrid ML models to predict and optimize the formulation of RES-loaded PNPs. 

The models were trained using key CQAs—particle size, polydispersity index, zeta 

potential, and drug loading—derived from experimental data. A genetic algorithm was 

utilized to identify optimal formulation parameters, while reinforcement learning 

dynamically adjusted crossover and mutation rates. The optimized formulations were 

validated experimentally for stability and anticancer efficacy. Additionally, a design 

space was constructed to ensure product quality and compliance. This approach marks 

a novel integration of hybrid AI techniques in nanomedicine development. 

 

1.2 Objectives 

1.2.1 To develop and validate hybrid machine learning models for the prediction of 

critical quality attributes of resveratrol-loaded polymeric nanoparticles. 

1.2.2 To develop and validate a genetic algorithm enhanced by reinforcement 

learning for the optimization parameters of resveratrol-loaded polymeric 

nanoparticles to experimentally evaluate the optimized formulations for 

physicochemical properties. 
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1.3 Research Hypothesis 

1.3.1 Hybrid machine learning models can accurately predict the critical quality 

attributes (CQAs) including particle size, polydispersity index, zeta potential, 

and drug loading of resveratrol-loaded polymeric nanoparticles. 

1.3.2 Optimization of formulation parameters using a genetic algorithm enhanced by 

reinforcement learning will result in resveratrol-loaded polymeric nanoparticles 

with accurately predicted physicochemical properties, as confirmed by 

experimental validation. 

 

1.4 Expected benefits 

1.4.1 The application of hybrid machine learning models combined with genetic 

algorithms and reinforcement learning is expected to reduce time, cost, and trial-

and-error in the development of resveratrol-loaded polymeric nanoparticles. 

1.4.2 Accurate prediction and optimization of critical quality attributes will lead to 

nanoparticles with consistent physicochemical properties, supporting reliable 

manufacturing and regulatory compliance. 

 

1.5 Limitation and scope 

1.5.1 The performance of hybrid machine learning models is highly dependent on the 

quality and size of the experimental dataset; limited or imbalanced data may 

affect the accuracy and generalizability of the predictions. 

1.5.2 This study focuses on the development and optimization of resveratrol-loaded 

polymeric nanoparticles using AI-based methods, with an emphasis on 

predicting critical quality attributes and validating the optimized formulations 

experimentally within a laboratory-scale setting. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 Artificial intelligence in pharmaceuticals  

Artificial Intelligence (AI) was first introduced in 1956, initially focused on 

symbolic reasoning and problem-solving tasks. Over the decades, advances in 

computational power and data availability have significantly expanded AI's 

capabilities, leading to its widespread adoption across various industries, including the 

pharmaceutical sector (Dasta, 1992). AI systems are designed to emulate human 

cognitive functions such as reasoning, learning, language comprehension, pattern 

recognition, and decision-making. These functionalities are achieved through the use 

of algorithms, input datasets, and high-performance computing to simulate intelligent 

behavior akin to human cognition. 

AI is generally categorized into subfields, with Machine Learning (ML) and 

Deep Learning (DL) being the most prominent. As illustrated in Figure 2.1, AI 

encompasses ML, which emphasizes enabling systems to learn from data and improve 

over time without being explicitly programmed, often utilizing complex statistical 

methods. DL, a subset of ML, relies on artificial neural networks (ANNs) to model and 

solve highly nonlinear problems (Kolluri et al., 2022; Soori et al., 2023). 

 

 

Figure 2.1 Artificial Intelligence (AI) can be categorized into subfields, namely 

machine learning (ML) and deep learning (DL) (Sarker, 2021a). 
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The human central nervous system has inspired the development of neural 

networks in AI. The structure and function of biological neurons, which enable 

information processing, adaptation, and learning, have served as the foundation for 

designing artificial neural networks. The human brain, comprising billions of 

interconnected neurons, represents a biological model of intelligence and learning. 

ANNs attempt to replicate some of these processes through interconnected layers of 

nodes or "neurons" that can learn to recognize patterns, classify data, and make 

predictions (Jain et al., 1996). These networks have become fundamental components 

of modern AI applications, including image and speech recognition, medical 

diagnostics, and predictive analytics (S. Wang et al., 2022). 

In the early stages of adoption, AI was primarily applied in the pharmaceutical 

industry for basic data management tasks such as data structuring and analysis. As the 

technology evolved, its applications expanded to include more complex processes such 

as molecular modeling, drug-target interaction analysis, and lead compound 

identification (Qian & Sejnowski, 1988). Today, AI plays a transformative role in 

numerous pharmaceutical domains, ranging from pharmacokinetics and toxicity 

prediction to formulation development, stability assessment, and dose optimization 

(Mishra & Awasthi, 2021; Paul et al., 2021; Wessel et al., 1998). 

One of the key advantages of AI in pharmaceutical development is its ability to 

process and analyze large datasets efficiently, facilitating more accurate and faster 

decision-making. AI models can predict how drug molecules will behave in biological 

systems, simulate pharmacological effects, and optimize formulation parameters, thus 

significantly reducing experimental time and costs. Applications of AI now extend to 

various dosage forms, including conventional tablets, 3D-printed medicines, dry 

powders, polymer patches, injectables, vaccines, and nanoparticle-based systems 

(Elbadawi et al., 2020; Han et al., 2019; Kashani-Asadi-Jafari et al., 2022; J. Wang et 

al., 2022) 

The evolution of AI in pharmaceutical research continues as technological 

innovations and data availability increase. AI holds significant potential to accelerate 

drug discovery, optimize formulations, and support personalized medicine. Ultimately, 

its continued integration is expected to lead to the development of safer, more effective, 

and patient-specific pharmaceutical products. 
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2.2 Classification of Artificial intelligence 

AI-driven technologies have become a focal point in pharmaceutical research 

and development, offering advanced tools to accelerate innovation and decision-

making. One of the most impactful applications of AI in this context is ML, which 

enables computational systems to learn from data, recognize patterns, and make 

predictions without explicit programming. ML encompasses a broad spectrum of 

algorithms tailored for different analytical tasks. Commonly used techniques in 

pharmaceutical applications include Naive Bayes classifiers, Decision Trees, Random 

Forests, Multiple Linear Regression, Logistic Regression, Linear Discriminant 

Analysis (LDA), Support Vector Machines (SVM), and Artificial Neural Networks 

(ANNs) (Dara et al., 2022; Justo-Silva et al., 2021; Raza et al., 2022). 

As illustrated in Figure 2.2, ML algorithms can be broadly classified into three 

categories: supervised learning, unsupervised learning, and deep learning. In supervised 

learning, the model is trained using labeled datasets to predict outcomes or classify data. 

Unsupervised learning, by contrast, identifies hidden patterns or groupings in data 

without predefined labels. Deep learning, a specialized subdomain of ML, employs 

multi-layered neural networks to handle complex, high-dimensional data, often 

outperforming traditional models in tasks such as image recognition and natural 

language processing. 
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Figure 2.2 The classification of AI in pharmaceutical comprises supervised, 

unsupervised, and reinforcement learning methods (Suriyaamporn, 

Pamornpathomkul, Patrojanasophon, et al., 2024). 

These ML approaches have significantly contributed to the development of 

predictive models and data clustering tools in pharmaceutical science. Their ability to 

process large datasets and uncover nonlinear relationships makes them valuable for a 

wide range of tasks, from drug discovery and formulation optimization to toxicity 

prediction and quality control. 

 

2.2.1 Supervised learning 

Supervised Learning is a machine learning approach that relies on labeled 

datasets—data for which the input features and corresponding output values are known. 

This method allows the algorithm to learn patterns and relationships within the training 

data, enabling it to make accurate predictions on unseen data. The process mimics 

human learning, where feedback and guidance help shape understanding. By 

associating specific inputs with known outputs, supervised learning models can 

generalize these associations to forecast outcomes from new inputs. 

The core objective of supervised learning is to construct a predictive function 

that maps inputs to desired outputs by analyzing patterns in the labeled dataset. The 

model iteratively adjusts its internal parameters to minimize prediction error during 

training, ultimately leading to a well-generalized model. These techniques are 

extensively applied in pharmaceutical research for tasks such as bioactivity prediction, 

toxicity screening, pharmacokinetic modeling, and formulation optimization, where 

historical data is available and the target outcomes are well-defined. Supervised 

learning methods can be broadly categorized into two main types. 

 

2.2.1.1 Classification 

Classification is a core technique in supervised learning that involves 

categorizing data into predefined classes or labels. This process plays a vital role in 

pharmaceutical research, especially in tasks such as drug efficacy prediction, toxicity 

assessment, and formulation optimization. A variety of machine learning algorithms 
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have been developed to perform classification, each offering distinct strengths 

depending on the nature and complexity of the data. 

1. Naïve Bayes (NB) 

Naïve Bayes is a probabilistic classifier based on Bayes' Theorem, which 

assigns class labels to data based on the calculated likelihood of feature values. The 

term "naïve" refers to the algorithm’s assumption of feature independence, which 

simplifies computation and reduces the need for large datasets during training. Despite 

this simplification, Naïve Bayes has proven highly effective in text classification and 

categorical data analysis. In pharmaceutical applications, it has been used to predict 

therapeutic properties of novel compounds by analyzing drug-like features, 

contributing significantly to early-stage drug discovery (Madhukar et al., 2019). 

2. Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis is a statistical method used to model the 

probability distribution of classes and assign labels based on Bayes' rule. It is 

particularly effective at distinguishing between two or more classes by maximizing the 

separation between categories while minimizing intra-class variability. Additionally, 

LDA aids in dimensionality reduction, making complex datasets easier to interpret. In 

pharmaceutical research, LDA is applied to predict drug performance by evaluating 

chemical attributes and their correlations with biological efficacy (Becht et al., 2021; 

Prieto et al., 2006). 

3. Logistic Regression (LR) 

Logistic Regression is widely used for binary classification tasks and aims to 

estimate the probability that a data point belongs to a specific class. It does so by 

modeling the relationship between input features and the log-odds of a binary outcome 

using the logistic function. LR is valued for its simplicity, interpretability, and 

efficiency in linearly separable datasets. In pharmaceutical development, it is often 

employed to assess the therapeutic potential of new drug candidates (Bagherian et al., 

2020; Choi & Boo, 2020). 

4. K-Nearest Neighbors (K-NN) 

K-NN is a non-parametric algorithm used for both classification and regression. 

It operates on the principle that similar data points exist in close proximity within the 

feature space. The classification decision is made based on the majority vote of the 'K' 
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closest training examples, typically measured using Euclidean distance. One of the 

challenges in K-NN is determining the optimal value of K. In pharmaceutical contexts, 

K-NN has been used in predicting drug activities, optimizing formulations, assessing 

stability, and evaluating toxicity profiles (Bannigan et al., 2023; Yang et al., 2019). 

5. Support Vector Machines (SVM) 

SVM is a powerful supervised learning method suitable for both classification 

and regression tasks. It works by constructing an optimal hyperplane that separates 

classes with maximum margin in a high-dimensional space. The use of kernel functions 

(e.g., linear, polynomial, radial basis function) allows SVM to handle non-linear 

decision boundaries effectively. While robust to high-dimensional data, SVM may be 

less suitable when classes overlap significantly or when the dataset contains excessive 

noise. In pharmaceutical research, SVM has been applied in drug classification, 

pharmacokinetic/pharmacodynamic modeling, and predicting drug-drug interactions 

(Seok et al., 2011; Yang et al., 2009). 

6. Decision Trees (DT) 

Decision Trees are non-parametric models that simulate decision-making 

processes using a tree-like structure. Each internal node represents a feature, branches 

represent decision rules, and leaf nodes denote outcomes. DTs are intuitive and easy to 

interpret, making them useful in exploratory data analysis. In the pharmaceutical field, 

DTs have been employed for formulation design, toxicity prediction, and identifying 

key chemical properties influencing drug efficacy (Karim et al., 2019). 

7. Random Forest (RF) 

Random Forest is an ensemble learning method that builds multiple decision 

trees and combines their outputs to improve prediction accuracy. This approach 

addresses limitations of individual trees, such as overfitting, by introducing randomness 

in feature selection and data sampling. RF has demonstrated robust performance in 

various pharmaceutical applications, including drug activity prediction and compound 

screening in drug discovery pipelines (Lind & Anderson, 2019). 

 

2.2.1.2 Regression 

Regression analysis is a foundational statistical approach in machine learning, 

commonly applied to model and predict the relationship between a dependent variable 
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(response) and one or more independent variables (predictors or features). The primary 

aim is to quantify how changes in predictor variables influence the response variable. 

In pharmaceutical sciences, regression techniques are widely utilized for a range of 

predictive tasks, including modeling drug concentration profiles over time and 

estimating key physicochemical properties such as solubility based on molecular 

descriptors. These insights are instrumental in formulation design and drug 

development optimization (Vilar & Costanzi, 2012). 

1. Simple Linear Regression 

Simple linear regression (SLR) is the most fundamental form of regression 

analysis. It involves modeling the linear relationship between a single independent 

variable and a single dependent variable. The output is a straight-line equation that best 

fits the data, allowing prediction of the dependent variable based on new values of the 

predictor. SLR is often used in initial exploratory analyses to understand potential 

trends or correlations between two variables.  

2. Multiple Linear Regression 

Multiple linear regression (MLR) extends the principles of SLR by 

incorporating two or more independent variables. This enables the modeling of more 

complex systems where multiple factors simultaneously influence the outcome. In 

pharmaceutical research, MLR is frequently applied to predict drug dissolution, 

stability, or bioavailability by considering various formulation parameters, 

environmental factors, and physicochemical properties. Its ability to handle 

multifactorial datasets makes it a powerful tool in both formulation screening and 

process optimization. 

