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ABSTRACT

The formulation of resveratrol-loaded polymeric nanoparticles (RES-PNPs) is
hindered by resveratrol’s low solubility, instability, and rapid clearance. This study
introduces an integrated hybrid machine-learning (ML), genetic-algorithm (GA), and
reinforcement-learning (RL) framework to rationally design RES-PNPs and improve
their anticancer performance. Hybrid ML models combining linear regression (LR), k-
nearest neighbors (k-NN), and artificial neural networks (ANN) were constructed to
predict particle size (PS), polydispersity index (PDI), zeta potential (ZP), and drug
loading (%DL). The hybrid models substantially outperformed single learners (e.g.,
ANN RMSE: 69.19 for PS, 0.06 for PDI, 4.28 mV for ZP; k-NN RMSE: 6.69 for %DL),
reducing error by 15-40% across endpoints. Final hybrid RMSE values were 55.12
(PS), 0.05 (PDI), 3.90 mV (ZP), and 5.21 (%DL), demonstrating strong predictive
fidelity. Optimization employed a GA with a population of 100,000 individuals, 100
generations, and 10 RL-tuned episodes. Fitness was defined as f = —PS — PDI — ZP +
%DL, with the best episodes achieving a terminal fitness of —1.025. RL adaptively
refined GA parameters, converging on crossover = 0.10 and mutation = 0.18, which

improved stability and reduced variance relative to fixed settings. The optimal solution
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identified (PAA =0.30, GT =0.13, P407 =8.11, Hz = 11.56, Time = 12.50) produced
PS =80 nm, PDI = 0.31, ZP = -36.94 mV, and %DL = 68.02%, all within predefined
feasibility limits. Experimental validation showed no significant differences between
predicted and measured CQAs (p > 0.05). This Al-augmented workflow establishes a
robust design space aligned with ICH Q10 and demonstrates a powerful strategy for

intelligent nanomedicine formulation and optimization.

Keywords: Resveratrol, Polymeric nanoparticles, Hybrid machine learning models,

Genetic algorithm, Reinforcement learning
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CHAPTER 1
INTRODUCTION

1.1 Background and statement of the problem

Pharmaceutical formulation serves as a cornerstone of modern healthcare,
ensuring that therapeutic agents are delivered in safe, effective, and patient-compliant
forms. However, the development of such formulations is inherently multifaceted, often
hindered by factors such as poor drug solubility, chemical instability, limited
bioavailability, and potential excipient incompatibility. Traditionally, these
complexities have been addressed using empirical, trial-and-error methods, which are
not only time-intensive but also costly, ultimately slowing down the progression from
formulation design to market readiness (L. K. Vora et al., 2023).

In recent years, Artificial Intelligence (Al) and Machine Learning (ML) have
emerged as powerful tools for accelerating and enhancing pharmaceutical formulation
processes. By leveraging large-scale datasets and advanced computational models,
these technologies enable researchers to uncover intricate relationships among
formulation variables, forecast formulation outcomes with high accuracy, and identify
optimal processing conditions. Applications of AI/ML now span diverse
pharmaceutical domains including drug discovery, design, quality assurance, and scale-
up (Duch et al., 2007; Suriyaamporn, Pamornpathomkul, Patrojanasophon, et al., 2024;
S. Wang et al., 2022). Despite their transformative potential, the integration of AI/ML
in formulation development still faces key limitations. These include the scarcity of
high-quality, standardized data, issues surrounding model accuracy and interpretability,
and the need to meet stringent regulatory standards that require thorough validation of
predictive outputs (Ali et al.,, 2024; M. Abdelhaleem Ali & M. Alrobaian, 2024;
Suriyaamporn, Pamornpathomkul, Patrojanasophon, et al., 2024).

Notably, Al is playing an increasingly critical role in pharmaceutical quality
control. The incorporation of ML algorithms has led to significant advancements in
areas such as automated defect detection, impurity profiling, and real-time monitoring
of production processes (Kalyane et al., 2020; Obaido et al., 2024). Hybrid ML

models—combinations of different algorithmic strategies or integrations with
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traditional statistical tools—are particularly noteworthy for their superior predictive
performance and robustness (Azevedo et al., 2024). These models can handle
heterogeneous and incomplete datasets, and they are especially well-suited for
capturing nonlinear and dynamic relationships within pharmaceutical systems (Buket
Aksu et al., 2012; Beli¢ et al., 2009; Y. Li et al., 2015).

A key component of modern optimization within hybrid frameworks is the
Genetic Algorithm (GA). Inspired by the principles of natural selection and genetics,
GAs are heuristic search algorithms that iteratively evolve a population of candidate
solutions toward an optimal formulation. Through operations such as selection,
crossover, and mutation, GAs are capable of solving complex, nonlinear, and multi-
objective optimization problems, often outperforming traditional techniques in terms of
efficiency and convergence to global optima (Rajwar et al., 2023; Tomar et al., 2024).
To further improve the adaptability and performance of GAs, Reinforcement Learning
(RL) has been increasingly employed. RL is a type of machine learning in which an
agent learns to make sequential decisions through interaction with an environment,
guided by feedback in the form of rewards or penalties. In the context of formulation
optimization, RL can dynamically tune GA hyperparameters (Brzgk et al., 2025)—such
as crossover and mutation probabilities—based on observed optimization performance,
thereby enabling more efficient exploration and exploitation of the search space (Gao
& Schweidtmann, 2024; Martins et al., 2025).

Recent studies have highlighted the advantages of such integrations. Li et al.
demonstrated the successful optimization of polymer—lipid hybrid nanoparticles for
verapamil hydrochloride using a combined ANN and GA approach, achieving superior
drug loading and nanoscale particle size compared to traditional response surface
methodology (Y. Li et al., 2015). Similarly, Aksu et al. applied a hybrid model
integrating ANN with genetic programming and neuro-fuzzy logic to optimize ramipril
tablets, effectively predicting CQAs and reducing formulation development time
(Buket Aksu et al.,, 2012). Moreover, Fu et al. investigated a reinforced genetic
algorithm (RGA) that combined reinforcement learning with genetic algorithms for
structure-based drug design. By optimizing crossover and mutation strategies via neural

networks, RGA improved molecule generation efficiency. Experimental results
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demonstrated that RGA outperformed baseline methods in generating high-affinity,
diverse compounds across multiple protein targets (Fu et al., 2022).

The Quality-by-Design (QbD) framework has increasingly incorporated Al
tools to define and expand design spaces, thereby improving control over product
quality (Yu et al., 2014). Al-enhanced methods are more capable than traditional
statistics in identifying CMAs and CPPs, particularly in the context of complex and
nonlinear formulation data (Huanbutta et al., 2024; Suriyaamporn, Pamornpathomkul,
Patrojanasophon, et al., 2024; Walsh et al.,, 2022). In a related application,
Suriyaamporn et al. used ANN models to optimize progesterone-loaded solid lipid
nanoparticles for transdermal delivery, achieving predictive accuracy above 94% across
key parameters (Suriyaamporn, Pamornpathomkul, Wongprayoon, et al., 2024).
Likewise, Simdes applied ANN to accurately predict the dissolution profiles of a BCS
class IV drug, demonstrating high R? values (>0.94) and minimal prediction error,
highlighting AI’s ability to handle multicollinearity and nonlinear effects (Simdes et
al., 2020). These developments underscore the growing role of hybrid Al models in
transforming quality control and formulation optimization processes across the
pharmaceutical industry, providing a foundation for digital transformation and
improved regulatory compliance (Miozza et al., 2024).

Resveratrol (RES), a polyphenol found in grapes and blueberries, has garnered
interest due to its cardioprotective, antioxidant, anti-inflammatory, and anticancer
activities (Liu et al., 2015; Robinson et al., 2015). Its activity is largely attributed to the
presence of three hydroxyl groups, which enable free radical neutralization and metal
ion chelation—mechanisms implicated in cancer prevention (Imran et al., 2020).
Moreover, resveratrol has been shown to modulate several signaling pathways such as
p53, mTOR, STAT3, and NF-«xB, and to promote apoptosis via caspase activation and
Bax upregulation (Kelkel et al., 2010; Shukla & Singh, 2011; Zhang et al., 2013).
Despite its therapeutic potential, resveratrol's clinical use is hampered by its
lipophilicity, poor aqueous solubility (~0.05 mg/mL), environmental instability, and
rapid systemic clearance (Aung et al., 2021). These physicochemical limitations
necessitate the development of advanced drug delivery systems, such as nanoparticles,

to enhance its bioavailability and protect it from degradation (Zupancic€ et al., 2015).
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Polymeric nanoparticles (PNPs), with sizes ranging from 10-1000 nm, offer
promising solutions for improving drug delivery efficiency and stability. Their
advantages include enhanced solubility, targeted delivery, prolonged circulation time,
and reduced systemic toxicity (Soares et al., 2018; Suriyaamporn et al., 2023). Various
biodegradable and non-biodegradable polymers—including PVA, PVP, PLGA,
chitosan, and PCL—are employed in their formulation, often alongside stabilizers or
surfactants to improve stability (Lobo et al., 2021).

Nevertheless, challenges remain in PNP production, such as structural
complexity, batch variability, and purity concerns. These issues can be addressed by
applying Al-based methods to systematically optimize formulation design, predict
performance, and improve reproducibility (Adir et al., 2020; Aumklad et al,
2024/07/18; Habeeb et al., 2024). Therefore, the present study aims to develop and
apply hybrid ML models to predict and optimize the formulation of RES-loaded PNPs.
The models were trained using key CQAs—particle size, polydispersity index, zeta
potential, and drug loading—derived from experimental data. A genetic algorithm was
utilized to identify optimal formulation parameters, while reinforcement learning
dynamically adjusted crossover and mutation rates. The optimized formulations were
validated experimentally for stability and anticancer efficacy. Additionally, a design
space was constructed to ensure product quality and compliance. This approach marks

a novel integration of hybrid Al techniques in nanomedicine development.