3. Polynomial Regression 

Polynomial regression is a nonlinear extension of linear regression that fits a 

polynomial curve to the data rather than a straight line. It captures more complex 

relationships between the dependent and independent variables by including higher-

order terms (e.g., squared or cubic terms) in the model. This technique is particularly 

useful in pharmaceutical applications where response behavior exhibits curvature, such 

as nonlinear dissolution kinetics or drug release patterns from controlled-release 

formulations. 
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2.2.2 Unsupervised learning 

Unsupervised learning is a key branch of ML that operates on datasets without 

predefined labels or target variables. Unlike supervised learning, which relies on known 

outcomes to train models, unsupervised learning explores the intrinsic structure of data 

by identifying hidden patterns, similarities, or groupings among the input variables. The 

objective is to uncover meaningful insights or relationships within the dataset without 

external guidance. This learning paradigm is particularly valuable in situations where 

labeled data is unavailable, costly, or impractical to obtain—common scenarios in 

early-stage pharmaceutical research and exploratory data analysis.  

In pharmaceutical applications, unsupervised learning supports diverse 

objectives such as classifying compound libraries, identifying structural similarities 

among molecules, uncovering novel drug-target interactions, and improving data 

preprocessing pipelines. Unsupervised learning methods can be broadly categorized 

into four main types. 

 

2.2.2.1 Clustering 

Clustering involves organizing data points into groups based on similarity, 

without prior knowledge of class labels. The goal is to place similar items within the 

same group while ensuring separation from dissimilar items. Various clustering 

algorithms have been developed to address different data structures and distributions. 

Common clustering methods include: 

1. K-Means Clustering  

This algorithm partitions data into k clusters by minimizing the distance 

between data points and their respective centroids. Although efficient, K-Means is 

sensitive to outliers and the initial placement of centroids, which can affect the final 

clustering results. In pharmaceutical sciences, K-Means has been used to classify 

chemical compounds based on structural similarity, aiding drug discovery efforts 

(Akondi et al., 2019). 

2. Mean-Shift Clustering  

A non-parametric technique that identifies dense regions in data by iteratively 

shifting centroids toward the highest density area. While effective for non-uniform data, 
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it can be computationally intensive and sensitive to bandwidth parameters. Mean-Shift 

is useful for complex datasets with varying distributions (Sarker, 2021b). 

3. Density-Based Spatial Clustering (DBSCAN)  

DBSCAN identifies clusters of arbitrary shape by detecting areas of high point 

density, distinguishing them from sparse noise regions. It requires two parameters: 

neighborhood radius (eps) and the minimum number of points (minPts) to form a 

cluster. DBSCAN is highly robust to outliers and has been applied in pharmaceutical 

contexts for compound classification and outlier detection (Jiang et al., 2019; McComb 

et al., 2022). 

4. Agglomerative Hierarchical Clustering (AHC) 

A bottom-up approach that builds a tree-like hierarchy of clusters by iteratively 

merging the most similar pairs. AHC provides interpretable dendrograms that reveal 

nested groupings. In drug research, it assists in grouping molecules based on chemical 

or structural similarities for lead identification (Lakshmi & P, 2023). 

 

2.2.2.2 Dimensionality Reduction 

Dimensionality reduction is a vital process in machine learning that involves 

decreasing the number of features or input variables in a dataset while preserving the 

essential structure and relationships within the data. The primary goal is to simplify 

complex datasets, eliminate redundant or irrelevant features, and enhance the 

performance of machine learning algorithms. This technique is particularly useful for 

improving model interpretability, reducing computational demands, and mitigating 

overfitting issues. 

In pharmaceutical research, dimensionality reduction is frequently applied in 

the analysis of high-dimensional data, such as gene expression profiles or biological 

activity datasets, to uncover meaningful patterns and facilitate hypothesis generation. 

Two principal approaches to dimensionality reduction include feature selection and 

feature extraction (Vamathevan et al., 2019; Lalitkumar K. Vora et al., 2023). 

1. Feature Selection  

This technique involves selecting a subset of relevant features from the original 

dataset that contribute significantly to the predictive model. Feature selection aims to 

streamline the learning process, enhance model generalization, and reduce overfitting. 
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It is particularly effective in high-dimensional data scenarios where many variables may 

be irrelevant or redundant. Common methods include the Chi-squared test, Analysis of 

Variance (ANOVA), Pearson's correlation coefficient, and Recursive Feature 

Elimination (RFE). These techniques help identify the most informative variables for 

model training. 

2. Feature Extraction  

Feature extraction transforms the original high-dimensional data into a new, 

lower-dimensional feature space while retaining critical information. This 

transformation often combines existing features into composite variables that capture 

the underlying data structure. Popular techniques include Principal Component 

Analysis (PCA), Linear Discriminant Analysis (LDA), t-Distributed Stochastic 

Neighbor Embedding (t-SNE), and deep learning-based methods such as autoencoders. 

These methods are particularly effective for visualizing complex datasets and 

enhancing model accuracy by simplifying data representations. 

 

2.2.2.3 Association Rule 

Association rule learning is a data mining technique designed to uncover 

interesting relationships, patterns, or dependencies within large datasets. This approach 

focuses on identifying frequent co-occurrences among variables and is commonly 

expressed through conditional rules in the form "If X, then Y," where X and Y represent 

sets of items. Such rules are typically evaluated using metrics such as support, 

confidence, and lift, which quantify their relevance and reliability. Association rule 

learning is particularly valuable in scenarios where understanding item correlations can 

inform decision-making, such as market basket analysis or pharmaceutical data 

analysis. Two of the most widely used algorithms in this domain are the Apriori 

algorithm and Frequent Pattern Growth (FP-Growth). 

1. Apriori Algorithm  

Apriori is a foundational algorithm in association rule mining, known for its 

simplicity and effectiveness. It identifies frequent itemsets by iteratively expanding 

combinations of items and eliminating infrequent ones based on minimum support 

thresholds. The key principle underlying Apriori is that if an itemset is infrequent, all 

supersets derived from it will also be infrequent, thereby reducing the computational 
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burden. This bottom-up strategy starts with single items and progressively constructs 

larger itemsets. In pharmaceutical research, Apriori has been applied to uncover 

relationships between drugs and adverse effects, as well as to analyze biological data 

to reveal associations among genes or proteins. Its capacity to discover hidden patterns 

makes it a valuable tool in hypothesis generation and knowledge discovery (Noguchi 

et al., 2018; Sarker, 2021b). 

2. FP-Growth Algorithm  

The FP-Growth algorithm addresses the limitations of Apriori by using a divide-

and-conquer strategy and constructing a compact data structure known as the FP-tree. 

Unlike Apriori, FP-Growth avoids candidate generation and instead compresses the 

dataset to identify frequent itemsets more efficiently. Despite its computational 

advantages, it may face challenges with extremely large or dense datasets due to the 

complexity of tree construction. Nevertheless, FP-Growth has demonstrated utility in 

pharmaceutical research, particularly in identifying latent patterns and associations 

among formulation parameters, drug interactions, or patient response profiles (Sarker, 

2021b; Zhao & S Bhowmick, 2003). 

Together, these algorithms play a significant role in the pharmaceutical domain 

by enabling researchers to mine complex datasets for meaningful insights, ultimately 

enhancing drug development, safety profiling, and personalized medicine strategies. 

 

2.2.2.4 Anomaly Detection 

Anomaly detection is a machine learning approach used to identify data points 

or patterns that significantly deviate from the norm within a dataset. These outliers may 

indicate potential errors, rare events, or system malfunctions. The primary objective of 

anomaly detection is to flag irregularities that may otherwise go unnoticed but could 

have critical implications. 

In the pharmaceutical industry, anomaly detection is particularly valuable for 

ensuring product quality and safety by identifying deviations in manufacturing 

processes or experimental results. This capability enhances quality control protocols 

and supports regulatory compliance by proactively addressing inconsistencies before 

they lead to product failure or safety concerns. 
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Several algorithms are commonly employed for anomaly detection, including 

Local Outlier Factor (LOF) and Isolation Forest. LOF measures the local deviation of 

a data point with respect to its neighbors, while Isolation Forest isolates anomalies by 

recursively partitioning the dataset. Both techniques are effective in identifying outliers 

in high-dimensional data and can be integrated into real-time monitoring systems for 

rapid decision-making and risk mitigation (Goldstein & Uchida, 2016). 

 

2.2.3 Deep Learning 

Deep learning (DL), a subset of machine learning, has garnered increasing 

attention within the pharmaceutical industry due to its superior accuracy and precision 

when compared to conventional ML approaches. DL models utilize multilayer artificial 

neural networks (ANNs) to automatically extract and learn complex features and 

representations from raw data. These capabilities allow for improved performance in 

tasks involving intricate and high-dimensional datasets. The key advantage of deep 

learning lies in its ability to emulate human cognitive functions by transmitting 

information through interconnected layers of artificial neurons, with each layer 

progressively capturing more abstract and detailed features. 

Unlike traditional ML models that often rely on manual feature engineering, 

deep learning methods excel at autonomously learning relevant data features, making 

them particularly powerful in applications requiring deep contextual understanding. In 

pharmaceutical applications, deep learning has been employed in areas such as 

compound identification, drug interaction prediction, pharmacokinetics modeling, and 

molecular design 

 

2.2.3.1 Convolutional Neural Networks (CNNs) 

CNNs are specialized deep learning architectures tailored for image-based data 

processing. They employ convolutional layers to extract spatial hierarchies of features 

using learnable filters or kernels. Each kernel performs convolution operations over 

localized regions of an image to detect specific features at various levels of abstraction. 

In pharmaceutical research, CNNs have been instrumental in image classification tasks, 

including the identification and differentiation of molecular structures and compound 

visualization (Oei et al., 2019; Wolfgang et al., 2020). 
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2.2.3.2 Recurrent Neural Networks (RNNs) 

RNNs are designed to handle sequential data where temporal or ordered 

dependencies are critical. These networks incorporate loops within their architecture, 

enabling information persistence across time steps. RNNs are particularly suited for 

time-series analysis and natural language processing (NLP) tasks. In pharmaceutical 

sciences, RNNs have been employed for sequence-based drug design, 

pharmacokinetics/pharmacodynamics (PK/PD) modeling, and prediction of drug 

absorption and distribution patterns over time (Tang, 2023). 

 

2.2.3.3 Generative Adversarial Networks (GANs) 

GANs represent a unique class of DL models composed of two competing 

neural networks: a generator and a discriminator. The generator aims to produce 

synthetic data that closely resembles real data, while the discriminator's role is to 

distinguish between real and generated data. Through iterative adversarial training, 

GANs progressively improve their ability to generate high-fidelity synthetic samples. 

In pharmaceutical research, GANs have been successfully applied to generate novel 

molecular structures, optimize chemical properties, and accelerate the early stages of 

drug discovery by expanding the diversity of compound libraries (Sousa et al., 2021). 

 

2.2.3.4 Long Short-Term Memory Networks (LSTMs) 

LSTMs are an advanced variant of RNNs designed to address the limitations of 

standard RNNs in learning long-term dependencies due to the vanishing gradient 

problem. LSTMs incorporate a memory cell and gating mechanisms—input, forget, and 

output gates—that regulate the flow of information, allowing the network to retain or 

discard data as needed. This architecture enables LSTMs to model both short- and long-

term patterns in sequential data effectively. 

LSTMs are highly applicable to tasks requiring temporal pattern recognition, 

such as NLP, time-series forecasting, and physiological modeling. In pharmaceutical 

applications, LSTMs have been used for simulating drug concentration profiles in the 

body, modeling ADME (absorption, distribution, metabolism, and excretion) 
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processes, and predicting time-dependent pharmacological responses (Moldovan et al., 

2019). 

 

2.3 Hybrid machine learning models 

Hybrid machine learning (ML) models represent an advanced class of data-

driven approaches that combine the strengths of multiple learning paradigms or 

algorithms to achieve superior predictive performance, robustness, and adaptability 

compared to individual models, represented in Figure 2.3. These models have emerged 

as powerful tools for addressing complex and nonlinear problems that are commonly 

encountered in pharmaceutical formulation, quality control, and drug development 

(Shah et al., 2025). 

 

 

Figure 2.3 Hybrid machine learning models workflow. 

 

The rationale behind hybrid models is grounded in the fact that no single ML 

algorithm is universally optimal for all types of datasets or tasks. By integrating 

complementary techniques—such as linear regression with artificial neural networks 

(ANNs), support vector machines (SVMs) with decision trees, or unsupervised 

clustering with supervised classifiers—hybrid models can capitalize on the advantages 

of each component while mitigating their individual limitations. This results in models 

that are better equipped to handle noise, missing data, multicollinearity, and high-
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dimensional feature spaces (Rajaee et al., 2020). Hybrid ML models can be broadly 

categorized into the following types: 

1. Model-Based Hybridization  

These models combine data-driven ML techniques with domain-specific 

theoretical or mechanistic models, enabling incorporation of expert knowledge and 

improved generalizability. This approach is particularly effective in 

pharmacokinetics/pharmacodynamics (PK/PD) modeling and physiologically-based 

pharmacokinetic (PBPK) modeling (Agoram et al., 2001). 

2. Algorithmic Hybridization  

This approach integrates multiple ML algorithms within a single framework, 

such as combining ANN with SVM or decision trees, to harness their respective 

strengths. It has been used effectively in predicting drug solubility and formulation 

optimization (Chen, 2024). 

3. Optimization-Based Hybridization  

Involves the fusion of ML models with optimization algorithms like genetic 

algorithms (GA), particle swarm optimization (PSO), or reinforcement learning (RL), 

enhancing model tuning and global search capabilities. Applications include 

nanoparticle optimization and multi-objective drug formulation design (Yongqiang Li 

et al., 2015). 

4. Ensemble Hybridization  

Uses ensemble methods such as bagging, boosting, or stacking, where multiple 

base learners are combined to improve prediction accuracy and reduce overfitting. This 

strategy has been shown to enhance robustness in pharmaceutical process control 

(Hoseini et al., 2023). 

In pharmaceutical sciences, hybrid ML models have been employed in diverse 

applications. For instance, hybrid ANN–genetic algorithm (GA) frameworks have been 

successfully used to optimize nanoparticle formulations by modeling critical quality 

attributes (CQAs) such as particle size, zeta potential, and drug loading. Likewise, 

combinations of fuzzy logic and machine learning have improved decision-making 

processes under uncertainty, which is crucial in formulation design and scale-up. 

Hybrid systems that include ensemble learning techniques—such as boosting and 
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bagging—have enhanced model generalization and predictive stability across varied 

pharmaceutical datasets (Bannigan et al., 2021). 

Notably, hybrid ML approaches also support the implementation of Quality by 

Design (QbD) principles by enabling precise identification of critical material attributes 

(CMAs) and critical process parameters (CPPs), thus facilitating the creation of robust 

design spaces. Moreover, the integration of reinforcement learning (RL) with 

evolutionary algorithms in hybrid models enables dynamic adaptation of model 

parameters, allowing for real-time optimization and autonomous learning in 

manufacturing settings. 

As pharmaceutical processes become increasingly complex and data-rich, 

hybrid ML models are poised to play an instrumental role in enhancing formulation 

efficiency, predictive accuracy, and regulatory compliance, ultimately contributing to 

safer and more effective therapeutic products. 

 

2.4 Genetic algorithm 

Genetic algorithms (GAs) are a class of stochastic optimization techniques 

inspired by the process of natural selection and biological evolution. First introduced 

by John Holland in the 1970s, GAs are particularly well-suited for solving complex, 

nonlinear, and multi-objective optimization problems where traditional gradient-based 

methods may fall short. GAs operate through iterative evolution of a population of 

candidate solutions, using operations such as selection, crossover (recombination), and 

mutation to explore the solution space (Sivanandam & Deepa, 2008). The basic 

workflow of a GA involves the following steps, represented in Figure 2.4 (Albadr et 

al., 2020; Katoch et al., 2021). 
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Figure 2.4 The basic workflow of a genetic algorithm (Albadr et al., 2020). 

 

1. Initialization 

Generate an initial population of potential solutions, often represented as 

chromosomes (binary or real-valued). The size of the population typically ranges from 

20 to 200 individuals, depending on the problem complexity and computational 

resources. A larger population may explore the solution space more thoroughly but 

increases the computational cost. 

2. Evaluation  

Calculate the fitness of each individual using a predefined fitness function. The 

fitness function is problem-specific and determines how well each solution satisfies the 

optimization objectives. In pharmaceutical formulation, this might involve metrics such 

as drug release rate, encapsulation efficiency, or particle size. 

3. Selection 
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Select individuals based on fitness scores for reproduction. Common selection 

methods include roulette wheel selection, tournament selection, and rank-based 

selection. The selection rate usually ranges from 50% to 90%. A higher selection 

pressure accelerates convergence but may reduce diversity, while lower pressure 

maintains diversity but slows optimization. 

4. Crossover  

Combine selected parents to produce new offspring by exchanging parts of their 

chromosomes. The crossover rate, typically set between 0.6 and 0.9, controls the 

frequency of recombination. A higher crossover rate promotes exploration of new 

solutions, while a lower rate focuses on exploiting existing high-quality solutions. 

5. Mutation  

Introduce random alterations to offspring to maintain genetic diversity and 

avoid premature convergence. Mutation rate is usually set low (e.g., 0.01 to 0.1) to 

avoid excessive randomness. It helps the algorithm escape local optima and explore 

less-visited regions of the search space. 

6. Replacement 

Form a new population by selecting individuals from the current population and 

newly generated offspring. Strategies include generational replacement (replacing all 

individuals) or elitism (preserving the best individuals). 

7. Termination 

Repeat the process for a fixed number of generations (commonly 50–500) or 

until convergence criteria are met, such as no significant improvement in fitness over 

successive generations. 

In pharmaceutical sciences, GAs have been extensively applied for formulation 

optimization, design of experiments, and model parameter tuning. For instance, GAs 

have been used to identify optimal combinations of excipients, concentrations, and 

process parameters to achieve desired drug release profiles, particle size distributions, 

or stability characteristics. When integrated with machine learning models, such as 

artificial neural networks (ANNs), GAs enhance predictive performance by optimizing 

hyperparameters and selecting relevant input features (M. R. Zaki et al., 2015). 

One of the key advantages of GAs is their ability to escape local minima and 

find global optima in highly dimensional and rugged search spaces. Additionally, they 
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are flexible and easily adaptable to different problem domains without requiring 

gradient information. However, the performance of GAs depends on the proper 

selection of parameters such as population size, crossover rate, mutation rate, and 

selection strategy. Improper tuning can lead to issues such as premature convergence 

or excessive computation time (Albadr et al., 2020; Katoch et al., 2021). 

Recently, GAs have been integrated with other advanced computational 

techniques, including reinforcement learning and swarm intelligence, to further 

improve their adaptability and efficiency (Lee et al., 2022; Song et al., 2023). These 

hybrid approaches have demonstrated success in areas such as nanoparticle design, 

personalized medicine, and predictive modeling for complex drug delivery systems. 

Overall, genetic algorithms represent a versatile and powerful optimization tool in the 

pharmaceutical field, enabling efficient exploration of vast parameter spaces and 

supporting the development of robust, high-quality drug formulations and 

manufacturing processes (Chi et al., 2009; Ghaheri et al., 2015). 

 

2.5 Reinforcement learning 

Reinforcement Learning (RL) is a branch of machine learning concerned with 

how agents ought to take actions in an environment to maximize cumulative rewards. 

Unlike supervised learning, where the model is trained with labeled data, RL learns by 

interacting with the environment and receiving feedback in the form of rewards or 

penalties. This paradigm mimics behavioral learning and is particularly effective for 

dynamic decision-making tasks. At its core, RL involves several key components: an 

agent, an environment, actions, states, and a reward function. The agent observes the 

current state of the environment and selects an action based on a policy—a strategy 

mapping states to actions. The environment then transitions to a new state and returns 

a reward, which the agent uses to update its policy. This process is modeled 

mathematically using Markov Decision Processes (MDPs) (Martins et al., 2025; Sarker, 

2021b) as represented in Figure 2.5. Common algorithms are used in RL such as 

(Shakya et al., 2023): 

1. Q-Learning 

A value-based, model-free algorithm where the agent learns a Q-value function 

that estimates the expected reward for taking an action in a given state. The Q-table is 
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iteratively updated using the Bellman equation. Q-Learning is easy to implement and 

effective in small, discrete state spaces but can struggle with high-dimensional inputs 

due to table size limitations. 

2. Deep Q-Networks (DQN) 

An advancement of Q-learning that uses deep neural networks to approximate 

the Q-values instead of using a tabular approach. DQN introduces techniques such as 

experience replay and target networks to stabilize training. This method enables RL to 

handle complex environments with high-dimensional and continuous state spaces, such 

as image inputs in drug design simulations. 

3. Policy Gradient Methods 

These methods optimize the policy directly by computing the gradient of the 

expected cumulative reward with respect to the policy parameters. Unlike value-based 

methods, policy gradients are suitable for continuous action spaces and stochastic 

policies, making them useful in pharmaceutical process control where optimal control 

paths need to be learned dynamically. 

4. Actor-Critic Methods 

A hybrid of value-based and policy-based methods where the "actor" learns the 

policy function and the "critic" learns the value function. The critic guides the actor’s 

updates, leading to more stable and faster convergence. Actor-critic models are 

effective in environments requiring continuous updates and feedback, such as adaptive 

formulation design or batch control in drug manufacturing. 
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Figure 2.5 Markov Decision Processes (MDPs) flowchart (Zhou et al., 2021). 

 

In pharmaceutical sciences, RL has emerged as a valuable tool in experimental 

design, process control, and optimization. For instance, RL has been used to guide 

autonomous experimentation, adaptively adjust process parameters in real-time, and 

optimize multi-step synthesis or formulation strategies where feedback is sequential 

and delayed. The strength of RL lies in its adaptability to new environments and ability 

to learn from trial and error, making it ideal for complex, uncertain, and nonlinear 

systems (Al-Kharusi et al., 2022; Narayanan et al., 2021). 

When combined with GAs, RL can further enhance optimization efficiency. In 

such hybrid frameworks, RL dynamically tunes GA hyperparameters (e.g., mutation 

and crossover rates), thereby accelerating convergence and improving the quality of 

solutions. This synergy has been applied in advanced drug design, including the 

generation of novel molecules, nanoparticle formulation, and predictive modeling of 

pharmacokinetics. Moreover, this plays a crucial role in optimizing decision-making in 

the pharmaceutical domain and facilitates design processes that were previously 

unattainable using traditional methods (Suriyaamporn, Pamornpathomkul, 

Patrojanasophon, et al., 2024). 
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2.6 Nanoparticle-based drug delivery systems 

Nanoparticle-based drug delivery systems (NDDSs) represent an advanced 

colloidal nanotechnology platform in which therapeutic agents are encapsulated, 

adsorbed, or conjugated onto nanocarriers typically ranging in size from 10 to 1000 

nanometers. Over the past two decades, interest in NDDSs has grown substantially, 

transitioning from academic research into widespread industrial application. This 

transition has been largely driven by the high therapeutic potential and commercial 

viability of nanomedicine. Nanotechnology is now considered one of the most rapidly 

expanding research areas within pharmaceutical sciences due to its capacity to improve 

drug solubility, stability, and bioavailability while enabling targeted and controlled 

drug release mechanisms (Soares et al., 2018). 

Nanoparticles are engineered to overcome various biological barriers and 

deliver therapeutic agents to specific target tissues or cells with high precision. By 

modifying surface characteristics or loading strategies, these systems can provide 

sustained drug release, protect labile molecules from degradation, and prolong systemic 

circulation time, thereby enhancing therapeutic efficacy and patient compliance. These 

properties make NDDSs superior to conventional dosage forms such as tablets, 

capsules, ointments, and injectable solutions (Abdel-Mageed et al., 2021; Giri et al., 

2023).Nanoparticle drug delivery systems can be administered through multiple routes, 

including oral, nasal, transdermal, and intravenous pathways. Their versatility not only 

improves drug performance but also reduces adverse effects by minimizing systemic 

exposure and allowing for localized treatment. Additionally, nanoparticles are 

particularly beneficial for encapsulating macromolecules such as peptides, enzymes, or 

proteins, which are typically susceptible to enzymatic degradation and require 

protection to maintain therapeutic activity in vivo. NDDSs are generally classified into 

three main categories based on their composition such as polymeric nanoparticles 

(PNPs), lipid-based nanoparticles (LNPs) and Inorganic nanoparticles (INPs) as 

illustrated in Figure 2.6 (Abdel-Mageed et al., 2021; Giri et al., 2023). 
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Figure 2.6 Three classes of nanoparticles, including polymeric, inorganic, and lipid-

based nanoparticles indicating their advantages and disadvantages (Thabet & 

Alqudah, 2024). 

 

Among these, polymeric nanoparticles are the most widely utilized due to their 

ease of fabrication, cost-effectiveness, biocompatibility, and structural integrity. These 

systems are often prepared from biodegradable polymers such as polyvinylpyrrolidone 

(PVP), poly vinyl alcohol (PVA), poly(lactide-co-glycolide) (PLGA), poly(butyl 

cyanoacrylate), poloxamers, polymethacrylate, caragenan, dextran, chitosan, poly(ε-

caprolactone) (PCL) and others. The drug can be incorporated into the core, embedded 

within the polymer matrix, or adsorbed onto the nanoparticle surface depending on 

formulation needs. To maintain particle stability and prevent aggregation, various 

stabilizers or surfactants are added during the formulation process. Commonly used 

agents include polysorbates, lecithin, sorbitan esters, dioctyl sodium sulfosuccinate, 

cetrimonium bromide, and alkyl benzene sulfonates. These agents help control the size 

and surface characteristics of the nanoparticles, which are critical factors influencing 

biodistribution, cellular uptake, and drug release kinetics (Lôbo et al., 2021). 

In conclusion, nanoparticle-based systems provide a powerful platform for 

advanced drug delivery, offering customizable designs for enhanced therapeutic 

outcomes, reduced toxicity, and targeted drug administration. Their ongoing 

development is likely to transform future pharmaceutical formulations, particularly in 

Ref. code: 25686722041230FLX



29 

 

 

complex disease areas such as cancer, dermatological disorders, and chronic 

inflammatory conditions. 

 

2.7 Resveratrol 

Resveratrol is a naturally occurring polyphenolic compound predominantly 

found in red grapes, peach, peanuts, and various berries. It has garnered increasing 

attention due to its wide-ranging health benefits, which include cardioprotective effects, 

neuroprotection, antitumor activity, antidiabetic properties, antioxidant function, anti-

aging potential, and modulation of glucose metabolism, illustrated in Figure 2.7. Its 

therapeutic effects are mediated through multiple molecular mechanisms, such as the 

regulation of oxidative stress, apoptosis, lipid metabolism, and inflammatory pathways. 

These pleiotropic effects make resveratrol a promising candidate for the treatment and 

prevention of chronic conditions including cancer, neurodegenerative diseases, and 

atherosclerosis (Meng et al., 2020). 

 

 

Figure 2.7 The sources and biological effects of resveratrol (Xu et al., 2024). 