1.2 Objectives

1.2.1 To develop and validate hybrid machine learning models for the prediction of
critical quality attributes of resveratrol-loaded polymeric nanoparticles.

1.2.2 To develop and validate a genetic algorithm enhanced by reinforcement
learning for the optimization parameters of resveratrol-loaded polymeric
nanoparticles to experimentally evaluate the optimized formulations for

physicochemical properties.
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1.3 Research Hypothesis

1.3.1 Hybrid machine learning models can accurately predict the critical quality
attributes (CQAs) including particle size, polydispersity index, zeta potential,
and drug loading of resveratrol-loaded polymeric nanoparticles.

1.3.2  Optimization of formulation parameters using a genetic algorithm enhanced by
reinforcement learning will result in resveratrol-loaded polymeric nanoparticles
with accurately predicted physicochemical properties, as confirmed by

experimental validation.

1.4 Expected benefits

1.4.1 The application of hybrid machine learning models combined with genetic
algorithms and reinforcement learning is expected to reduce time, cost, and trial-
and-error in the development of resveratrol-loaded polymeric nanoparticles.

1.4.2 Accurate prediction and optimization of critical quality attributes will lead to
nanoparticles with consistent physicochemical properties, supporting reliable

manufacturing and regulatory compliance.

1.5 Limitation and scope

1.5.1 The performance of hybrid machine learning models is highly dependent on the
quality and size of the experimental dataset; limited or imbalanced data may
affect the accuracy and generalizability of the predictions.

1.5.2 This study focuses on the development and optimization of resveratrol-loaded
polymeric nanoparticles using Al-based methods, with an emphasis on
predicting critical quality attributes and validating the optimized formulations

experimentally within a laboratory-scale setting.
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CHAPTER 2
REVIEW OF LITERATURE

2.1 Artificial intelligence in pharmaceuticals

Artificial Intelligence (AI) was first introduced in 1956, initially focused on
symbolic reasoning and problem-solving tasks. Over the decades, advances in
computational power and data availability have significantly expanded Al's
capabilities, leading to its widespread adoption across various industries, including the
pharmaceutical sector (Dasta, 1992). Al systems are designed to emulate human
cognitive functions such as reasoning, learning, language comprehension, pattern
recognition, and decision-making. These functionalities are achieved through the use
of algorithms, input datasets, and high-performance computing to simulate intelligent
behavior akin to human cognition.

Al is generally categorized into subfields, with Machine Learning (ML) and
Deep Learning (DL) being the most prominent. As illustrated in Figure 2.1, Al
encompasses ML, which emphasizes enabling systems to learn from data and improve
over time without being explicitly programmed, often utilizing complex statistical
methods. DL, a subset of ML, relies on artificial neural networks (ANNs) to model and

solve highly nonlinear problems (Kolluri et al., 2022; Soori et al., 2023).

—rr B

T~
/,/ Artificial Intelligence < L -~ Stbcd v
- © incorporate human behavior an
/ Al . :
/ (A1) . v intelligence to machine or systems.
/ Lk \
/ Machlm(zhl'.‘leLa)rnlng N \ Methods to learn from data or past

‘experience, which automates
) analytical model building.

Deep
Learning
(D)

 Computation through multi-layer
neural networks and processing.

Figure 2.1 Artificial Intelligence (Al) can be categorized into subfields, namely
machine learning (ML) and deep learning (DL) (Sarker, 2021a).
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The human central nervous system has inspired the development of neural
networks in Al. The structure and function of biological neurons, which enable
information processing, adaptation, and learning, have served as the foundation for
designing artificial neural networks. The human brain, comprising billions of
interconnected neurons, represents a biological model of intelligence and learning.
ANNSs attempt to replicate some of these processes through interconnected layers of
nodes or "neurons" that can learn to recognize patterns, classify data, and make
predictions (Jain et al., 1996). These networks have become fundamental components
of modern AI applications, including image and speech recognition, medical
diagnostics, and predictive analytics (S. Wang et al., 2022).

In the early stages of adoption, Al was primarily applied in the pharmaceutical
industry for basic data management tasks such as data structuring and analysis. As the
technology evolved, its applications expanded to include more complex processes such
as molecular modeling, drug-target interaction analysis, and lead compound
identification (Qian & Sejnowski, 1988). Today, Al plays a transformative role in
numerous pharmaceutical domains, ranging from pharmacokinetics and toxicity
prediction to formulation development, stability assessment, and dose optimization
(Mishra & Awasthi, 2021; Paul et al., 2021; Wessel et al., 1998).

One of the key advantages of Al in pharmaceutical development is its ability to
process and analyze large datasets efficiently, facilitating more accurate and faster
decision-making. Al models can predict how drug molecules will behave in biological
systems, simulate pharmacological effects, and optimize formulation parameters, thus
significantly reducing experimental time and costs. Applications of Al now extend to
various dosage forms, including conventional tablets, 3D-printed medicines, dry
powders, polymer patches, injectables, vaccines, and nanoparticle-based systems
(Elbadawi et al., 2020; Han et al., 2019; Kashani-Asadi-Jafari et al., 2022; J. Wang et
al., 2022)

The evolution of Al in pharmaceutical research continues as technological
innovations and data availability increase. Al holds significant potential to accelerate
drug discovery, optimize formulations, and support personalized medicine. Ultimately,
its continued integration is expected to lead to the development of safer, more effective,

and patient-specific pharmaceutical products.
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2.2 Classification of Artificial intelligence

Al-driven technologies have become a focal point in pharmaceutical research
and development, offering advanced tools to accelerate innovation and decision-
making. One of the most impactful applications of Al in this context is ML, which
enables computational systems to learn from data, recognize patterns, and make
predictions without explicit programming. ML encompasses a broad spectrum of
algorithms tailored for different analytical tasks. Commonly used techniques in
pharmaceutical applications include Naive Bayes classifiers, Decision Trees, Random
Forests, Multiple Linear Regression, Logistic Regression, Linear Discriminant
Analysis (LDA), Support Vector Machines (SVM), and Artificial Neural Networks
(ANNSs) (Dara et al., 2022; Justo-Silva et al., 2021; Raza et al., 2022).

As illustrated in Figure 2.2, ML algorithms can be broadly classified into three
categories: supervised learning, unsupervised learning, and deep learning. In supervised
learning, the model is trained using labeled datasets to predict outcomes or classify data.
Unsupervised learning, by contrast, identifies hidden patterns or groupings in data
without predefined labels. Deep learning, a specialized subdomain of ML, employs
multi-layered neural networks to handle complex, high-dimensional data, often
outperforming traditional models in tasks such as image recognition and natural

language processing.
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Figure 2.2 The classification of Al in pharmaceutical comprises supervised,
unsupervised, and reinforcement learning methods (Suriyaamporn,
Pamornpathomkul, Patrojanasophon, et al., 2024).

These ML approaches have significantly contributed to the development of
predictive models and data clustering tools in pharmaceutical science. Their ability to
process large datasets and uncover nonlinear relationships makes them valuable for a
wide range of tasks, from drug discovery and formulation optimization to toxicity

prediction and quality control.

2.2.1 Supervised learning

Supervised Learning is a machine learning approach that relies on labeled
datasets—data for which the input features and corresponding output values are known.
This method allows the algorithm to learn patterns and relationships within the training
data, enabling it to make accurate predictions on unseen data. The process mimics
human learning, where feedback and guidance help shape understanding. By
associating specific inputs with known outputs, supervised learning models can
generalize these associations to forecast outcomes from new inputs.

The core objective of supervised learning is to construct a predictive function
that maps inputs to desired outputs by analyzing patterns in the labeled dataset. The
model iteratively adjusts its internal parameters to minimize prediction error during
training, ultimately leading to a well-generalized model. These techniques are
extensively applied in pharmaceutical research for tasks such as bioactivity prediction,
toxicity screening, pharmacokinetic modeling, and formulation optimization, where
historical data is available and the target outcomes are well-defined. Supervised

learning methods can be broadly categorized into two main types.

2.2.1.1 Classification

Classification is a core technique in supervised learning that involves
categorizing data into predefined classes or labels. This process plays a vital role in
pharmaceutical research, especially in tasks such as drug efficacy prediction, toxicity

assessment, and formulation optimization. A variety of machine learning algorithms

Ref. code: 25686722041230FLX



10

have been developed to perform classification, each offering distinct strengths
depending on the nature and complexity of the data.

1. Naive Bayes (NB)

Naive Bayes is a probabilistic classifier based on Bayes' Theorem, which
assigns class labels to data based on the calculated likelihood of feature values. The
term "naive" refers to the algorithm’s assumption of feature independence, which
simplifies computation and reduces the need for large datasets during training. Despite
this simplification, Naive Bayes has proven highly effective in text classification and
categorical data analysis. In pharmaceutical applications, it has been used to predict
therapeutic properties of novel compounds by analyzing drug-like features,
contributing significantly to early-stage drug discovery (Madhukar et al., 2019).

2. Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis is a statistical method used to model the
probability distribution of classes and assign labels based on Bayes' rule. It is
particularly effective at distinguishing between two or more classes by maximizing the
separation between categories while minimizing intra-class variability. Additionally,
LDA aids in dimensionality reduction, making complex datasets easier to interpret. In
pharmaceutical research, LDA is applied to predict drug performance by evaluating
chemical attributes and their correlations with biological efficacy (Becht et al., 2021;
Prieto et al., 2006).

3. Logistic Regression (LR)

Logistic Regression is widely used for binary classification tasks and aims to
estimate the probability that a data point belongs to a specific class. It does so by
modeling the relationship between input features and the log-odds of a binary outcome
using the logistic function. LR is valued for its simplicity, interpretability, and
efficiency in linearly separable datasets. In pharmaceutical development, it is often
employed to assess the therapeutic potential of new drug candidates (Bagherian et al.,
2020; Choi & Boo, 2020).

4. K-Nearest Neighbors (K-NN)

K-NN is a non-parametric algorithm used for both classification and regression.
It operates on the principle that similar data points exist in close proximity within the

feature space. The classification decision is made based on the majority vote of the 'K'
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closest training examples, typically measured using Euclidean distance. One of the
challenges in K-NN is determining the optimal value of K. In pharmaceutical contexts,
K-NN has been used in predicting drug activities, optimizing formulations, assessing
stability, and evaluating toxicity profiles (Bannigan et al., 2023; Yang et al., 2019).

5. Support Vector Machines (SVM)

SVM is a powerful supervised learning method suitable for both classification
and regression tasks. It works by constructing an optimal hyperplane that separates
classes with maximum margin in a high-dimensional space. The use of kernel functions
(e.g., linear, polynomial, radial basis function) allows SVM to handle non-linear
decision boundaries effectively. While robust to high-dimensional data, SVM may be
less suitable when classes overlap significantly or when the dataset contains excessive
noise. In pharmaceutical research, SVM has been applied in drug classification,
pharmacokinetic/pharmacodynamic modeling, and predicting drug-drug interactions
(Seok et al., 2011; Yang et al., 2009).

6. Decision Trees (DT)

Decision Trees are non-parametric models that simulate decision-making
processes using a tree-like structure. Each internal node represents a feature, branches
represent decision rules, and leaf nodes denote outcomes. DTs are intuitive and easy to
interpret, making them useful in exploratory data analysis. In the pharmaceutical field,
DTs have been employed for formulation design, toxicity prediction, and identifying
key chemical properties influencing drug efficacy (Karim et al., 2019).

7. Random Forest (RF)

Random Forest is an ensemble learning method that builds multiple decision
trees and combines their outputs to improve prediction accuracy. This approach
addresses limitations of individual trees, such as overfitting, by introducing randomness
in feature selection and data sampling. RF has demonstrated robust performance in
various pharmaceutical applications, including drug activity prediction and compound

screening in drug discovery pipelines (Lind & Anderson, 2019).
2.2.1.2 Regression

Regression analysis is a foundational statistical approach in machine learning,

commonly applied to model and predict the relationship between a dependent variable
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(response) and one or more independent variables (predictors or features). The primary
aim is to quantify how changes in predictor variables influence the response variable.
In pharmaceutical sciences, regression techniques are widely utilized for a range of
predictive tasks, including modeling drug concentration profiles over time and
estimating key physicochemical properties such as solubility based on molecular
descriptors. These insights are instrumental in formulation design and drug
development optimization (Vilar & Costanzi, 2012).

1. Simple Linear Regression

Simple linear regression (SLR) is the most fundamental form of regression
analysis. It involves modeling the linear relationship between a single independent
variable and a single dependent variable. The output is a straight-line equation that best
fits the data, allowing prediction of the dependent variable based on new values of the
predictor. SLR is often used in initial exploratory analyses to understand potential
trends or correlations between two variables.

2. Multiple Linear Regression

Multiple linear regression (MLR) extends the principles of SLR by
incorporating two or more independent variables. This enables the modeling of more
complex systems where multiple factors simultaneously influence the outcome. In
pharmaceutical research, MLR is frequently applied to predict drug dissolution,
stability, or bioavailability by considering various formulation parameters,
environmental factors, and physicochemical properties. Its ability to handle
multifactorial datasets makes it a powerful tool in both formulation screening and
process optimization.

3. Polynomial Regression

Polynomial regression is a nonlinear extension of linear regression that fits a
polynomial curve to the data rather than a straight line. It captures more complex
relationships between the dependent and independent variables by including higher-
order terms (e.g., squared or cubic terms) in the model. This technique is particularly
useful in pharmaceutical applications where response behavior exhibits curvature, such
as nonlinear dissolution kinetics or drug release patterns from controlled-release

formulations.
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2.2.2 Unsupervised learning

Unsupervised learning is a key branch of ML that operates on datasets without
predefined labels or target variables. Unlike supervised learning, which relies on known
outcomes to train models, unsupervised learning explores the intrinsic structure of data
by identifying hidden patterns, similarities, or groupings among the input variables. The
objective is to uncover meaningful insights or relationships within the dataset without
external guidance. This learning paradigm is particularly valuable in situations where
labeled data is unavailable, costly, or impractical to obtain—common scenarios in
early-stage pharmaceutical research and exploratory data analysis.

In pharmaceutical applications, unsupervised learning supports diverse
objectives such as classifying compound libraries, identifying structural similarities
among molecules, uncovering novel drug-target interactions, and improving data
preprocessing pipelines. Unsupervised learning methods can be broadly categorized

into four main types.

2.2.2.1 Clustering

Clustering involves organizing data points into groups based on similarity,
without prior knowledge of class labels. The goal is to place similar items within the
same group while ensuring separation from dissimilar items. Various clustering
algorithms have been developed to address different data structures and distributions.
Common clustering methods include:

1. K-Means Clustering

This algorithm partitions data into k clusters by minimizing the distance
between data points and their respective centroids. Although efficient, K-Means is
sensitive to outliers and the initial placement of centroids, which can affect the final
clustering results. In pharmaceutical sciences, K-Means has been used to classify
chemical compounds based on structural similarity, aiding drug discovery efforts
(Akondi et al., 2019).

2. Mean-Shift Clustering

A non-parametric technique that identifies dense regions in data by iteratively

shifting centroids toward the highest density area. While effective for non-uniform data,
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it can be computationally intensive and sensitive to bandwidth parameters. Mean-Shift
is useful for complex datasets with varying distributions (Sarker, 2021b).

3. Density-Based Spatial Clustering (DBSCAN)

DBSCAN identifies clusters of arbitrary shape by detecting areas of high point
density, distinguishing them from sparse noise regions. It requires two parameters:
neighborhood radius (eps) and the minimum number of points (minPts) to form a
cluster. DBSCAN is highly robust to outliers and has been applied in pharmaceutical
contexts for compound classification and outlier detection (Jiang et al., 2019; McComb
et al., 2022).

4. Agglomerative Hierarchical Clustering (AHC)

A bottom-up approach that builds a tree-like hierarchy of clusters by iteratively
merging the most similar pairs. AHC provides interpretable dendrograms that reveal
nested groupings. In drug research, it assists in grouping molecules based on chemical

or structural similarities for lead identification (Lakshmi & P, 2023).

2.2.2.2 Dimensionality Reduction

Dimensionality reduction is a vital process in machine learning that involves
decreasing the number of features or input variables in a dataset while preserving the
essential structure and relationships within the data. The primary goal is to simplify
complex datasets, eliminate redundant or irrelevant features, and enhance the
performance of machine learning algorithms. This technique is particularly useful for
improving model interpretability, reducing computational demands, and mitigating
overfitting issues.

In pharmaceutical research, dimensionality reduction is frequently applied in
the analysis of high-dimensional data, such as gene expression profiles or biological
activity datasets, to uncover meaningful patterns and facilitate hypothesis generation.
Two principal approaches to dimensionality reduction include feature selection and
feature extraction (Vamathevan et al., 2019; Lalitkumar K. Vora et al., 2023).

1. Feature Selection

This technique involves selecting a subset of relevant features from the original
dataset that contribute significantly to the predictive model. Feature selection aims to

streamline the learning process, enhance model generalization, and reduce overfitting.
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It is particularly effective in high-dimensional data scenarios where many variables may
be irrelevant or redundant. Common methods include the Chi-squared test, Analysis of
Variance (ANOVA), Pearson's correlation coefficient, and Recursive Feature
Elimination (RFE). These techniques help identify the most informative variables for
model training.

2. Feature Extraction

Feature extraction transforms the original high-dimensional data into a new,
lower-dimensional feature space while retaining critical information. This
transformation often combines existing features into composite variables that capture
the underlying data structure. Popular techniques include Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA), t-Distributed Stochastic
Neighbor Embedding (t-SNE), and deep learning-based methods such as autoencoders.
These methods are particularly effective for visualizing complex datasets and

enhancing model accuracy by simplifying data representations.

2.2.2.3 Association Rule

Association rule learning is a data mining technique designed to uncover
interesting relationships, patterns, or dependencies within large datasets. This approach
focuses on identifying frequent co-occurrences among variables and is commonly
expressed through conditional rules in the form "If X, then Y," where X and Y represent
sets of items. Such rules are typically evaluated using metrics such as support,
confidence, and lift, which quantify their relevance and reliability. Association rule
learning is particularly valuable in scenarios where understanding item correlations can
inform decision-making, such as market basket analysis or pharmaceutical data
analysis. Two of the most widely used algorithms in this domain are the Apriori
algorithm and Frequent Pattern Growth (FP-Growth).

1. Apriori Algorithm

Apriori is a foundational algorithm in association rule mining, known for its
simplicity and effectiveness. It identifies frequent itemsets by iteratively expanding
combinations of items and eliminating infrequent ones based on minimum support
thresholds. The key principle underlying Apriori is that if an itemset is infrequent, all

supersets derived from it will also be infrequent, thereby reducing the computational
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burden. This bottom-up strategy starts with single items and progressively constructs
larger itemsets. In pharmaceutical research, Apriori has been applied to uncover
relationships between drugs and adverse effects, as well as to analyze biological data
to reveal associations among genes or proteins. Its capacity to discover hidden patterns
makes it a valuable tool in hypothesis generation and knowledge discovery (Noguchi
et al., 2018; Sarker, 2021b).