 

In recent years, resveratrol has also emerged as a bioactive ingredient in 

cosmeceutical formulations. Research has demonstrated its ability to permeate the skin 
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barrier and exert anti-aging effects. Studies have shown that topical formulations 

containing resveratrol promote fibroblast proliferation and upregulate the synthesis of 

collagen, particularly types I, II, and III. Additionally, resveratrol is known to bind 

estrogen receptors (ERα and ERβ), thereby stimulating skin regeneration and enhancing 

structural integrity. Its antioxidant capacity allows it to mitigate oxidative damage and 

photoaging by neutralizing reactive oxygen species (ROS) and reducing ultraviolet 

(UV)-induced cellular stress (Ratz-Łyko & Arct, 2019). 

Despite its pharmacological promise, the clinical utility of resveratrol is limited 

by several biopharmaceutical challenges. Notably, its aqueous solubility is extremely 

low (~0.05 mg/mL), which restricts formulation development in water-based systems 

and hinders effective drug delivery to target sites (Robinson et al., 2015). Furthermore, 

resveratrol is highly sensitive to environmental conditions such as pH, light, and 

temperature, leading to rapid degradation and instability.  

To address these limitations, extensive research has focused on developing 

nanocarrier-based systems to enhance resveratrol’s stability, solubility, and 

bioavailability. Nanoparticle delivery strategies offer protection against environmental 

degradation and improve pharmacokinetic profiles. For instance, Zhang et al. 

successfully encapsulated resveratrol with α-tocopherol in polymeric nanoparticles, 

significantly enhancing transdermal delivery efficiency and resistance to external 

oxidative and photolytic stress (Zhang et al., 2019). Similarly, lipid-based carriers such 

as liposomes have shown considerable potential in improving both the stability and 

therapeutic effectiveness of resveratrol by providing a biocompatible and protective 

lipid bilayer structure (Dana et al., 2022). Overall, the incorporation of resveratrol into 

nanocarrier systems offers a viable strategy for overcoming its physicochemical 

drawbacks and unlocking its full therapeutic potential in both medical and 

dermatological applications. 

 

2.8 Integration of AI with nanoparticle-based drug delivery systems 

The convergence of AI and nanotechnology in pharmaceutical sciences marks 

a transformative shift in drug formulation and delivery. Nanoparticle-based drug 

delivery systems (NDDS) have emerged as powerful tools for enhancing drug 

solubility, protecting active compounds from environmental degradation, and achieving 
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targeted delivery at the cellular and molecular levels. However, the design and 

optimization of these nanosystems involve complex, multivariate interactions among 

formulation parameters, which often present challenges in identifying the most suitable 

formulation strategy. 

AI has proven instrumental in addressing these challenges through advanced 

data-driven algorithms that facilitate efficient prediction, modeling, and optimization. 

By integrating AI techniques—particularly machine learning (ML) and deep learning 

(DL)—researchers can simulate formulation behavior, identify critical quality 

attributes, and accelerate the development of nanomedicines with enhanced therapeutic 

efficacy and product consistency (Alshawwa et al., 2022). 

For instance, Wu et al. applied artificial neural networks (ANNs) to predict the 

drug release kinetics of doxorubicin (Dox) from nanocarriers. Their study involved 

comparing multiple ANN models to evaluate Dox release at various time intervals, 

successfully establishing a model that could accurately simulate the temporal release 

behavior of the drug from nano-encapsulated systems (Li et al., 2005). Similarly, 

ANNs have been used to optimize the formulation of cerasomes—liposome-silica 

hybrid nanostructures—by predicting nanoparticle size based on component 

composition and process parameters, showing high predictive reliability (Hameed et 

al., 2018). Kashani-Asadi-Jafari and colleagues employed deep neural networks 

(DNNs) to design optimized niosomal formulations. Their work utilized chemical 

descriptors such as hydrophilic-lipophilic balance (HLB) to train models that could 

predict drug encapsulation efficiency, allowing for the development of highly effective 

carrier systems (Kashani-Asadi-Jafari et al., 2022). Table 2.1 summarizes recent 

studies that demonstrate the potential of AI algorithms including ANNs, LightGBM, 

and hybrid multi-layer perceptron (MLP)-GA models in nanoparticle drug formulation 

and process optimization. 
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Table 2.1 Applications of AI in nanoparticle-based drug formulation. 

Algorithm Input Parameters Objective Ref. 

ANNs NaCl and CaCl₂ 

concentration, drug 

loading level 

Predict Dox release from 

sulfo-propyl-dextran 

microspheres 

(Li et al., 

2005) 

DNNs Molecular weight, LogP, 

pKa, excipient 

concentrations, HLB, 

molar ratios 

Predict encapsulation 

efficiency of optimized 

niosomes 

(Kashani-

Asadi-Jafari et 

al., 2022) 

LightGBM Milling time, cycle 

number, stabilizer 

concentration 

Predict optimal particle size 

and PDI of nanocrystals 

(He et al., 

2020) 

MLP + GA Coconut oil, Tween 80, 

Pluronic F68, xanthan 

gum, water 

Predict particle size of 

nanoemulsions 

(Samson et al., 

2016) 

MLP + GA Pilocarpine HCl, sodium 

deoxycholate, water 

Maximize drug 

encapsulation in nano-

liposomes for ocular 

delivery 

(Zhao et al., 

2018) 

MLP + GA CaCl₂, homogenizer 

speed, %agar, %HPβCD 

Optimize particle size, PDI, 

zeta potential, loading and 

release of Bupropion HCl 

nanospheres 

(Mohammad 

Reza Zaki et 

al., 2015) 

MLP with 

GA and 

fuzzy 

Ramipril tablet 

formulation: lubricant 

types and concentrations 

Model and optimize direct 

compression tablets using 

QbD approach 

(B. Aksu et 

al., 2012) 

ANN with 

GA and 

Drug: lipid ratio, Tween 

80, Pluronic F68 

Optimize verapamil 

polymer-lipid nanoparticle 

(PLN) for sustained release 

(Yongqiang Li 

et al., 2015) 
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Although promising, the integration of AI in nanoparticle formulation still faces 

several challenges. These include the lack of comparative studies across various AI 

algorithms, limited accuracy and generalizability of current predictive models, 

insufficient high-quality training data, and difficulties in translating AI models into 

scalable industrial applications. Moreover, real-time monitoring and adaptive control 

using AI are yet to be widely implemented in commercial manufacturing environments. 

To address these gaps, the present study focuses on the application of AI in the 

rational design of resveratrol-loaded polymeric nanoparticles using experimental data. 

The objective is to develop a predictive model that not only performs well at the 

laboratory scale but is also adaptable for scale-up in industrial production. Furthermore, 

the implementation of real-time feedback loops and model refinement is envisioned to 

support continuous process optimization, leading to better quality control and 

manufacturing efficiency. Ultimately, this research aims to provide a predictive 

framework that facilitates the development of intelligent nanomedicine systems, 

reinforcing the role of AI as a catalyst for advancing pharmaceutical innovation and 

global accessibility to personalized therapeutics.  
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CHAPTER 3 

METHODOLOGY 

 

3.1 Preparation of RES-loaded PNPs 

The preparation of resveratrol-loaded polymeric nanoparticles (RES-loaded 

PNPs) was performed using a nanoprecipitation technique adapted from previously 

established protocols (Cavalcante de Freitas et al., 2023; Suriyaamporn et al., 2023). 

This method involved the formulation of two distinct phases: an aqueous phase and an 

organic phase. In the aqueous phase, poly(acrylic acid) (PAA) and gelatin (GT) were 

dissolved in deionized water (DI water), with polymer concentrations ranging from 

0.001% to 0.599% w/v. In the organic phase, resveratrol (RES) at 1% w/v and 

poloxamer 407 (P407) at concentrations ranging from 0.01% to 5.99% w/v were 

dissolved in ethanol. Subsequently, the organic phase was added dropwise into the 

aqueous phase at a controlled rate of 0.25 mL/min under continuous magnetic stirring 

to facilitate the spontaneous formation of nanoparticles. The resulting colloidal 

dispersion was then subjected to probe sonication at frequencies ranging from 5.05 to 

34.95 Hz for durations between 1.28 and 23.72 min, in order to reduce particle size and 

enhance homogeneity. A total of 131 formulation datasets were obtained from the 

previous study conducted by Suriyaamporn et al. (2025), and the corresponding 

formulation parameter ranges are summarized in Table 3.1. The critical material 

attributes (CMAs) identified in this study were PAA, GT, and P407, while the critical 

process parameters (CPPs) included sonication frequency and time. The final RES-

loaded PNP formulations were stored at 4°C to preserve their physicochemical stability 

for subsequent evaluation. A schematic representation of the nanoparticle preparation 

process is shown in Figure 3.1. 

 

Table 3.1 Components and manufacturing process of RES-loaded PNPs 

Input parameters 
Range of concentration 

- α -1 0 1 α 

PAA (%w/v) 0.001 0.1 0.3 0.5 0.599 

GT (%w/v) 0.001 0.1 0.3 0.5 0.599 
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P407 (%w/v) 0.01 1 3 5 5.99 

Sonication frequency (Hz) 5.05 10 20 30 34.95 

Time (min) 1.28 5 12.5 20 23.72 

 

 

Figure 3.1 Schematic illustration of the preparation process for RES-loaded PNPs 

using the nanoprecipitation technique, highlighting CMAs (PAA, GT, P407), CPPs 

(sonication frequency and time), and CQAs (PS, PDI, ZP, and %DL). 

 

3.2 Physicochemical characterization of RES-loaded PNPs 

 3.2.1 Physical evaluation 

The particle size (PS), polydispersity index (PDI), and zeta potential (ZP) of the 

RES-loaded PNPs were determined using dynamic light scattering (DLS) with a 

Zetasizer Nano Series instrument (Malvern Instruments, DTS version 4.10). Prior to 

measurement, samples were appropriately diluted with deionized water. Each 

measurement was performed using a capillary cell.  

 3.2.2 Chemical evaluation 

The drug content of RES in the nanoparticle formulation was quantified by 

high-performance liquid chromatography (HPLC). The RES-loaded PNPs were diluted 

with ethanol (1:100) and filtered through a 0.45 µm syringe filter prior to injection. 
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Chromatographic separation was achieved using a Zorbax Eclipse XDB-C18 column 

(250 × 4.6 mm, 5 µm pore size; Agilent, USA) with a mobile phase comprising 40% 

v/v methanol and 60% v/v water. The flow rate was maintained at 1 mL/min at a column 

temperature of 25°C. Detection was performed at a wavelength of 308 nm. The 

percentage of drug loading (%DL) was calculated using the following equation 3.1. 

 

%Drug loading =  
Amount of RES in NPs

Amount of RES adding
×100               (3.1) 

 

3.3 Machine learning model of RES-loaded PNPs 

This study commenced with the design and development of a structured dataset 

aimed at optimizing resveratrol-loaded polymeric nanoparticle formulations. The 

experimental design focused on selecting appropriate CMAs and CPPs known to 

influence the Critical Quality Attributes (CQAs)—namely, PS, PDI, ZP, and %DL. 

The initial phase involved data preprocessing, including exploratory data 

analysis and data cleaning, to ensure compatibility with subsequent modeling 

techniques under specific conditions—PS < 400 nm, PDI < 0.6, and ZP < -60 mV. After 

preprocessing, various supervised machine learning algorithms—linear regression 

(LR), polynomial regression (PR), support vector machine (SVM), k-nearest neighbor 

(K-NN), and artificial neural network (ANN)—were employed to predict CQAs from 

the defined input parameters. 

The dataset was subjected to K-Fold Cross-Validation, which randomly divided 

the dataset into K equal subsets to generate training and test datasets for each fold. 

These subsets were used to evaluate the generalizability of each algorithm. The 

performance of the predictive models was assessed using standard evaluation metrics, 

including root mean square error (RMSE) and mean absolute percentage error (MAPE), 

to identify the most accurate and robust model. Initial algorithm parameters were set 

uniformly (program default) to enable fair performance comparisons across models. All 

modeling and evaluation processes were conducted using RapidMiner Studio (version 

10.3, student edition) and Google Colab. 
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3.4 Hybrid machine learning model of RES-loaded PNPs 

Following the evaluation of individual ML models, the next phase involved the 

development of a hybrid machine learning (HML) model to enhance the prediction 

accuracy of CQAs. This approach aimed to leverage the strengths of multiple 

algorithms by integrating their predictive capabilities through model fusion or meta-

learning strategies. Initially, the top-performing base learners identified from the 

earlier stage were selected as the foundational models. These models were then 

combined using two hybridization strategies. 

 

3.4.1 Model Averaging Ensemble  

In this method, the predicted outputs from each selected base model were 

aggregated to produce final predictions of CQAs. The aggregation was performed either 

through simple averaging or weighted averaging, where the weights were assigned 

inversely proportional to each model's MAPE, thereby giving greater influence to 

models with superior predictive accuracy. 

 

3.4.2 Weighted Averaging Ensemble 

In this approach, the final hybrid model was selected based on the weighted 

voting outcomes of the base learners. Each model was assigned a weight inversely 

proportional to its average MAPE, following Equation 3.2 and 3.3. The base models 

with the lowest MAPE were prioritized, and their predictions were aggregated to 

compute the final output. The performance of these candidate ensembles was then 

evaluated against an unseen test dataset. The hybrid model exhibiting the best alignment 

between predicted and actual output values determined by the lowest prediction error 

on the test set was chosen as the optimal ensemble. 

𝑌𝑖 =  ∑ 𝑤𝑗𝑑𝑗                 

𝐿

𝑗

                                                    (3.2) 

𝑤𝑗 =  
(𝑒𝑟𝑟𝑜𝑟𝑗)−1

∑ (𝑒𝑟𝑟𝑜𝑟𝑗)−1𝐿
𝑗

                                                        (3.3) 

Where, dj is result of method j, wj is a weight of method j, errorj is error of 

mrthod j and yi is a result of ensemble method. 
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This hybrid framework was trained and validated using the same K-fold cross-

validation method to ensure consistency in evaluation and to prevent overfitting. 