2. FP-Growth Algorithm

The FP-Growth algorithm addresses the limitations of Apriori by using a divide-
and-conquer strategy and constructing a compact data structure known as the FP-tree.
Unlike Apriori, FP-Growth avoids candidate generation and instead compresses the
dataset to identify frequent itemsets more efficiently. Despite its computational
advantages, it may face challenges with extremely large or dense datasets due to the
complexity of tree construction. Nevertheless, FP-Growth has demonstrated utility in
pharmaceutical research, particularly in identifying latent patterns and associations
among formulation parameters, drug interactions, or patient response profiles (Sarker,
2021b; Zhao & S Bhowmick, 2003).

Together, these algorithms play a significant role in the pharmaceutical domain
by enabling researchers to mine complex datasets for meaningful insights, ultimately

enhancing drug development, safety profiling, and personalized medicine strategies.

2.2.2.4 Anomaly Detection

Anomaly detection is a machine learning approach used to identify data points
or patterns that significantly deviate from the norm within a dataset. These outliers may
indicate potential errors, rare events, or system malfunctions. The primary objective of
anomaly detection is to flag irregularities that may otherwise go unnoticed but could
have critical implications.

In the pharmaceutical industry, anomaly detection is particularly valuable for
ensuring product quality and safety by identifying deviations in manufacturing
processes or experimental results. This capability enhances quality control protocols
and supports regulatory compliance by proactively addressing inconsistencies before

they lead to product failure or safety concerns.
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Several algorithms are commonly employed for anomaly detection, including
Local Outlier Factor (LOF) and Isolation Forest. LOF measures the local deviation of
a data point with respect to its neighbors, while Isolation Forest isolates anomalies by
recursively partitioning the dataset. Both techniques are effective in identifying outliers
in high-dimensional data and can be integrated into real-time monitoring systems for

rapid decision-making and risk mitigation (Goldstein & Uchida, 2016).

2.2.3 Deep Learning

Deep learning (DL), a subset of machine learning, has garnered increasing
attention within the pharmaceutical industry due to its superior accuracy and precision
when compared to conventional ML approaches. DL models utilize multilayer artificial
neural networks (ANNSs) to automatically extract and learn complex features and
representations from raw data. These capabilities allow for improved performance in
tasks involving intricate and high-dimensional datasets. The key advantage of deep
learning lies in its ability to emulate human cognitive functions by transmitting
information through interconnected layers of artificial neurons, with each layer
progressively capturing more abstract and detailed features.

Unlike traditional ML models that often rely on manual feature engineering,
deep learning methods excel at autonomously learning relevant data features, making
them particularly powerful in applications requiring deep contextual understanding. In
pharmaceutical applications, deep learning has been employed in areas such as
compound identification, drug interaction prediction, pharmacokinetics modeling, and

molecular design

2.2.3.1 Convolutional Neural Networks (CNNs)

CNNss are specialized deep learning architectures tailored for image-based data
processing. They employ convolutional layers to extract spatial hierarchies of features
using learnable filters or kernels. Each kernel performs convolution operations over
localized regions of an image to detect specific features at various levels of abstraction.
In pharmaceutical research, CNNs have been instrumental in image classification tasks,
including the identification and differentiation of molecular structures and compound

visualization (Oei et al., 2019; Wolfgang et al., 2020).
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2.2.3.2 Recurrent Neural Networks (RNNs)

RNNs are designed to handle sequential data where temporal or ordered
dependencies are critical. These networks incorporate loops within their architecture,
enabling information persistence across time steps. RNNs are particularly suited for
time-series analysis and natural language processing (NLP) tasks. In pharmaceutical
sciences, RNNs have been employed for sequence-based drug design,
pharmacokinetics/pharmacodynamics (PK/PD) modeling, and prediction of drug

absorption and distribution patterns over time (Tang, 2023).

2.2.3.3 Generative Adversarial Networks (GANs)

GANSs represent a unique class of DL models composed of two competing
neural networks: a generator and a discriminator. The generator aims to produce
synthetic data that closely resembles real data, while the discriminator's role is to
distinguish between real and generated data. Through iterative adversarial training,
GANSs progressively improve their ability to generate high-fidelity synthetic samples.
In pharmaceutical research, GANs have been successfully applied to generate novel
molecular structures, optimize chemical properties, and accelerate the early stages of

drug discovery by expanding the diversity of compound libraries (Sousa et al., 2021).

2.2.3.4 Long Short-Term Memory Networks (LSTMs)

LSTMs are an advanced variant of RNNs designed to address the limitations of
standard RNNs in learning long-term dependencies due to the vanishing gradient
problem. LSTMs incorporate a memory cell and gating mechanisms—input, forget, and
output gates—that regulate the flow of information, allowing the network to retain or
discard data as needed. This architecture enables LSTMs to model both short- and long-
term patterns in sequential data effectively.

LSTMs are highly applicable to tasks requiring temporal pattern recognition,
such as NLP, time-series forecasting, and physiological modeling. In pharmaceutical
applications, LSTMs have been used for simulating drug concentration profiles in the

body, modeling ADME (absorption, distribution, metabolism, and excretion)
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processes, and predicting time-dependent pharmacological responses (Moldovan et al.,
2019).

2.3 Hybrid machine learning models

Hybrid machine learning (ML) models represent an advanced class of data-
driven approaches that combine the strengths of multiple learning paradigms or
algorithms to achieve superior predictive performance, robustness, and adaptability
compared to individual models, represented in Figure 2.3. These models have emerged
as powerful tools for addressing complex and nonlinear problems that are commonly
encountered in pharmaceutical formulation, quality control, and drug development

(Shah et al., 2025).
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Figure 2.3 Hybrid machine learning models workflow.

The rationale behind hybrid models is grounded in the fact that no single ML
algorithm 1is universally optimal for all types of datasets or tasks. By integrating
complementary techniques—such as linear regression with artificial neural networks
(ANNSs), support vector machines (SVMs) with decision trees, or unsupervised
clustering with supervised classifiers—hybrid models can capitalize on the advantages
of each component while mitigating their individual limitations. This results in models

that are better equipped to handle noise, missing data, multicollinearity, and high-
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dimensional feature spaces (Rajaee et al., 2020). Hybrid ML models can be broadly
categorized into the following types:

1. Model-Based Hybridization

These models combine data-driven ML techniques with domain-specific
theoretical or mechanistic models, enabling incorporation of expert knowledge and
improved  generalizability. This approach is particularly effective in
pharmacokinetics/pharmacodynamics (PK/PD) modeling and physiologically-based
pharmacokinetic (PBPK) modeling (Agoram et al., 2001).

2. Algorithmic Hybridization

This approach integrates multiple ML algorithms within a single framework,
such as combining ANN with SVM or decision trees, to harness their respective
strengths. It has been used effectively in predicting drug solubility and formulation
optimization (Chen, 2024).

3. Optimization-Based Hybridization

Involves the fusion of ML models with optimization algorithms like genetic
algorithms (GA), particle swarm optimization (PSO), or reinforcement learning (RL),
enhancing model tuning and global search capabilities. Applications include
nanoparticle optimization and multi-objective drug formulation design (Yongqiang Li
et al., 2015).

4. Ensemble Hybridization

Uses ensemble methods such as bagging, boosting, or stacking, where multiple
base learners are combined to improve prediction accuracy and reduce overfitting. This
strategy has been shown to enhance robustness in pharmaceutical process control
(Hoseini et al., 2023).

In pharmaceutical sciences, hybrid ML models have been employed in diverse
applications. For instance, hybrid ANN-genetic algorithm (GA) frameworks have been
successfully used to optimize nanoparticle formulations by modeling critical quality
attributes (CQAs) such as particle size, zeta potential, and drug loading. Likewise,
combinations of fuzzy logic and machine learning have improved decision-making
processes under uncertainty, which is crucial in formulation design and scale-up.

Hybrid systems that include ensemble learning techniques—such as boosting and
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bagging—have enhanced model generalization and predictive stability across varied
pharmaceutical datasets (Bannigan et al., 2021).

Notably, hybrid ML approaches also support the implementation of Quality by
Design (QbD) principles by enabling precise identification of critical material attributes
(CMAs) and critical process parameters (CPPs), thus facilitating the creation of robust
design spaces. Moreover, the integration of reinforcement learning (RL) with
evolutionary algorithms in hybrid models enables dynamic adaptation of model
parameters, allowing for real-time optimization and autonomous learning in
manufacturing settings.

As pharmaceutical processes become increasingly complex and data-rich,
hybrid ML models are poised to play an instrumental role in enhancing formulation
efficiency, predictive accuracy, and regulatory compliance, ultimately contributing to

safer and more effective therapeutic products.

2.4 Genetic algorithm

Genetic algorithms (GAs) are a class of stochastic optimization techniques
inspired by the process of natural selection and biological evolution. First introduced
by John Holland in the 1970s, GAs are particularly well-suited for solving complex,
nonlinear, and multi-objective optimization problems where traditional gradient-based
methods may fall short. GAs operate through iterative evolution of a population of
candidate solutions, using operations such as selection, crossover (recombination), and
mutation to explore the solution space (Sivanandam & Deepa, 2008). The basic
workflow of a GA involves the following steps, represented in Figure 2.4 (Albadr et
al., 2020; Katoch et al., 2021).
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Figure 2.4 The basic workflow of a genetic algorithm (Albadr et al., 2020).

1. Initialization

Generate an initial population of potential solutions, often represented as
chromosomes (binary or real-valued). The size of the population typically ranges from
20 to 200 individuals, depending on the problem complexity and computational
resources. A larger population may explore the solution space more thoroughly but
increases the computational cost.

2. Evaluation

Calculate the fitness of each individual using a predefined fitness function. The
fitness function is problem-specific and determines how well each solution satisfies the
optimization objectives. In pharmaceutical formulation, this might involve metrics such
as drug release rate, encapsulation efficiency, or particle size.

3. Selection
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Select individuals based on fitness scores for reproduction. Common selection
methods include roulette wheel selection, tournament selection, and rank-based
selection. The selection rate usually ranges from 50% to 90%. A higher selection
pressure accelerates convergence but may reduce diversity, while lower pressure
maintains diversity but slows optimization.

4. Crossover

Combine selected parents to produce new offspring by exchanging parts of their
chromosomes. The crossover rate, typically set between 0.6 and 0.9, controls the
frequency of recombination. A higher crossover rate promotes exploration of new
solutions, while a lower rate focuses on exploiting existing high-quality solutions.

5. Mutation

Introduce random alterations to offspring to maintain genetic diversity and
avoid premature convergence. Mutation rate is usually set low (e.g., 0.01 to 0.1) to
avoid excessive randomness. It helps the algorithm escape local optima and explore
less-visited regions of the search space.

6. Replacement

Form a new population by selecting individuals from the current population and
newly generated offspring. Strategies include generational replacement (replacing all
individuals) or elitism (preserving the best individuals).

7. Termination

Repeat the process for a fixed number of generations (commonly 50-500) or
until convergence criteria are met, such as no significant improvement in fitness over
successive generations.

In pharmaceutical sciences, GAs have been extensively applied for formulation
optimization, design of experiments, and model parameter tuning. For instance, GAs
have been used to identify optimal combinations of excipients, concentrations, and
process parameters to achieve desired drug release profiles, particle size distributions,
or stability characteristics. When integrated with machine learning models, such as
artificial neural networks (ANNs), GAs enhance predictive performance by optimizing
hyperparameters and selecting relevant input features (M. R. Zaki et al., 2015).

One of the key advantages of GAs is their ability to escape local minima and

find global optima in highly dimensional and rugged search spaces. Additionally, they
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are flexible and easily adaptable to different problem domains without requiring
gradient information. However, the performance of GAs depends on the proper
selection of parameters such as population size, crossover rate, mutation rate, and
selection strategy. Improper tuning can lead to issues such as premature convergence
or excessive computation time (Albadr et al., 2020; Katoch et al., 2021).

Recently, GAs have been integrated with other advanced computational
techniques, including reinforcement learning and swarm intelligence, to further
improve their adaptability and efficiency (Lee et al., 2022; Song et al., 2023). These
hybrid approaches have demonstrated success in areas such as nanoparticle design,
personalized medicine, and predictive modeling for complex drug delivery systems.
Overall, genetic algorithms represent a versatile and powerful optimization tool in the
pharmaceutical field, enabling efficient exploration of vast parameter spaces and
supporting the development of robust, high-quality drug formulations and
manufacturing processes (Chi et al., 2009; Ghaheri et al., 2015).

2.5 Reinforcement learning

Reinforcement Learning (RL) is a branch of machine learning concerned with
how agents ought to take actions in an environment to maximize cumulative rewards.
Unlike supervised learning, where the model is trained with labeled data, RL learns by
interacting with the environment and receiving feedback in the form of rewards or
penalties. This paradigm mimics behavioral learning and is particularly effective for
dynamic decision-making tasks. At its core, RL involves several key components: an
agent, an environment, actions, states, and a reward function. The agent observes the
current state of the environment and selects an action based on a policy—a strategy
mapping states to actions. The environment then transitions to a new state and returns
a reward, which the agent uses to update its policy. This process is modeled
mathematically using Markov Decision Processes (MDPs) (Martins et al., 2025; Sarker,
2021b) as represented in Figure 2.5. Common algorithms are used in RL such as
(Shakya et al., 2023):

1. Q-Learning

A value-based, model-free algorithm where the agent learns a Q-value function

that estimates the expected reward for taking an action in a given state. The Q-table is
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iteratively updated using the Bellman equation. Q-Learning is easy to implement and
effective in small, discrete state spaces but can struggle with high-dimensional inputs
due to table size limitations.

2. Deep Q-Networks (DQN)

An advancement of Q-learning that uses deep neural networks to approximate
the Q-values instead of using a tabular approach. DQN introduces techniques such as
experience replay and target networks to stabilize training. This method enables RL to
handle complex environments with high-dimensional and continuous state spaces, such
as image inputs in drug design simulations.

3. Policy Gradient Methods

These methods optimize the policy directly by computing the gradient of the
expected cumulative reward with respect to the policy parameters. Unlike value-based
methods, policy gradients are suitable for continuous action spaces and stochastic
policies, making them useful in pharmaceutical process control where optimal control
paths need to be learned dynamically.

4. Actor-Critic Methods

A hybrid of value-based and policy-based methods where the "actor" learns the
policy function and the "critic" learns the value function. The critic guides the actor’s
updates, leading to more stable and faster convergence. Actor-critic models are
effective in environments requiring continuous updates and feedback, such as adaptive

formulation design or batch control in drug manufacturing.
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Figure 2.5 Markov Decision Processes (MDPs) flowchart (Zhou et al., 2021).

In pharmaceutical sciences, RL has emerged as a valuable tool in experimental
design, process control, and optimization. For instance, RL has been used to guide
autonomous experimentation, adaptively adjust process parameters in real-time, and
optimize multi-step synthesis or formulation strategies where feedback is sequential
and delayed. The strength of RL lies in its adaptability to new environments and ability
to learn from trial and error, making it ideal for complex, uncertain, and nonlinear
systems (Al-Kharusi et al., 2022; Narayanan et al., 2021).

When combined with GAs, RL can further enhance optimization efficiency. In
such hybrid frameworks, RL dynamically tunes GA hyperparameters (e.g., mutation
and crossover rates), thereby accelerating convergence and improving the quality of
solutions. This synergy has been applied in advanced drug design, including the
generation of novel molecules, nanoparticle formulation, and predictive modeling of
pharmacokinetics. Moreover, this plays a crucial role in optimizing decision-making in
the pharmaceutical domain and facilitates design processes that were previously
unattainable using traditional methods (Suriyaamporn, Pamornpathomkul,

Patrojanasophon, et al., 2024).
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2.6 Nanoparticle-based drug delivery systems

Nanoparticle-based drug delivery systems (NDDSs) represent an advanced
colloidal nanotechnology platform in which therapeutic agents are encapsulated,
adsorbed, or conjugated onto nanocarriers typically ranging in size from 10 to 1000
nanometers. Over the past two decades, interest in NDDSs has grown substantially,
transitioning from academic research into widespread industrial application. This
transition has been largely driven by the high therapeutic potential and commercial
viability of nanomedicine. Nanotechnology is now considered one of the most rapidly
expanding research areas within pharmaceutical sciences due to its capacity to improve
drug solubility, stability, and bioavailability while enabling targeted and controlled
drug release mechanisms (Soares et al., 2018).

Nanoparticles are engineered to overcome various biological barriers and
deliver therapeutic agents to specific target tissues or cells with high precision. By
modifying surface characteristics or loading strategies, these systems can provide
sustained drug release, protect labile molecules from degradation, and prolong systemic
circulation time, thereby enhancing therapeutic efficacy and patient compliance. These
properties make NDDSs superior to conventional dosage forms such as tablets,
capsules, ointments, and injectable solutions (Abdel-Mageed et al., 2021; Giri et al.,
2023). Nanoparticle drug delivery systems can be administered through multiple routes,
including oral, nasal, transdermal, and intravenous pathways. Their versatility not only
improves drug performance but also reduces adverse effects by minimizing systemic
exposure and allowing for localized treatment. Additionally, nanoparticles are
particularly beneficial for encapsulating macromolecules such as peptides, enzymes, or
proteins, which are typically susceptible to enzymatic degradation and require
protection to maintain therapeutic activity in vivo. NDDSs are generally classified into
three main categories based on their composition such as polymeric nanoparticles
(PNPs), lipid-based nanoparticles (LNPs) and Inorganic nanoparticles (INPs) as
illustrated in Figure 2.6 (Abdel-Mageed et al., 2021; Giri et al., 2023).
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Figure 2.6 Three classes of nanoparticles, including polymeric, inorganic, and lipid-
based nanoparticles indicating their advantages and disadvantages (Thabet &

Alqudah, 2024).

Among these, polymeric nanoparticles are the most widely utilized due to their
ease of fabrication, cost-effectiveness, biocompatibility, and structural integrity. These
systems are often prepared from biodegradable polymers such as polyvinylpyrrolidone
(PVP), poly vinyl alcohol (PVA), poly(lactide-co-glycolide) (PLGA), poly(butyl
cyanoacrylate), poloxamers, polymethacrylate, caragenan, dextran, chitosan, poly(e-
caprolactone) (PCL) and others. The drug can be incorporated into the core, embedded
within the polymer matrix, or adsorbed onto the nanoparticle surface depending on
formulation needs. To maintain particle stability and prevent aggregation, various
stabilizers or surfactants are added during the formulation process. Commonly used
agents include polysorbates, lecithin, sorbitan esters, dioctyl sodium sulfosuccinate,
cetrimonium bromide, and alkyl benzene sulfonates. These agents help control the size
and surface characteristics of the nanoparticles, which are critical factors influencing
biodistribution, cellular uptake, and drug release kinetics (Lobo et al., 2021).