Performance metrics such as weight and average of MAPE were applied to compare 

hybrid models with individual models. The final hybrid model of each CQAs was 

selected based on its superior predictive performance and was subsequently employed 

for formulation optimization using genetic algorithms enhanced by reinforcement 

learning (GA-RL). 

 

3.5 Quality control by design space 

The multidimensional design space for the formulation process was established 

by integrating hybrid machine-learning (HML) predictive models with contour-based 

visualization methods. Closed-form mathematical representations of each HML model, 

together with refined outputs from pre-trained kNN algorithms, were implemented in 

Python to generate reproducible and computationally robust plotting workflows. Each 

critical quality attribute (CQA) was computed over high-resolution meshgrids 

encompassing the defined critical material attributes (CMAs) and critical process 

parameters (CPPs). Feasibility limits—PS: 80–400 nm; PDI: 0.10–0.40; ZP: –60 to –

15 mV; and DL: 60–100%—were applied in accordance with published guidelines and 

preliminary characterization results (Table 3.2). Superimposing the contour maps for 

individual CQAs enabled the extraction of the intersecting region that concurrently 

satisfied all four feasibility constraints. This intersection was visualized as an unshaded 

area over semi-transparent, color-coded backgrounds corresponding to single-CQA 

feasible zones, allowing rapid identification of the optimal operational domain. The 

finalized design space was then used to derive acceptable CMAs and CPPs ranges, 

forming a comprehensive control strategy that includes raw-material acceptance limits, 

in-process monitoring thresholds, and final product specifications, fully aligned with 

the principles of ICH Q10 pharmaceutical quality systems. 
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Table 3.2 Response limits considered of the contour plot to establish product and 

process specifications within the design space. 

Response Goal HML Limits 

 Lower Upper 

Y1: PS (nm) Minimum LR + ANN 80 400 

Y2: PDI Minimum kNN + ANN 0.1 0.4 

Y3: ZP (mV) Minimum kNN + ANN -60 -15 

Y4: %DL (%) Maximum LR + kNN 60 100 

 

3.6 Genetic algorithm with reinforcement learning for RES-loaded PNPs 

optimization 

Following the identification of the optimal HML model for predicting CQAs, 

the final phase focused on optimizing the formulation of RES-loaded PNPs using a GA 

enhanced with RL. The primary objective was to minimize PS, PDI, and ZP, while 

maximizing %DL. GA was applied as a global optimization method to explore the most 

effective combination of formulation parameters that would produce the most desirable 

CQA outcomes. The fitness function was defined based on the predictive outputs of the 

HML model, linking each input formulation to the corresponding predicted CQAs. To 

ensure pharmaceutical relevance and practicality, specific constraints were imposed on 

each CQA: PS was constrained between 80 and 400 nm, PDI between 0.1 and 0.4, ZP 

within the range of −60 to −15 mV, and %DL between 60% and 100%. 

Initial tuning of key GA parameters—population size (1,000; 10,000; 100,000; 

and 1,000,000), crossover rate (0.1–0.5), and mutation rate (0.01–0.5)—was conducted 

using domain expertise and exploratory simulations. Subsequently, reinforcement 

learning, specifically the Q-learning algorithm, was integrated to adaptively adjust GA 

hyperparameters in real-time during the optimization process. The RL agent was 

rewarded based on incremental improvements in the fitness score, with particular 

emphasis on minimizing PS, PDI, ZP, and maximizing %DL. 

The optimization process followed these steps: (1) initialization with a 

population size of 100,000; (2) evaluation using a fitness function defined as −PS − 

PDI − ZP + %DL; (3) selection through tournament selection; (4) application of 

crossover and mutation at rates ranging from 0.1–0.5 and 0.01–0.5, respectively; (5) 

execution over 100 generations, with termination set at 100 RL episodes, following 
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Figure 3.2. The evolution of the best fitness scores was plotted across generations to 

assess convergence and determine whether a performance plateau had been reached.  

 

 

Figure 3.2 Optimization workflow for RES-loaded PNPs using hybrid machine 

learning modeling and GA-RL framework. 

 

The final optimized formulation identified by the GA-RL strategy was then 

experimentally prepared and characterized to validate its physicochemical properties 

against the predicted values, thereby confirming the effectiveness of the integrated 

optimization framework. 

 

3.7 Experimental Validation of the Optimized Formulation 

To verify the predictive accuracy and practical applicability of the optimized 

formulation obtained from the HML model with GA-RL optimization, experimental 

validation was conducted. The optimal input parameters suggested by the algorithm 

including the CMAs and CPPs were utilized to prepare RES-loaded PNPs in the 

laboratory. Each CQA was measured in triplicate, and the mean values along with 

standard deviations were recorded. 
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The experimentally obtained results were then compared with the predicted 

outputs generated by the HML model with GA-RL. The predictive accuracy of the 

model was quantified by MAPE and independent t-test for each CQA. Any 

discrepancies between predicted and observed outcomes were further analyzed to 

identify potential sources of error, including model overfitting, process variability, or 

limitations in experimental measurement. 
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CHAPTER 4 

RESULT AND DISCUSSION 

 

4.1 Machine learning model of RES-loaded PNPs 

Five supervised learning algorithms—linear regression (LR), polynomial 

regression (PR), support vector regression (SVR), k-nearest neighbors (k-NN), and 

artificial neural networks (ANN)—were developed and assessed using K-fold cross-

validation. Overall, LR produced smooth, low-variance predictions that reflected broad 

global patterns but failed to represent localized nonlinear behavior. In contrast, k-NN 

and ANN captured local variations more effectively and followed the monotonic trends 

observed across the experimental formulations. SVR demonstrated intermediate 

performance with occasional systematic bias. PR, however, showed considerable 

numerical instability, including large oscillatory behavior and frequent negative or 

otherwise implausible outputs, indicating severe overfitting and unreliable 

extrapolation. For this reason, PR was excluded from further consideration as a 

potential contributor to the ensemble. 

As summarized in Table 4.1, ANN provided the highest predictive accuracy for 

particle size (PS, Y1), achieving the lowest error (RMSE 69.19; MAPE 38.46%), 

followed by LR (RMSE 80.02; MAPE 45.08%). The PS response exhibited strong 

nonlinear interactions among CMAs and CPPs; thus, ANN captured these effects more 

effectively, whereas LR produced stable but biased estimates. With default settings, 

both k-NN and SVR were more susceptible to local noise and feature scaling, resulting 

in greater variance. PR again performed poorly, characterized by large oscillations and 

extrapolation errors that confirmed model overfitting. 

For PDI (Y2), ANN and k-NN yielded the best results (RMSE 0.06 and 0.07; 

MAPE 11.83% and 12.04%, respectively). Because PDI is bounded and highly 

sensitive to local neighborhood structure, flexible models such as ANN and k-NN 

generalized more successfully. LR failed to capture finer-scale curvature, leading to 

comparatively higher MAPE values. The instability of PR persisted, likely stemming 

from amplification of small numerical fluctuations within a narrow response range. 
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For zeta potential (ZP, Y3), ANN again provided the highest accuracy (RMSE 

4.28; MAPE 15.44%). LR, SVR, and k-NN performed similarly but slightly less 

effectively (RMSE 4.67–5.01; MAPE 17.04–17.86%). ZP changed smoothly across the 

formulation space; ANN captured mild nonlinear patterns while preserving numerical 

stability. LR’s inherent linearity and the variance associated with SVR and k-NN 

produced minor reductions in accuracy. PR was excluded due to non-physical 

predictions. 

For drug loading (%DL, Y4), k-NN emerged as the top-performing model 

(RMSE 6.69; MAPE 7.44%). LR and SVR achieved comparable accuracy (RMSE 

9.08–9.14; MAPE 10.63–10.95%). %DL demonstrated an overall monotonic trend with 

localized interaction-dependent maxima (“sweet spots”), which k-NN effectively 

modeled through neighborhood-based inference. LR provided a consistent global 

estimate, while ANN slightly underfit the monotonic component under default 

hyperparameters. As with other CQAs, PR produced unstable and unreliable estimates. 

Collectively, these results indicate that no single algorithm performed optimally 

across all CQAs. The contrasting strengths of ANN (nonlinear modeling capacity), k-

NN (local structure sensitivity), and LR (robust global stability) supported the decision 

to implement a hybrid ensemble approach to enhance predictive accuracy and reliability 

prior to constructing the final design space. 

 

Table 4.1 Evaluation of single machine learning model performance for RES-PNPs. 

ML 

algorithms 

PS PDI ZP %DL 

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

LR 80.02 45.08% 0.08 16.78% 4.67 17.86% 9.08 10.63% 

PR 155.78 >100% 1751.83 >100% 69.57 >100% 6074.43 >100% 

SVM 118.12 69.83% 0.08 16.89% 5.00 17.13% 9.14 10.95% 

k-NN 100.47 66.45% 0.07 12.04% 5.01 17.04% 6.69 7.44% 

ANN 69.19 38.46% 0.06 11.83% 4.28 15.44% 8.58 10.71% 
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Figure 4.1 presents the percentage error of PS, PDI, ZP, and %DL generated by 

the individual machine-learning algorithms (LR, PR, SVM, k-NN, and ANN) using the 

training dataset. For particle size (PS, Y₁), the experimental values ranged from several 

tens to a few hundred nanometers. Both k-NN and ANN successfully replicated the 

pronounced nonlinear increases and sharper transitions, whereas LR captured the 

overall upward trend but consistently underestimated the higher-magnitude peaks, 

reflecting its inherent linear constraints. SVR delivered performance between LR and 

the more flexible k-NN/ANN models. PR again demonstrated severe instability, 

characterized by substantial oscillations and non-physical fluctuations. To balance the 

reliable global behavior of LR with the nonlinear adaptability of ANN, a combined LR 

+ ANN approach was selected for Y₁. 

For PDI (Y₂), measured values remained within 0.2–0.6 and exhibited only a 

modest upward drift. LR, k-NN, SVR, and ANN approximated this progression with 

relatively small deviations. k-NN and ANN were most effective at capturing subtle 

local variations, whereas LR provided a stable central trend. PR continued to generate 

unrealistic spikes and negative outputs. Given the bounded nature of PDI and its 

dependence on localized relationships within the CMA/CPP space, the k-NN + ANN 

hybrid was chosen for Y₂ to retain local sensitivity while maintaining model flexibility. 

For zeta potential (ZP, Y₃), the response shifted gradually from approximately 

−40 mV toward −15 mV. LR, k-NN, and ANN reproduced this smooth transition, with 

k-NN and ANN more accurately reflecting minor local deviations and LR effectively 

maintaining the global trend. SVR produced comparable predictions but introduced 

occasional bias, while PR again failed due to extreme, non-physical oscillations. 

Because ZP is a bounded variable that changes smoothly with polymer charge and 

processing conditions, the k-NN + ANN hybrid was deemed most appropriate for Y₃. 

For drug loading (%DL, Y₄), the experimental data exhibited a gradual increase 

across the formulation sequence. LR, k-NN, and ANN generally tracked this rising 

pattern. k-NN and ANN captured localized inflection points, while LR provided a 

consistent global trajectory. SVR slightly underestimated values in the mid-range, and 

PR generated non-physical deviations similar to prior endpoints. As %DL embodies 

both broad compositional effects (CMAs) and more localized process-dependent 
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variations (CPPs), the combined strengths of LR for global trend modeling and k-NN 

for capturing local interactions supported the selection of the LR + k-NN hybrid for Y₄. 

 

Figure 4.1 Percentage error of (A) PS, (B) PDI, (C) ZP, and (D) %DL from single 

machine learning models (LR, PR, SVM, kNN, and ANN) based on the training 

dataset. 

 

4.2 Hybrid machine learning model of RES-loaded PNPs 

 The observed patterns in model error informed the decision to employ hybrid 

approaches. Each hybrid combined either a globally stable estimator (LR) with a locally 

responsive learner (k-NN or ANN), or two locally adaptive models, to mitigate 

systematic bias while avoiding excessive variance and capturing deviations that occur 

above or below the primary trend. For each CQA, the two best-performing individual 

models were chosen to form the corresponding hybrid ensemble, and their predictive 

performance was subsequently assessed using a simple averaging scheme, as 

summarized in Table 4.2. 

 Across all endpoints, the resulting hybrids—PS: LR + ANN; PDI: k-NN + ANN; 

ZP: k-NN + ANN; and %DL: LR + k-NN—generated smooth and physically consistent 

response surfaces suitable for fine-resolution mesh analysis and feasibility masking. 

Within the contour-overlay framework, these hybrid models (i) eliminated artificial 

oscillations that would otherwise disrupt feasible zones, (ii) preserved the 
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experimentally observed monotonic behaviors, and (iii) maintained adequate nonlinear 

flexibility to represent interaction “ridges,” where multiple CQAs reached optimal 

values concurrently. 

Table 4.2 Evaluation of hybrid machine learning model performance for RES-PNPs by 

averaging ensemble. 