In conclusion, nanoparticle-based systems provide a powerful platform for
advanced drug delivery, offering customizable designs for enhanced therapeutic
outcomes, reduced toxicity, and targeted drug administration. Their ongoing

development is likely to transform future pharmaceutical formulations, particularly in
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complex disease areas such as cancer, dermatological disorders, and chronic

inflammatory conditions.

2.7 Resveratrol

Resveratrol is a naturally occurring polyphenolic compound predominantly
found in red grapes, peach, peanuts, and various berries. It has garnered increasing
attention due to its wide-ranging health benefits, which include cardioprotective effects,
neuroprotection, antitumor activity, antidiabetic properties, antioxidant function, anti-
aging potential, and modulation of glucose metabolism, illustrated in Figure 2.7. Its
therapeutic effects are mediated through multiple molecular mechanisms, such as the
regulation of oxidative stress, apoptosis, lipid metabolism, and inflammatory pathways.
These pleiotropic effects make resveratrol a promising candidate for the treatment and
prevention of chronic conditions including cancer, neurodegenerative diseases, and

atherosclerosis (Meng et al., 2020).

/ Antioxidants

Cardiovascular protector

2

sources

o
m\,/v‘/

Resveratrol

sjyauaq YIeay

N
“/
®

7

v (’ Anticancer

&

Antiinflamatory

Figure 2.7 The sources and biological effects of resveratrol (Xu et al., 2024).

In recent years, resveratrol has also emerged as a bioactive ingredient in

cosmeceutical formulations. Research has demonstrated its ability to permeate the skin
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barrier and exert anti-aging effects. Studies have shown that topical formulations
containing resveratrol promote fibroblast proliferation and upregulate the synthesis of
collagen, particularly types I, II, and III. Additionally, resveratrol is known to bind
estrogen receptors (ERa and ER), thereby stimulating skin regeneration and enhancing
structural integrity. Its antioxidant capacity allows it to mitigate oxidative damage and
photoaging by neutralizing reactive oxygen species (ROS) and reducing ultraviolet
(UV)-induced cellular stress (Ratz-Lyko & Arct, 2019).

Despite its pharmacological promise, the clinical utility of resveratrol is limited
by several biopharmaceutical challenges. Notably, its aqueous solubility is extremely
low (~0.05 mg/mL), which restricts formulation development in water-based systems
and hinders effective drug delivery to target sites (Robinson et al., 2015). Furthermore,
resveratrol is highly sensitive to environmental conditions such as pH, light, and
temperature, leading to rapid degradation and instability.

To address these limitations, extensive research has focused on developing
nanocarrier-based systems to enhance resveratrol’s stability, solubility, and
bioavailability. Nanoparticle delivery strategies offer protection against environmental
degradation and improve pharmacokinetic profiles. For instance, Zhang et al.
successfully encapsulated resveratrol with a-tocopherol in polymeric nanoparticles,
significantly enhancing transdermal delivery efficiency and resistance to external
oxidative and photolytic stress (Zhang et al., 2019). Similarly, lipid-based carriers such
as liposomes have shown considerable potential in improving both the stability and
therapeutic effectiveness of resveratrol by providing a biocompatible and protective
lipid bilayer structure (Dana et al., 2022). Overall, the incorporation of resveratrol into
nanocarrier systems offers a viable strategy for overcoming its physicochemical
drawbacks and unlocking its full therapeutic potential in both medical and

dermatological applications.

2.8 Integration of AI with nanoparticle-based drug delivery systems

The convergence of Al and nanotechnology in pharmaceutical sciences marks
a transformative shift in drug formulation and delivery. Nanoparticle-based drug
delivery systems (NDDS) have emerged as powerful tools for enhancing drug

solubility, protecting active compounds from environmental degradation, and achieving
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targeted delivery at the cellular and molecular levels. However, the design and
optimization of these nanosystems involve complex, multivariate interactions among
formulation parameters, which often present challenges in identifying the most suitable
formulation strategy.

Al has proven instrumental in addressing these challenges through advanced
data-driven algorithms that facilitate efficient prediction, modeling, and optimization.
By integrating Al techniques—particularly machine learning (ML) and deep learning
(DL)—researchers can simulate formulation behavior, identify critical quality
attributes, and accelerate the development of nanomedicines with enhanced therapeutic
efficacy and product consistency (Alshawwa et al., 2022).

For instance, Wu et al. applied artificial neural networks (ANNSs) to predict the
drug release kinetics of doxorubicin (Dox) from nanocarriers. Their study involved
comparing multiple ANN models to evaluate Dox release at various time intervals,
successfully establishing a model that could accurately simulate the temporal release
behavior of the drug from nano-encapsulated systems (Li et al., 2005). Similarly,
ANNs have been used to optimize the formulation of cerasomes—Iliposome-silica
hybrid nanostructures—by predicting nanoparticle size based on component
composition and process parameters, showing high predictive reliability (Hameed et
al., 2018). Kashani-Asadi-Jafari and colleagues employed deep neural networks
(DNNs) to design optimized niosomal formulations. Their work utilized chemical
descriptors such as hydrophilic-lipophilic balance (HLB) to train models that could
predict drug encapsulation efficiency, allowing for the development of highly effective
carrier systems (Kashani-Asadi-Jafari et al., 2022). Table 2.1 summarizes recent
studies that demonstrate the potential of Al algorithms including ANNs, LightGBM,
and hybrid multi-layer perceptron (MLP)-GA models in nanoparticle drug formulation

and process optimization.
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Table 2.1 Applications of Al in nanoparticle-based drug formulation.

Algorithm Input Parameters Objective Ref.
ANNs NaCl and CaCl: Predict Dox release from (Lietal.,
concentration, drug sulfo-propyl-dextran 2005)
loading level microspheres
DNNs Molecular weight, LogP, Predict encapsulation (Kashani-
pKa, excipient efficiency of optimized Asadi-Jafari et
concentrations, HLB, niosomes al., 2022)

molar ratios

LightGBM Milling time, cycle Predict optimal particle size (He et al.,
number, stabilizer and PDI of nanocrystals 2020)
concentration

MLP + GA Coconut oil, Tween 80, Predict particle size of (Samson et al.,
Pluronic F68, xanthan =~ nanoemulsions 2016)
gum, water

MLP + GA Pilocarpine HCI, sodium Maximize drug (Zhao et al.,
deoxycholate, water encapsulation in nano- 2018)

liposomes for ocular
delivery
MLP + GA CaClz, homogenizer Optimize particle size, PDI, (Mohammad
speed, %agar, %HPBCD zeta potential, loading and Reza Zaki et
release of Bupropion HCI  al., 2015)

nanospheres
MLP with  Ramipril tablet Model and optimize direct (B. Aksu et
GA and formulation: lubricant compression tablets using  al., 2012)
fuzzy types and concentrations QbD approach
ANN with  Drug: lipid ratio, Tween Optimize verapamil (Yonggiang Li
GA and 80, Pluronic F68 polymer-lipid nanoparticle et al., 2015)

(PLN) for sustained release
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Although promising, the integration of Al in nanoparticle formulation still faces
several challenges. These include the lack of comparative studies across various Al
algorithms, limited accuracy and generalizability of current predictive models,
insufficient high-quality training data, and difficulties in translating AI models into
scalable industrial applications. Moreover, real-time monitoring and adaptive control
using Al are yet to be widely implemented in commercial manufacturing environments.

To address these gaps, the present study focuses on the application of Al in the
rational design of resveratrol-loaded polymeric nanoparticles using experimental data.
The objective is to develop a predictive model that not only performs well at the
laboratory scale but is also adaptable for scale-up in industrial production. Furthermore,
the implementation of real-time feedback loops and model refinement is envisioned to
support continuous process optimization, leading to better quality control and
manufacturing efficiency. Ultimately, this research aims to provide a predictive
framework that facilitates the development of intelligent nanomedicine systems,
reinforcing the role of Al as a catalyst for advancing pharmaceutical innovation and

global accessibility to personalized therapeutics.
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CHAPTER 3
METHODOLOGY

3.1 Preparation of RES-loaded PNPs

The preparation of resveratrol-loaded polymeric nanoparticles (RES-loaded
PNPs) was performed using a nanoprecipitation technique adapted from previously
established protocols (Cavalcante de Freitas et al., 2023; Suriyaamporn et al., 2023).
This method involved the formulation of two distinct phases: an aqueous phase and an
organic phase. In the aqueous phase, poly(acrylic acid) (PAA) and gelatin (GT) were
dissolved in deionized water (DI water), with polymer concentrations ranging from
0.001% to 0.599% w/v. In the organic phase, resveratrol (RES) at 1% w/v and
poloxamer 407 (P407) at concentrations ranging from 0.01% to 5.99% w/v were
dissolved in ethanol. Subsequently, the organic phase was added dropwise into the
aqueous phase at a controlled rate of 0.25 mL/min under continuous magnetic stirring
to facilitate the spontaneous formation of nanoparticles. The resulting colloidal
dispersion was then subjected to probe sonication at frequencies ranging from 5.05 to
34.95 Hz for durations between 1.28 and 23.72 min, in order to reduce particle size and
enhance homogeneity. A total of 131 formulation datasets were obtained from the
previous study conducted by Suriyaamporn et al. (2025), and the corresponding
formulation parameter ranges are summarized in Table 3.1. The critical material
attributes (CMAs) identified in this study were PAA, GT, and P407, while the critical
process parameters (CPPs) included sonication frequency and time. The final RES-
loaded PNP formulations were stored at 4°C to preserve their physicochemical stability
for subsequent evaluation. A schematic representation of the nanoparticle preparation

process is shown in Figure 3.1.