HML algorithms Ensemble MAPE 

PS PDI ZP %DL 

LR+PR 74.15% >100% 87.78% >100% 

LR+SVM 53.11% 16.19% 16.32% 10.19% 

LR+kNN 50.30% 12.63% 14.45% 8.29%* 

LR+ANN 37.16%* 13.29% 14.63% 10.45% 

PR+SVM 88.45% >100% 88.47% >100% 

PR+kNN 83.37% >100% 87.45% >100% 

PR+ANN 64.25% >100% 88.17% >100% 

SVM+kNN 66.30% 12.46% 15.17% 8.98% 

SVM+ANN 42.71% 12.60% 15.02% 10.05% 

kNN+ANN 44.11% 10.63%* 14.37%* 8.30% 

LR+PR+SVM 70.48% >100% 60.76% >100% 

LR+PR+kNN 67.39% >100% 59.57% >100% 

LR+PR+ANN 53.55% >100% 60.32% >100% 

LR+SVM+kNN 55.24% 13.33% 14.78% 8.58% 

LR+SVM+ANN 41.06% 13.66% 14.96% 10.71% 

LR+kNN+ANN 41.24% 11.80% 14.74% 8.80% 

PR+SVM+kNN 78.04% >100% 60.11% >100% 

PR+SVM+ANN 62.95% >100% 60.71% >100% 

PR+kNN+ANN 60.35% >100% 59.86% >100% 
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SVM+kNN+ANN 49.29% 11.54% 14.30% 8.53% 

LR+PR+SVM+kNN 67.29% >100% 46.42% >100% 

LR+PR+SVM+ANN 56.16% >100% 47.12% >100% 

LR+PR+kNN+ANN 54.24% >100% 46.23% >100% 

LR+SVM+kNN+ANN 45.72% 12.42% 14.10% 8.90% 

PR+SVM+kNN+ANN 61.90% >100% 46.69% >100% 

LR+PR+SVM+kNN+ANN 56.65% >100% 38.66% >100% 

*Selected HML for each output variable 

During hybrid model validation (Figure 4.2) using ten independent test 

formulations, particle size (PS, Y₁) demonstrated complementary error characteristics 

between the LR and ANN base models. LR accurately reflected the overall increasing 

trend but underestimated rapid rises, whereas ANN captured localized nonlinearities 

yet occasionally produced overshoots near transitional regions (Formulations 6–9). The 

LR+ANN weighted ensemble consistently aligned more closely with the experimental 

trajectory than either individual model, particularly around the inflection observed 

between Formulations 6–8 and in the higher PS range (Formulations 9–10). This hybrid 

effectively mitigated LR’s linear underestimation and reduced ANN’s variance, 

producing smooth, physically credible predictions free from artificial fluctuations. 

For PDI (Y₂), both k-NN and ANN reproduced the bounded 0.2–0.6 domain but 

showed model-specific deviations at local maxima and minima (Formulations 2–4 and 

8–10). The k-NN+ANN weighted ensemble delivered a balanced profile—sufficiently 

smooth to avoid unrealistic peaks yet responsive enough to reflect gradual upward 

movement. By combining the neighborhood sensitivity of k-NN with the nonlinear 

adaptability of ANN, the ensemble better matched the empirical trend and avoided non-

physical artifacts, which is essential for reliable feasibility mapping during design-

space construction. 

Zeta potential (ZP, Y₃) shifted from approximately –30 mV toward –15 mV 

across the test set. k-NN tended to underpredict the magnitude of this upward shift, 

while ANN captured the curvature but exhibited heightened pointwise variability. The 

k-NN+ANN ensemble moderated these contrasting tendencies, generating predictions 
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that followed the observed smooth progression and closely matched the measured 

values across the middle formulations (4–9). This hybrid preserved overall trend 

accuracy while reducing localized errors, thereby ensuring stable enforcement of 

charge-related constraints. 

For drug loading (%DL, Y₄), the response increased monotonically with notable 

step changes (Formulations 3–4 and 8–10). LR modeled the general upward 

progression but failed to reproduce the step at Formulation 4 and underestimated higher 

loading values. In contrast, k-NN captured localized increases more effectively but 

produced conservative mid-range estimates. The LR+k-NN ensemble combined these 

complementary behaviors, improving accuracy at the step change and maintaining 

strong performance in the high-loading region (Formulations 8–10). As a result, the 

hybrid yielded robust, trend-consistent predictions suitable for supporting downstream 

design-space evaluation. 

 

Figure 4.2 Actual and predicted values of (A) PS, (B) PDI, (C) ZP, and (D) %DL 

obtained from single machine learning models and the hybrid machine learning 

(HML) model using weighted averaging ensemble, based on the testing dataset. 

Across all CQAs, the weighted hybrid models demonstrated superior 

consistency with the experimental data compared with their individual component 

models, effectively minimizing variance-induced deviations and maintaining 
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physiologically plausible response patterns. The resulting prediction curves were well 

suited for high-resolution mesh analysis and feasibility masking, thereby providing 

dependable inputs for the subsequent GA-RL optimization aimed at identifying robust 

operating regions within the multidimensional design space. 

 

4.3 Quality control by design space 

A multidimensional design space was developed by superimposing feasibility 

masks derived from the HML-generated response surfaces for all CQAs, using the 

predefined acceptance limits (PS: 80–400 nm; PDI: 0.10–0.40; ZP: −60 to −15 mV; 

%DL: 60–100%). In the contour overlays (Figure 4.3), colored regions indicated 

violation of at least one CQA, whereas the central white region represented the set of 

operating conditions that simultaneously complied with all quality specifications. 

Across CMA–CMA planes, feasible zones were primarily located at 

intermediate levels of components. In the PAA–GT plane (Figure 4.3A), a wedge-

shaped white region emerged, bounded predominantly by PS constraints on one side 

and %DL on the other, highlighting trade-offs between particle growth and loading 

efficiency at elevated polymer concentrations. In the PAA–P407 plane (Figure 4.3B), 

the viable region progressively narrowed as P407 increased, reflecting tighter 

constraints imposed by PDI and ZP. In the GT–P407 plane (Figure 4.3E), a small island 

at low-to-moderate concentrations indicated that excessive surfactant or gel strength 

could compromise either size uniformity (PDI) or surface charge stability (ZP). 

CMA–CPP interactions imposed additional restrictions. In both the PAA–Hz 

(Figure 4.3C) and GT–Hz (Figure 4.3F) planes, feasible areas were confined to 

moderate sonication frequencies, where high-frequency conditions were limited mainly 

by PDI and ZP. In the PAA–Time (Figure 4.3D) and GT–Time (Figure 4.3G) planes, 

extended sonication times improved %DL but were counterbalanced by PS constraints 

at higher polymer contents, resulting in narrow ridges where entrapment efficiency 

improved without excessive particle enlargement. 

CPP–CPP overlays further demonstrated the need for coordinated process 

control. The P407–Hz (Figure 4.3H) and P407–Time (Figure 4.3I) planes each 

produced thin corridors of feasibility, underscoring the sensitivity of dispersion quality 

to interactions between surfactant concentration and sonication conditions; PDI and ZP 
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were the primary limiting factors. The Hz–Time plane (Figure 4.3J) revealed a compact 

feasible region at moderate frequency and duration, consistent with energy input 

sufficient for entrapment while avoiding charge destabilization and broad particle-size 

distributions. 

Together, these overlays delineated a continuous and practically accessible 

white region that enabled definition of acceptable CMA/CPP ranges, recommended 

sonication setpoints, and final specification limits for PS, PDI, ZP, and %DL. The 

resulting control strategy conforms to ICH Q10 principles by explicitly linking material 

attributes and process parameters to quality outcomes, reducing the likelihood of out-

of-specification results, and establishing a defensible operating window suitable for 

routine manufacturing and GA-RL-driven optimization. 

 

Figure 4.3 Overlay of individual CQA contours based on the HML prediction model. 

The relationships between CMAs or CPPs were shown as follows: A) PAA vs GT, B) 
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PAA vs P407, C) PAA vs sonication frequency, D) PAA vs sonication time, E) GT vs 

P407, F) GT vs sonication frequency, G) GT vs sonication time, H) P407 vs 

sonication frequency, I) P407 vs sonication time, and J) sonication frequency vs 

sonication time. The colored areas (red = PS, green = PDI, yellow = ZP, blue = DL) 

represented regions that were not suitable for achieving adequate product 

performance. The white area denoted the design space where variations in input 

parameters yielded suitable responses. 

 

4.4 Genetic algorithm with reinforcement learning 

The GA was initialized with a population size of 100,000, selected on the basis 

of an ablation study comparing population sizes of 1,000, 10,000, 100,000, and 

1,000,000. Among these configurations, 100,000 individuals consistently produced the 

highest final fitness and the lowest retrospective prediction error under identical 

stopping conditions. Fitness was defined and normalized as f = −PS − PDI − ZP + %DL, 

yielding a theoretical maximum of −2 following normalization. Figure 4.4 illustrates 

the progression of maximum fitness across 100 generations for ten RL-tuned GA runs. 

Fitness increased rapidly within the first 10–20 generations, reached approximately 

99% of its terminal value by 30–40 generations, and stabilized by 40–60 generations. 

Episodes 2–5 and 9–10 achieved the highest terminal fitness (−1.025), while Episodes 

6–7 converged more quickly to a slightly lower plateau (−1.088). These patterns 

suggest that RL-driven adjustment of crossover and mutation rates enhanced 

convergence speed and minimized variance-related oscillations compared with fixed-

parameter GAs, producing stable optimization outcomes appropriate for subsequent 

design-space integration. 

The optimization objective prioritized minimizing PS, PDI, and ZP while 

maximizing %DL. The optimum solution identified by the RL-enhanced GA 

corresponded to PAA = 0.30, GT = 0.13, P407 = 8.11, Hz = 11.56, and Time = 12.50, 

with an objective value of −1.0235. The predicted CQAs for this formulation—PS = 

80.00 nm, PDI = 0.31, ZP = −36.94 mV, and %DL = 68.02%—all met the predefined 

feasibility constraints, confirming compatibility with the established design space. 

After RL convergence, the policy consistently favored crossover and mutation 

probabilities of cxpb = 0.10 and mutpb = 0.18. This configuration, characterized by 
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relatively low crossover and moderate mutation intensity, enabled effective exploitation 

of high-performing regions while preserving sufficient exploration to prevent 

premature convergence. 

Figure 4.4 Trend of the maximum fitness value over 100 generations following 

reinforcement learning (RL)-based tuning of the genetic algorithm (GA) across 10 

episodes. Each curve representsed the progression of fitness improvement per 

generation, reflecting the optimization performance of the RL-tuned GA. 

 

4.5 Implementing and validating a hybrid machine learning model 

Based on the predictive accuracy at the optimal solution summarized in Table 

4.3, strong agreement was observed between the model predictions and experimental 

measurements for all CQAs. The low RMSE values indicated that prediction errors 

were small relative to the magnitude of each response, reflecting high local accuracy in 

the vicinity of the optimum. Furthermore, t-tests comparing predicted and measured 

values produced p-values greater than 0.05 for all CQAs, demonstrating the absence of 

statistically significant differences. Taken together, these findings confirm that the 

HML framework generated predictions that were both physically credible and 

statistically reliable at the GA-identified optimum, thereby validating its applicability 
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for design-space interpretation and for establishing a control strategy consistent with 

ICH Q10 principles. 

Table 4.3 The performance of the RL-GA algorithm was evaluated based on predicted 

and actual CQA measurements values (PS, PDI, ZP, and DL) for RES-PNPs, as 

measured by RMSE and t-test. 

Best 

solution 

PS PDI ZP %DL 

Predict Actual Predict Actual Predict Actual Predict Actual 

PAA=0.30, 

GT=0.13, 

P407=8.11, 

Hz=11.56, 

Time=12.50 

80.00 

±0.00 

79.58 

±8.53 

0.31 

±0.00 

0.40 

±0.05 

-36.94 

±0.00 

-39.60 

±1.25 

68.02 

±0.00 

70.65 

±1.52 

RMSE 6.98 0.10 12.66 2.90 

MAPE 0.53% 22.5% 6.72% 3.72% 

p-value  0.94 0.09 0.07 0.10 
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CHAPTER 5 

CONCLUSION 

 

The development of resveratrol-loaded polymeric nanoparticles (RES-PNPs) 

presents long-standing formulation challenges arising from resveratrol’s poor aqueous 

solubility, rapid degradation, and limited biological retention. These intrinsic 

physicochemical constraints have historically complicated efforts to produce 

nanoparticles with reproducible size, uniformity, surface charge, and drug-loading 

efficiency. This dissertation introduced a novel, data-driven workflow that integrates 

hybrid machine learning (HML) models, reinforcement learning–tuned genetic 

algorithms (RL-GA), and contour-based design‐space analysis to address these barriers. 

The primary aim was to construct a scientifically defensible and regulatory-aligned 

strategy for rational formulation design, optimization, and quality control consistent 

with ICH Q10 principles. The results collectively demonstrate that artificial 

intelligence–augmented formulation science can substantially enhance predictive 

accuracy, optimization efficiency, and robustness in nanoparticle development. 

A key advancement in this study was the creation of hybrid ML models for 

predicting four critical quality attributes (CQAs)—particle size (PS), polydispersity 

index (PDI), zeta potential (ZP), and drug loading (%DL)—based on experimentally 

derived critical material attributes (CMAs) and critical process parameters (CPPs). 

Initial benchmarking of five standalone supervised learning methods (LR, PR, SVR, k-

NN, ANN) revealed substantial differences in modeling behavior. Linear regression 

captured global monotonicity but underfit nonlinear curvature, while k-NN and ANN 

more accurately followed local fluctuations. SVR produced moderate performance with 

occasional bias, and polynomial regression consistently demonstrated numerical 

instability and overfitting. Based on these patterns, hybrid models were formed by 

combining the highest-performing learners for each response. This ensemble approach 

significantly improved predictive fidelity: RMSE values for PS, PDI, ZP, and %DL 

were reduced by 15–40% relative to their best single-model counterparts. The hybrid 

models not only minimized variance-driven oscillations but also preserved physically 

plausible response trajectories—an essential requirement for downstream feasibility 

masking and design-space construction. 
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The validated HML models were then embedded into an RL-enhanced GA 

framework to identify optimal CMA/CPP combinations that satisfied all quality 

constraints simultaneously. Through an ablation study comparing GA population sizes 

of 1,000 to 1,000,000, a population of 100,000 individuals was selected for its superior 

convergence behavior and lowest prediction error under matched stopping criteria. The 

GA was executed over 100 generations across 10 RL-tuned episodes, with fitness 

defined as f = –PS – PDI – ZP + %DL. RL dynamically optimized the crossover and 

mutation probabilities, converging on values of 0.10 and 0.18, respectively. These 

parameters provided an advantageous balance between exploitation and exploration, 

suppressing premature convergence and improving the stability of terminal fitness 

values. The best episodes achieved a fitness of −1.025, reflecting near-optimal 

alignment of all CQAs within their predefined feasibility thresholds. 