Table 3.1 Components and manufacturing process of RES-loaded PNPs

Range of concentration
-a -1 0 1 a
PAA (%w/v) 0.001 0.1 0.3 0.5 0.599
GT (%w/v) 0.001 0.1 0.3 0.5 0.599

Input parameters

Ref. code: 25686722041230FLX



35

P407 (%w/v) 0.01 1 3 5 5.99
Sonication frequency (Hz) 5.05 10 20 30 34.95
Time (min) 1.28 5 12.5 20 23.72

CMAs CQAs

1. Water Phase

- PAA (0.001%-0.599%w/v)
- GT (0.001%-0.599%w/v)

Measurement
2. Organic Phase
* Physical evaluation

- RES (1%w/v) PS, PDI, ZP

- P407 (0.01%-5.99%w/v)

¢ Chemical evaluation

Organic Phase

%DL
was dropped #
into Water phase / cp PS \ '
The drop rate ‘ Probe sonication to reduce

was controlled at

! particle size and homogeneity Optimization RES'loaded PNPs
0.25 mL/min

s

e Frequency (5.05-34.95 Hz) * Minimized PS, PDI, ZP
* Time (1.28 and 23.72 min) * Maximized %DL

. J

Figure 3.1 Schematic illustration of the preparation process for RES-loaded PNPs

using the nanoprecipitation technique, highlighting CMAs (PAA, GT, P407), CPPs
(sonication frequency and time), and CQAs (PS, PDI, ZP, and %DL).

3.2 Physicochemical characterization of RES-loaded PNPs
3.2.1 Physical evaluation
The particle size (PS), polydispersity index (PDI), and zeta potential (ZP) of the
RES-loaded PNPs were determined using dynamic light scattering (DLS) with a
Zetasizer Nano Series instrument (Malvern Instruments, DTS version 4.10). Prior to
measurement, samples were appropriately diluted with deionized water. Each
measurement was performed using a capillary cell.
3.2.2 Chemical evaluation
The drug content of RES in the nanoparticle formulation was quantified by
high-performance liquid chromatography (HPLC). The RES-loaded PNPs were diluted
with ethanol (1:100) and filtered through a 0.45 um syringe filter prior to injection.
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Chromatographic separation was achieved using a Zorbax Eclipse XDB-C18 column
(250 x 4.6 mm, 5 um pore size; Agilent, USA) with a mobile phase comprising 40%
v/v methanol and 60% v/v water. The flow rate was maintained at 1 mL/min at a column
temperature of 25°C. Detection was performed at a wavelength of 308 nm. The

percentage of drug loading (%DL) was calculated using the following equation 3.1.

Amount of RES in NPs
X
Amount of RES adding

%Drug loading = 100 (3.1)

3.3 Machine learning model of RES-loaded PNPs

This study commenced with the design and development of a structured dataset
aimed at optimizing resveratrol-loaded polymeric nanoparticle formulations. The
experimental design focused on selecting appropriate CMAs and CPPs known to
influence the Critical Quality Attributes (CQAs)—namely, PS, PDI, ZP, and %DL.

The initial phase involved data preprocessing, including exploratory data
analysis and data cleaning, to ensure compatibility with subsequent modeling
techniques under specific conditions—PS <400 nm, PDI < 0.6, and ZP <-60 mV. After
preprocessing, various supervised machine learning algorithms—Iinear regression
(LR), polynomial regression (PR), support vector machine (SVM), k-nearest neighbor
(K-NN), and artificial neural network (ANN)—were employed to predict CQAs from
the defined input parameters.

The dataset was subjected to K-Fold Cross-Validation, which randomly divided
the dataset into K equal subsets to generate training and test datasets for each fold.
These subsets were used to evaluate the generalizability of each algorithm. The
performance of the predictive models was assessed using standard evaluation metrics,
including root mean square error (RMSE) and mean absolute percentage error (MAPE),
to identify the most accurate and robust model. Initial algorithm parameters were set
uniformly (program default) to enable fair performance comparisons across models. All
modeling and evaluation processes were conducted using RapidMiner Studio (version

10.3, student edition) and Google Colab.
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3.4 Hybrid machine learning model of RES-loaded PNPs

Following the evaluation of individual ML models, the next phase involved the
development of a hybrid machine learning (HML) model to enhance the prediction
accuracy of CQAs. This approach aimed to leverage the strengths of multiple
algorithms by integrating their predictive capabilities through model fusion or meta-
learning strategies. Initially, the top-performing base learners identified from the
earlier stage were selected as the foundational models. These models were then

combined using two hybridization strategies.

3.4.1 Model Averaging Ensemble
In this method, the predicted outputs from each selected base model were
aggregated to produce final predictions of CQAs. The aggregation was performed either
through simple averaging or weighted averaging, where the weights were assigned
inversely proportional to each model's MAPE, thereby giving greater influence to

models with superior predictive accuracy.

3.4.2 Weighted Averaging Ensemble

In this approach, the final hybrid model was selected based on the weighted
voting outcomes of the base learners. Each model was assigned a weight inversely
proportional to its average MAPE, following Equation 3.2 and 3.3. The base models
with the lowest MAPE were prioritized, and their predictions were aggregated to
compute the final output. The performance of these candidate ensembles was then
evaluated against an unseen test dataset. The hybrid model exhibiting the best alignment
between predicted and actual output values determined by the lowest prediction error

on the test set was chosen as the optimal ensemble.

L
V= > wd, (3.2)
7

(error;)™!

W = ———— ————
1 Zf(errorj)‘l

(3.3)

Where, d; is result of method j, w; is a weight of method j, error; is error of

mrthod j and y; is a result of ensemble method.
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This hybrid framework was trained and validated using the same K-fold cross-
validation method to ensure consistency in evaluation and to prevent overfitting.
Performance metrics such as weight and average of MAPE were applied to compare
hybrid models with individual models. The final hybrid model of each CQAs was
selected based on its superior predictive performance and was subsequently employed
for formulation optimization using genetic algorithms enhanced by reinforcement

learning (GA-RL).

3.5 Quality control by design space

The multidimensional design space for the formulation process was established
by integrating hybrid machine-learning (HML) predictive models with contour-based
visualization methods. Closed-form mathematical representations of each HML model,
together with refined outputs from pre-trained kNN algorithms, were implemented in
Python to generate reproducible and computationally robust plotting workflows. Each
critical quality attribute (CQA) was computed over high-resolution meshgrids
encompassing the defined critical material attributes (CMAs) and critical process
parameters (CPPs). Feasibility limits—PS: 80-400 nm; PDI: 0.10-0.40; ZP: —60 to —
15 mV; and DL: 60—-100%—were applied in accordance with published guidelines and
preliminary characterization results (Table 3.2). Superimposing the contour maps for
individual CQAs enabled the extraction of the intersecting region that concurrently
satisfied all four feasibility constraints. This intersection was visualized as an unshaded
area over semi-transparent, color-coded backgrounds corresponding to single-CQA
feasible zones, allowing rapid identification of the optimal operational domain. The
finalized design space was then used to derive acceptable CMAs and CPPs ranges,
forming a comprehensive control strategy that includes raw-material acceptance limits,
in-process monitoring thresholds, and final product specifications, fully aligned with

the principles of ICH Q10 pharmaceutical quality systems.
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Table 3.2 Response limits considered of the contour plot to establish product and

process specifications within the design space.

Response Goal HML Limits

Lower Upper
Y1: PS (nm) Minimum LR + ANN 80 400
Y2: PDI Minimum kNN + ANN 0.1 0.4
Y3:ZP (mV) Minimum kNN + ANN -60 -15
Y4: %DL (%) Maximum LR + kNN 60 100

3.6 Genetic algorithm with reinforcement learning for RES-loaded PNPs
optimization

Following the identification of the optimal HML model for predicting CQAs,
the final phase focused on optimizing the formulation of RES-loaded PNPs using a GA
enhanced with RL. The primary objective was to minimize PS, PDI, and ZP, while
maximizing %DL. GA was applied as a global optimization method to explore the most
effective combination of formulation parameters that would produce the most desirable
CQA outcomes. The fitness function was defined based on the predictive outputs of the
HML model, linking each input formulation to the corresponding predicted CQAs. To
ensure pharmaceutical relevance and practicality, specific constraints were imposed on
each CQA: PS was constrained between 80 and 400 nm, PDI between 0.1 and 0.4, ZP
within the range of —60 to —15 mV, and %DL between 60% and 100%.

Initial tuning of key GA parameters—population size (1,000; 10,000; 100,000;
and 1,000,000), crossover rate (0.1-0.5), and mutation rate (0.01-0.5)—was conducted
using domain expertise and exploratory simulations. Subsequently, reinforcement
learning, specifically the Q-learning algorithm, was integrated to adaptively adjust GA
hyperparameters in real-time during the optimization process. The RL agent was
rewarded based on incremental improvements in the fitness score, with particular
emphasis on minimizing PS, PDI, ZP, and maximizing %DL.

The optimization process followed these steps: (1) initialization with a
population size of 100,000; (2) evaluation using a fitness function defined as —PS —
PDI — ZP + %DL; (3) selection through tournament selection; (4) application of
crossover and mutation at rates ranging from 0.1-0.5 and 0.01-0.5, respectively; (5)

execution over 100 generations, with termination set at 100 RL episodes, following
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Figure 3.2. The evolution of the best fitness scores was plotted across generations to

assess convergence and determine whether a performance plateau had been reached.

Initialization
Population size: 100,000

|

Evaluation
-PS - PDI-ZP + %DL

]

Selection
Tournament selection

]

Crossover anl Mutation
Rates: 0.1-0.5
0,01-0.1-0,5

]

Termination
100 generations
100 RL episodes

f'

Generations

—

Best fitness

Figure 3.2 Optimization workflow for RES-loaded PNPs using hybrid machine

learning modeling and GA-RL framework.