The optimal formulation identified by the RL-GA—PAA = 0.30, GT = 0.13, 

P407 = 8.11, Hz = 11.56, Time = 12.50—produced PS = 80.00 nm, PDI = 0.31, ZP = –

36.94 mV, and %DL = 68.02%, each confirming compliance with the normalized CQA 

limits (PS 80–400 nm, PDI 0.10–0.40, ZP –60 to –15 mV, %DL 60–100%). The hybrid 

model predictions were statistically validated through t-tests, which yielded p-values > 

0.05 across all endpoints, indicating no significant difference between predicted and 

measured values. This agreement confirms that the AI-driven predictions were not only 

computationally reliable but also statistically indistinguishable from experimental 

outcomes. 

Following optimization, a multidimensional design space was constructed by 

overlaying feasibility masks generated from hybrid-model response surfaces. These 

contour overlays enabled the visualization of feasible operating regions in CMA–CMA, 

CMA–CPP, and CPP–CPP planes. The resulting white intersection zones depicted the 

combinations of input variables that simultaneously met all CQA requirements. The 

design space revealed several formulation insights: (i) feasible regions were typically 

centered at intermediate polymer and surfactant levels; (ii) excessive sonication 

frequency or duration narrowed feasibility due to PDI and ZP instability; and (iii) %DL 

improvements at extended process times required careful balancing against particle 

growth limits. These mechanistic insights demonstrate the value of AI-guided design 
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spaces not only for optimization but also for scientific understanding and process 

control. 

Importantly, the defined design space served as the foundation for proposing an 

ICH Q10-compliant control strategy. By linking CMAs and CPPs to measurable CQAs 

through validated models, the study established a framework for raw material 

acceptance criteria, in-process monitoring setpoints, and final product specifications. 

This approach strengthens quality-by-design (QbD) decision-making and minimizes 

the risk of out-of-specification outcomes during scale-up or routine manufacturing. The 

incorporation of hybrid ML models ensures predictive robustness, while the RL-GA 

optimization provides a systematic method for navigating multidimensional parameter 

interactions that would be impractical to explore experimentally. 

Overall, this work demonstrates the feasibility, accuracy, and regulatory 

relevance of integrating hybrid ML, RL-GA optimization, and design-space analysis 

for nanomedicine formulation. The successful prediction and experimental validation 

of an optimal RES-PNP formulation highlight the transformative potential of AI-

assisted formulation science. Beyond its immediate application to resveratrol, this 

framework provides a generalized and extensible model for the intelligent design of 

polymeric nanoparticles, micellar systems, lipid-based carriers, and other complex 

drug-delivery platforms. It further offers pharmaceutical scientists a structured 

methodology to accelerate formulation development, reduce experimental burden, and 

achieve more reliable quality outcomes. 

In conclusion, this study marks a significant advancement in applying artificial 

intelligence to pharmaceutical nanotechnology. The hybrid ML–GA–RL methodology 

delivered high predictive accuracy, rapid optimization, and a robust design space 

consistent with modern quality-system expectations. As nanomedicine continues to 

expand in clinical and commercial importance, such AI-driven frameworks will be 

essential to meeting the growing demand for precision, reproducibility, and efficiency 

in formulation development. This research thus provides both a practical tool for 

immediate application and a conceptual foundation for future innovations in intelligent 

drug-delivery design. 
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APPENDIX A 

PYTHON CODE 

1. Python Code Design space 

2. # Install dependencies if needed: 

3. # !pip install numpy matplotlib joblib 

4.  

5. import numpy as np 

6. import matplotlib.pyplot as plt 

7. import joblib 

8. import itertools 

9. from google.colab import drive 

10.  

11. # === Mount Google Drive (force remount to avoid 

"already mounted" errors) === 

12. drive.mount('/content/drive', force_remount=True) 

13.  

14. # === Load pre-trained kNN models === 

15. pdi_model_path = '/content/drive/MyDrive/Master AI 

IoT/Colab Notebooks/IS/ModelCode/weighted_knn_PDImodel.pkl' 

16. zp_model_path  = '/content/drive/MyDrive/Master AI 

IoT/Colab Notebooks/IS/ModelCode/weighted_knn_ZPmodel.pkl' 

17. dl_model_path  = '/content/drive/MyDrive/Master AI 

IoT/Colab Notebooks/IS/ModelCode/weighted_knn_DLmodel.pkl' 

18.  

19. # === Define Weighted kNN Regression class === 

20. class WeightedKNNRegression: 

21.     def __init__(self, k=5): 

22.         self.k = k 

23.         self.data = None 

24.         self.targets = None 

25.  

26.     def fit(self, X, y): 

27.         self.data = np.array(X) 

28.         self.targets = np.array(y) 

29.  

30.     def predict(self, X): 

31.         X = np.array(X) 

32.         if X.ndim == 1: 

33.             X = X.reshape(1, -1) 

34.         preds = [] 

35.         for x in X: 

36.             dists = np.linalg.norm(self.data - x, 

axis=1) 
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37.             idx = np.argsort(dists)[:self.k] 

38.             weights = 1 / (dists[idx] + 1e-9) 

39.             preds.append(np.dot(weights, 

self.targets[idx]) / np.sum(weights)) 

40.         return np.array(preds) 

41.  

42. # === Load models === 

43. with open(pdi_model_path, 'rb') as f: 

44.     pdi_knn_model = joblib.load(f) 

45. with open(zp_model_path, 'rb') as g: 

46.     zp_knn_model  = joblib.load(g) 

47. with open(dl_model_path, 'rb') as h: 

48.     dl_knn_model  = joblib.load(h) 

49.  

50. # --- Helper functions --- 

51. def sigmoid(x): 

52.     return 1 / (1 + np.exp(-x)) 

53.  

54. def denormalize(x_norm, x_min, x_max): 

55.     return ((x_norm + 1) / 2) * (x_max - x_min) + 

x_min 

56.  

57. # --- 1) PS (LR + ANN) --- 

58. def PS(PAA, GT, P407, Hz, Time): 

59.     ps_lr = 465.692 * PAA - 142.043 * GT - 2.537 * 

Time + 121.723 

60.     ps_ann_norm = ( 

61.         -1.396 * sigmoid(-1.508*PAA + 0.715*GT - 

0.480*P407 + 1.750*Hz - 0.110*Time - 0.658) 

62.       - 1.291 * sigmoid(-1.564*PAA + 1.086*GT + 

0.094*P407 + 0.836*Hz + 0.817*Time - 1.311) 

63.       + 2.324 * sigmoid(2.366*PAA - 1.425*GT + 

2.447*P407 + 0.173*Hz - 4.133*Time - 1.943) 

64.       - 2.308 * sigmoid(0.822*PAA - 1.416*GT + 

1.872*P407 - 1.739*Hz - 2.628*Time + 0.184) 

65.       + 1.158 

66.     ) 

67.     ps_ann = denormalize(ps_ann_norm, 42.78, 400) 

68.     return (ps_lr + ps_ann) / 2 

69.  

70. # --- 2) PDI (ANN + kNN) --- 

71. def PDI(PAA, GT, P407, Hz, Time): 

72.     pdi_ann_norm = ( 

73.         -0.878 * sigmoid(-0.089*PAA + 0.101*GT - 

0.464*P407 - 0.584*Hz - 0.823*Time - 0.552) 
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74.       + 1.646 * sigmoid(0.155*PAA + 0.324*GT + 

0.801*P407 - 1.891*Hz + 0.497*Time - 1.342) 

75.       - 0.814 * sigmoid(-0.033*PAA - 0.015*GT - 

0.139*P407 - 0.086*Hz - 0.771*Time - 0.107) 

76.       + 2.204 * sigmoid(1.475*PAA + 0.122*GT - 

2.712*P407 + 0.998*Hz - 3.068*Time + 1.287) 

77.       - 0.895 

78.     ) 

79.     pdi_ann = denormalize(pdi_ann_norm, 0.206, 0.586) 

80.  

81.     flat = [np.array(arg).ravel() for arg in (PAA, GT, 

P407, Hz, Time)] 

82.     knn_in = np.vstack(flat).T 

83.     knn_pred = 

pdi_knn_model.predict(knn_in).reshape(pdi_ann.shape) 

84.  

85.     return (pdi_ann + knn_pred) / 2 

86.  

87. # --- 3) ZP (ANN + kNN) --- 

88. def ZP(PAA, GT, P407, Hz, Time): 

89.     zp_ann_norm = ( 

90.         1.279 * sigmoid(-2.539*PAA - 0.152*GT + 

0.937*P407 - 0.041*Hz - 0.443*Time - 1.346) 

91.       + 2.197 * sigmoid(-0.376*PAA + 3.147*GT - 

1.065*P407 + 0.147*Hz + 0.166*Time + 2.936) 

92.       - 0.348 * sigmoid(-0.344*PAA + 0.424*GT + 

0.101*P407 - 0.021*Hz - 0.179*Time - 0.519) 

93.       - 0.467 * sigmoid(-0.414*PAA + 0.560*GT + 

0.125*P407 - 0.113*Hz - 0.095*Time - 0.458) 

94.       - 1.408 

95.     ) 

96.     zp_ann = denormalize(zp_ann_norm, -42.5, -15.3) 

97.  

98.     flat = [np.array(arg).ravel() for arg in (PAA, GT, 

P407, Hz, Time)] 

99.     knn_in = np.vstack(flat).T 

100.     knn_pred = 

zp_knn_model.predict(knn_in).reshape(zp_ann.shape) 

101.  

102.     return (zp_ann + knn_pred) / 2 

103.  

104. # --- 4) DL (LR + kNN) --- 

105. def DL(PAA, GT, P407, Hz, Time): 

106.     dl_lr = 9.775*PAA - 0.826*P407 - 0.129*Hz - 

0.523*Time + 73.046 

107.  
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108.     flat = [np.array(arg).ravel() for arg in (PAA, GT, 

P407, Hz, Time)] 

109.     knn_in = np.vstack(flat).T 

110.     knn_pred = 

dl_knn_model.predict(knn_in).reshape(dl_lr.shape) 

111.  

112.     return (dl_lr + knn_pred) / 2 

113.  

114. # --- 5) Define ranges & midpoints --- 

115. ranges = { 

116.     'PAA':  (0.001, 5.0), 

117.     'GT':   (0.001, 10.0), 

118.     'P407': (0.01, 20.0), 

119.     'Hz':   (10.0, 40.0), 

120.     'Time': (1.0, 100.0) 

121. } 

122. mid = {k: (v[0] + v[1]) / 2 for k, v in 

ranges.items()} 

123.  

124. # --- 6) Feasibility thresholds --- 

125. ps_min,   ps_max   =  80, 400 

126. pdi_min,  pdi_max  = 0.1, 0.4 

127. zp_min,   zp_max   = -60, -15 

128. dl_min,   dl_max   =  60, 100 

129.  

130. # --- 7) Plot overlays for each 2D slice with labeled 

borders --- 

131. for var1, var2 in 

itertools.combinations(ranges.keys(), 2): 

132.     v1 = np.linspace(*ranges[var1], 300) 

133.     v2 = np.linspace(*ranges[var2], 300) 

134.     G1, G2 = np.meshgrid(v1, v2) 

135.  

136.     # build grid args 

137.     args = {} 

138.     for name in ranges: 

139.         if name == var1: 

140.             args[name] = G1 

141.         elif name == var2: 

142.             args[name] = G2 

143.         else: 

144.             args[name] = np.full(G1.shape, mid[name]) 

145.  

146.     # compute on grid 

147.     PS_grid  = PS(**args) 

148.     PDI_grid = PDI(**args) 

Ref. code: 25686722041230FLX



77 

 

 

149.     ZP_grid  = ZP(**args) 

150.     DL_grid  = DL(**args) 

151.  

152.     # individual feasibility masks 

153.     m_ps  = (PS_grid  >= ps_min)   & (PS_grid  <= 

ps_max) 

154.     m_pdi = (PDI_grid >= pdi_min)  & (PDI_grid <= 

pdi_max) 

155.     m_zp  = (ZP_grid  >= zp_min)   & (ZP_grid  <= 

zp_max) 

156.     m_dl  = (DL_grid  >= dl_min)   & (DL_grid  <= 

dl_max) 

157.  

158.     # intersection of all four 

159.     m_all = m_ps & m_pdi & m_zp & m_dl 

160.  

161.     # subtract intersection so it remains blank 

162.     m_ps_plot  = m_ps  & ~m_all 

163.     m_pdi_plot = m_pdi & ~m_all 

164.     m_zp_plot  = m_zp  & ~m_all 

165.     m_dl_plot  = m_dl  & ~m_all 

166.  

167.     plt.figure(figsize=(6,4)) 

168.     # overlay each region 

169.     plt.contourf(G1, G2, 

m_ps_plot.astype(int),  levels=[0.5,1.5], 

colors=['red'],    alpha=0.3) 

170.     plt.contourf(G1, G2, m_pdi_plot.astype(int), 

levels=[0.5,1.5], colors=['green'],  alpha=0.3) 

171.     plt.contourf(G1, G2, 

m_zp_plot.astype(int),  levels=[0.5,1.5], colors=['yellow'], 

alpha=0.3) 

172.     plt.contourf(G1, G2, 

m_dl_plot.astype(int),  levels=[0.5,1.5], 

colors=['blue'],   alpha=0.3) 

173.  

174.     # draw and label borderline contours 

175.     cs_ps  = plt.contour(G1, G2, 

PS_grid,  levels=[ps_min, 

ps_max],   colors=['red'],    linestyles=['--','-']) 

176.     cs_pdi = plt.contour(G1, G2, PDI_grid, 

levels=[pdi_min, pdi_max], colors=['green'],  linestyles=['-

-','-']) 

177.     cs_zp  = plt.contour(G1, G2, 

ZP_grid,  levels=[zp_min, zp_max],   colors=['yellow'], 

linestyles=['--','-']) 
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178.     cs_dl  = plt.contour(G1, G2, 

DL_grid,  levels=[dl_min, 

dl_max],   colors=['blue'],   linestyles=['--','-']) 

179.  

180.     fmt_ps  = {ps_min: 'PS = 80',   ps_max: 'PS = 

400'} 

181.     fmt_pdi = {pdi_min: 'PDI = 0.10', pdi_max: 'PDI = 

0.40'} 

182.     fmt_zp  = {zp_min: 'ZP = -60',  zp_max: 'ZP = -

15'} 

183.     fmt_dl  = {dl_min: 'DL = 60',   dl_max: 'DL = 

100'} 

184.  

185.     plt.clabel(cs_ps,  fmt=fmt_ps,  inline=True, 

fontsize=8) 

186.     plt.clabel(cs_pdi, fmt=fmt_pdi, inline=True, 

fontsize=8) 

187.     plt.clabel(cs_zp,  fmt=fmt_zp,  inline=True, 

fontsize=8) 

188.     plt.clabel(cs_dl,  fmt=fmt_dl,  inline=True, 

fontsize=8) 

189.  

190.     plt.xlabel(var1) 

191.     plt.ylabel(var2) 

192.     plt.title(f'{var1} vs {var2}:\nRed=PS, Green=PDI, 

Yellow=ZP, Blue=DL\nDesign Space Overlay Plot (Intersection 

Feasible Region is White)') 

193.     plt.tight_layout() 

194.     plt.show() 

195.  
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2. Python Code GA-RL 
# Install DEAP if not already available 

!pip install deap 

 

# Mount Google Drive 

from google.colab import drive 

drive.mount('/content/drive') 

 

import numpy as np 

import math 

import joblib 

from deap import base, creator, tools, algorithms 

import random 

from collections import defaultdict 

import matplotlib.pyplot as plt 

 

# Load pre-trained kNN models 

pdi_model_path = '/content/drive/MyDrive/Master AI IoT/Colab 

Notebooks/IS/ModelCode/weighted_knn_PDImodel.pkl' 

zp_model_path = '/content/drive/MyDrive/Master AI IoT/Colab 

Notebooks/IS/ModelCode/weighted_knn_ZPmodel.pkl' 

dl_model_path = '/content/drive/MyDrive/Master AI IoT/Colab 

Notebooks/IS/ModelCode/weighted_knn_DLmodel.pkl' 

 

# === Define Weighted kNN Regression class === 

class WeightedKNNRegression: 

    def __init__(self, k=5): 

        self.k = k 

        self.data = None 

        self.targets = None 

 

    def fit(self, X, y): 

        self.data = X 

        self.targets = y 

 

    def predict(self, X): 

        preds = [] 

        for x in X: 

            dists = np.linalg.norm(self.data - x, axis=1) 

            idx = np.argsort(dists)[:self.k] 

            weights = 1 / (dists[idx] + 1e-9) 

            pred = np.dot(weights, self.targets[idx]) / 

np.sum(weights) 

            preds.append(pred) 

        return np.array(preds) 
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# === Load models from Google Drive === 

with open(pdi_model_path, 'rb') as f: 

    pdi_knn_model = joblib.load(f) 

with open(zp_model_path, 'rb') as g: 

    zp_knn_model = joblib.load(g) 

with open(dl_model_path, 'rb') as h: 

    dl_knn_model = joblib.load(h) 

 

def sigmoid(x): 

    return 1 / (1 + np.exp(-x)) 

 

# Denormalization helper 

# X_norm assumed in [–1,1] 

def denormalize(x_norm, x_min, x_max): 

    return ((x_norm + 1) / 2) * (x_max - x_min) + x_min 

 

def PS(PAA, GT, P407, Hz, Time): 

    ps_lr = 465.692*PAA - 142.043*GT - 2.537*Time + 121.723 

    # raw ANN output in [–1,1] 

    ps_ann_norm = ( 

        -1.396 * sigmoid(-1.508*PAA + 0.715*GT - 0.480*P407 + 

1.750*Hz - 0.110*Time - 0.658) - 

        1.291 * sigmoid(-1.564*PAA + 1.086*GT + 0.094*P407 + 

0.836*Hz + 0.817*Time - 1.311) + 

        2.324 * sigmoid(2.366*PAA - 1.425*GT + 2.447*P407 + 

0.173*Hz - 4.133*Time - 1.943) - 

        2.308 * sigmoid(0.822*PAA - 1.416*GT + 1.872*P407 - 

1.739*Hz - 2.628*Time + 0.184) + 

        1.158 

    ) 

 

    # bring it back to the original PS scale (min=42.78, max=400) 

    ps_ann = denormalize(ps_ann_norm, 42.78, 400) 

 

    return (ps_lr + ps_ann) / 2 

 

def PDI(PAA, GT, P407, Hz, Time): 

    # raw ANN output in [–1,1] 

    pdi_ann_norm = ( 

        -0.878 * sigmoid(-0.089*PAA + 0.101*GT - 0.464*P407 - 

0.584*Hz - 0.823*Time - 0.552) + 

         1.646 * sigmoid(0.155*PAA + 0.324*GT + 0.801*P407 - 

1.891*Hz + 0.497*Time - 1.342) - 

         0.814 * sigmoid(-0.033*PAA - 0.015*GT - 0.139*P407 - 

0.086*Hz - 0.771*Time - 0.107) + 
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         2.204 * sigmoid(1.475*PAA + 0.122*GT - 2.712*P407 + 

0.998*Hz - 3.068*Time + 1.287) - 

         0.895 

    ) 

 

    # denormalize (min=0.206, max=0.586) 

    pdi_ann = denormalize(pdi_ann_norm, 0.206, 0.586) 

 

    knn_pred = pdi_knn_model.predict([[PAA, GT, P407, Hz, 

Time]])[0] 

    return (pdi_ann + knn_pred) / 2 

 

def ZP(PAA, GT, P407, Hz, Time): 

    # raw ANN output in [–1,1] 

    zp_ann_norm = ( 

        1.279 * sigmoid(-2.539*PAA - 0.152*GT + 0.937*P407 - 

0.041*Hz - 0.443*Time - 1.346) + 

        2.197 * sigmoid(-0.376*PAA + 3.147*GT - 1.065*P407 + 

0.147*Hz + 0.166*Time + 2.936) - 

        0.348 * sigmoid(-0.344*PAA + 0.424*GT + 0.101*P407 - 

0.021*Hz - 0.179*Time - 0.519) - 

        0.467 * sigmoid(-0.414*PAA + 0.560*GT + 0.125*P407 - 

0.113*Hz - 0.095*Time - 0.458) - 

        1.408 

    ) 

 

    # denormalize (min = –42.5, max = –15.3) 

    zp_ann = denormalize(zp_ann_norm, -42.5, -15.3) 

 

    knn_pred = zp_knn_model.predict([[PAA, GT, P407, Hz, 

Time]])[0] 

    return (zp_ann + knn_pred) / 2 

 

def DL(PAA, GT, P407, Hz, Time): 

    dl_lr = 9.775*PAA - 0.826*P407 - 0.129*Hz - 0.523*Time + 

73.046 

    knn_pred = dl_knn_model.predict([[PAA, GT, P407, Hz, 

Time]])[0] 

    return (dl_lr + knn_pred) / 2 

 

# Normalization helper 

def normalize(value, min_val, max_val): 

    return (value - min_val) / (max_val - min_val) 

 

# Objective function with normalization 

def objective(individual): 
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    PAA, GT, P407, Hz, Time = individual 

    ps = PS(PAA, GT, P407, Hz, Time) 

    pdi = PDI(PAA, GT, P407, Hz, Time) 

    zp = ZP(PAA, GT, P407, Hz, Time) 

    dl = DL(PAA, GT, P407, Hz, Time) 

 

#### Add Constraints Input vaules ###### 

 

    # Constraints 

    if not (80 <= ps <= 400 and 0.1 <= pdi <= 0.4 and -60 < zp < 

-15 and 60 <= dl <= 100): 

        return -1e6, 

    if not (0.001 <= PAA <= 1 and 0.001 <= GT <= 1 and 0.01 < 

P407 < 10 and 10 <= Hz <= 40 and 1 < Time < 30): 

        return -1e6, 

 

    # Normalize 

    ps_norm = normalize(ps, 80, 400) 

    pdi_norm = normalize(pdi, 0.1, 0.4) 

    zp_norm = normalize(zp, -60, -15) 

    dl_norm = normalize(dl, 60, 100) 

 

    # Minimize ps, pdi, zp magnitude; maximize dl 

    obj = - ps_norm - pdi_norm - zp_norm + dl_norm 

    return obj, 

 

# DEAP setup 

creator.create("FitnessMax", base.Fitness, weights=(1.0,)) 

creator.create("Individual", list, fitness=creator.FitnessMax) 

 

toolbox = base.Toolbox() 

toolbox.register("attr_PAA", random.uniform, 0.1, 0.5) 

toolbox.register("attr_GT", random.uniform, 0.1, 0.5) 

toolbox.register("attr_P407", random.uniform, 1, 5) 

toolbox.register("attr_Hz", random.uniform, 10, 30) 

toolbox.register("attr_Time", random.uniform, 5, 20) 

 

toolbox.register("individual", tools.initCycle, 

creator.Individual, 

                 (toolbox.attr_PAA, toolbox.attr_GT, 

toolbox.attr_P407, 

                  toolbox.attr_Hz, toolbox.attr_Time), n=1) 

toolbox.register("population", tools.initRepeat, list, 

toolbox.individual) 

 

toolbox.register("evaluate", objective) 
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toolbox.register("mate", tools.cxBlend, alpha=0.5) 

toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=0.1, 

indpb=0.2) 

toolbox.register("select", tools.selTournament, tournsize=3) 

 

# Q-learning setup 

cxpb_values = np.round(np.linspace(0.1, 0.5, 100), 2) 

mutpb_values = np.round(np.linspace(0.1, 0.5, 100), 2) 

Q = defaultdict(float) 

alpha = 0.1 

gamma = 0.9 

epsilon = 0.2 

fitness_history = [] 

 

def select_action(): 

    if random.random() < epsilon: 

        return random.choice([(cx, mu) for cx in cxpb_values for 

mu in mutpb_values]) 

    else: 

        return max([(cx, mu) for cx in cxpb_values for mu in 

mutpb_values], key=lambda x: Q[x]) 

 

def run_ga_with_params(cxpb, mutpb, n_gen=100): 

    population = toolbox.population(n=100000) 

    hof = tools.HallOfFame(1) 

    stats = tools.Statistics(lambda ind: ind.fitness.values) 

    stats.register("avg", np.mean) 

    stats.register("max", np.max) 

    stats.register("min", np.min) 

 

    population, logbook = algorithms.eaSimple(population, 

toolbox, 

                                          cxpb=cxpb, mutpb=mutpb, 

                                          ngen=n_gen, 

stats=stats, 

                                          halloffame=hof, 

verbose=False) 

 

    best = hof[0] 

    fitness = objective(best)[0] 

    fitness_history.append([gen['max'] for gen in logbook]) 

 

    print("\nBest Solution:") 

    print(f"PAA={best[0]:.4f}, GT={best[1]:.4f}, 

P407={best[2]:.4f}, Hz={best[3]:.4f}, Time={best[4]:.4f}") 

    print(f"Objective Value: {fitness:.4f}") 
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    ps = PS(*best) 

    pdi = PDI(*best) 

    zp = ZP(*best) 

    dl = DL(*best) 

 

    print("\nObjective Function Variables:") 

    print(f"PS: {ps:.4f}") 

    print(f"PDI: {pdi:.4f}") 

    print(f"ZP: {zp:.4f}") 

    print(f"DL: {dl:.4f}") 

 

    return fitness, best 

 

def train_rl_on_ga(episodes=10): 

    for episode in range(episodes): 

        action = select_action() 

        cxpb, mutpb = action 

        reward, _ = run_ga_with_params(cxpb, mutpb) 

        Q[action] += alpha * (reward - Q[action]) 

        print(f"Episode {episode + 1}, cxpb: {cxpb}, mutpb: 

{mutpb}, reward: {reward:.4f}") 

 

    best_params = max(Q.items(), key=lambda x: x[1])[0] 

    print(f"\nBest hyperparameters after RL: cxpb = 

{best_params[0]}, mutpb = {best_params[1]}") 

    return best_params 

 

# Run Q-learning GA 

best_cxpb, best_mutpb = train_rl_on_ga(episodes=10) 

print("\n=== Final Run with Best Hyperparameters ===") 

# run_ga_with_params(best_cxpb, best_mutpb, n_gen=100) 

 

# Plot 

plt.figure(figsize=(10, 6)) 

for i, run in enumerate(fitness_history): 

    plt.plot(run, label=f"Episode {i+1}") 

plt.xlabel("Generation") 

plt.ylabel("Max Fitness") 

plt.title("Fitness Over Generations with RL-Tuned GA") 

plt.legend() 

plt.grid(True) 

plt.show() 
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