The final optimized formulation identified by the GA-RL strategy was then
experimentally prepared and characterized to validate its physicochemical properties
against the predicted values, thereby confirming the effectiveness of the integrated

optimization framework.

3.7 Experimental Validation of the Optimized Formulation

To verify the predictive accuracy and practical applicability of the optimized
formulation obtained from the HML model with GA-RL optimization, experimental
validation was conducted. The optimal input parameters suggested by the algorithm
including the CMAs and CPPs were utilized to prepare RES-loaded PNPs in the
laboratory. Each CQA was measured in triplicate, and the mean values along with

standard deviations were recorded.
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The experimentally obtained results were then compared with the predicted
outputs generated by the HML model with GA-RL. The predictive accuracy of the
model was quantified by MAPE and independent ¢-test for each CQA. Any
discrepancies between predicted and observed outcomes were further analyzed to
identify potential sources of error, including model overfitting, process variability, or

limitations in experimental measurement.
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CHAPTER 4
RESULT AND DISCUSSION

4.1 Machine learning model of RES-loaded PNPs

Five supervised learning algorithms—Iinear regression (LR), polynomial
regression (PR), support vector regression (SVR), k-nearest neighbors (k-NN), and
artificial neural networks (ANN)—were developed and assessed using K-fold cross-
validation. Overall, LR produced smooth, low-variance predictions that reflected broad
global patterns but failed to represent localized nonlinear behavior. In contrast, k-NN
and ANN captured local variations more effectively and followed the monotonic trends
observed across the experimental formulations. SVR demonstrated intermediate
performance with occasional systematic bias. PR, however, showed considerable
numerical instability, including large oscillatory behavior and frequent negative or
otherwise implausible outputs, indicating severe overfitting and unreliable
extrapolation. For this reason, PR was excluded from further consideration as a
potential contributor to the ensemble.

As summarized in Table 4.1, ANN provided the highest predictive accuracy for
particle size (PS, Y1), achieving the lowest error (RMSE 69.19; MAPE 38.46%),
followed by LR (RMSE 80.02; MAPE 45.08%). The PS response exhibited strong
nonlinear interactions among CMAs and CPPs; thus, ANN captured these effects more
effectively, whereas LR produced stable but biased estimates. With default settings,
both k-NN and SVR were more susceptible to local noise and feature scaling, resulting
in greater variance. PR again performed poorly, characterized by large oscillations and
extrapolation errors that confirmed model overfitting.

For PDI (Y2), ANN and k-NN yielded the best results (RMSE 0.06 and 0.07;
MAPE 11.83% and 12.04%, respectively). Because PDI is bounded and highly
sensitive to local neighborhood structure, flexible models such as ANN and k-NN
generalized more successfully. LR failed to capture finer-scale curvature, leading to
comparatively higher MAPE values. The instability of PR persisted, likely stemming

from amplification of small numerical fluctuations within a narrow response range.
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For zeta potential (ZP, Y3), ANN again provided the highest accuracy (RMSE
4.28; MAPE 15.44%). LR, SVR, and k-NN performed similarly but slightly less
effectively (RMSE 4.67-5.01; MAPE 17.04—-17.86%). ZP changed smoothly across the
formulation space; ANN captured mild nonlinear patterns while preserving numerical
stability. LR’s inherent linearity and the variance associated with SVR and k-NN
produced minor reductions in accuracy. PR was excluded due to non-physical
predictions.

For drug loading (%DL, Y4), k-NN emerged as the top-performing model
(RMSE 6.69; MAPE 7.44%). LR and SVR achieved comparable accuracy (RMSE
9.08-9.14; MAPE 10.63-10.95%). %DL demonstrated an overall monotonic trend with
localized interaction-dependent maxima (“sweet spots”), which k-NN effectively
modeled through neighborhood-based inference. LR provided a consistent global
estimate, while ANN slightly underfit the monotonic component under default
hyperparameters. As with other CQAs, PR produced unstable and unreliable estimates.

Collectively, these results indicate that no single algorithm performed optimally
across all CQAs. The contrasting strengths of ANN (nonlinear modeling capacity), k-
NN (local structure sensitivity), and LR (robust global stability) supported the decision
to implement a hybrid ensemble approach to enhance predictive accuracy and reliability

prior to constructing the final design space.

Table 4.1 Evaluation of single machine learning model performance for RES-PNPs.

ML PS PDI zp %DL
algorithms

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

LR 80.02  45.08% 0.08 16.78% 4.67 17.86% 9.08 10.63%
PR 155.78  >100%  1751.83  >100% 69.57  >100% 6074.43  >100%
SVM 118.12  69.83% 0.08 16.89% 5.00 17.13% 9.14 10.95%
k-NN 100.47  66.45% 0.07 12.04% 5.01 17.04% 6.69 7.44%

ANN 69.19 38.46% 0.06 11.83% 4.28 15.44% 8.58 10.71%
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Figure 4.1 presents the percentage error of PS, PDI, ZP, and %DL generated by
the individual machine-learning algorithms (LR, PR, SVM, k-NN, and ANN) using the
training dataset. For particle size (PS, Y1), the experimental values ranged from several
tens to a few hundred nanometers. Both k-NN and ANN successfully replicated the
pronounced nonlinear increases and sharper transitions, whereas LR captured the
overall upward trend but consistently underestimated the higher-magnitude peaks,
reflecting its inherent linear constraints. SVR delivered performance between LR and
the more flexible k-NN/ANN models. PR again demonstrated severe instability,
characterized by substantial oscillations and non-physical fluctuations. To balance the
reliable global behavior of LR with the nonlinear adaptability of ANN, a combined LR
+ ANN approach was selected for Y.

For PDI (Y2), measured values remained within 0.2—0.6 and exhibited only a
modest upward drift. LR, k-NN, SVR, and ANN approximated this progression with
relatively small deviations. k-NN and ANN were most effective at capturing subtle
local variations, whereas LR provided a stable central trend. PR continued to generate
unrealistic spikes and negative outputs. Given the bounded nature of PDI and its
dependence on localized relationships within the CMA/CPP space, the k-NN + ANN
hybrid was chosen for Y2 to retain local sensitivity while maintaining model flexibility.

For zeta potential (ZP, Ys), the response shifted gradually from approximately
—40 mV toward —15 mV. LR, k-NN, and ANN reproduced this smooth transition, with
k-NN and ANN more accurately reflecting minor local deviations and LR effectively
maintaining the global trend. SVR produced comparable predictions but introduced
occasional bias, while PR again failed due to extreme, non-physical oscillations.
Because ZP is a bounded variable that changes smoothly with polymer charge and
processing conditions, the k-NN + ANN hybrid was deemed most appropriate for Ys.

For drug loading (%DL, Y4), the experimental data exhibited a gradual increase
across the formulation sequence. LR, k-NN, and ANN generally tracked this rising
pattern. k-NN and ANN captured localized inflection points, while LR provided a
consistent global trajectory. SVR slightly underestimated values in the mid-range, and
PR generated non-physical deviations similar to prior endpoints. As %DL embodies

both broad compositional effects (CMAs) and more localized process-dependent
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variations (CPPs), the combined strengths of LR for global trend modeling and k-NN
for capturing local interactions supported the selection of the LR + k-NN hybrid for Ya.

A * [ —Actual(PS) —LR PR~ SVR —kNN —ANN B 11 | —Actual (PDD) (LR —PR|— SVR —kNN —ANN

: Z a1
Formulations Formulations

C —Agtal (ZB) —IR —PR - 8VR —kNN|-—ANN D 3
s

or of ZP

Percentage err
E ot & .

Formulations

Formulations

Figure 4.1 Percentage error of (A) PS, (B) PDI, (C) ZP, and (D) %DL from single
machine learning models (LR, PR, SVM, kNN, and ANN) based on the training

dataset.

4.2 Hybrid machine learning model of RES-loaded PNPs

The observed patterns in model error informed the decision to employ hybrid
approaches. Each hybrid combined either a globally stable estimator (LR) with a locally
responsive learner (k-NN or ANN), or two locally adaptive models, to mitigate
systematic bias while avoiding excessive variance and capturing deviations that occur
above or below the primary trend. For each CQA, the two best-performing individual
models were chosen to form the corresponding hybrid ensemble, and their predictive
performance was subsequently assessed using a simple averaging scheme, as
summarized in Table 4.2.

Across all endpoints, the resulting hybrids—PS: LR + ANN; PDI: k-NN + ANN;
ZP: k-NN + ANN; and %DL: LR + k-NN—generated smooth and physically consistent
response surfaces suitable for fine-resolution mesh analysis and feasibility masking.
Within the contour-overlay framework, these hybrid models (i) eliminated artificial

oscillations that would otherwise disrupt feasible zones, (ii) preserved the
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experimentally observed monotonic behaviors, and (iii) maintained adequate nonlinear

2

flexibility to represent interaction “ridges,” where multiple CQAs reached optimal
values concurrently.

Table 4.2 Evaluation of hybrid machine learning model performance for RES-PNPs by

averaging ensemble.

HML algorithms Ensemble MAPE
PS PDI zp %DL
LR+PR 74.15%  >100% 87.78%  >100%
LR+SVM 53.11%  16.19%  16.32%  10.19%
LR+kNN 50.30%  12.63%  14.45%  8.29%*
LR+ANN 37.16%* 13.29%  14.63% 10.45%
PR+SVM 88.45%  >100% 88.47%  >100%
PR+kNN 83.37%  >100% 87.45%  >100%
PR+ANN 64.25%  >100% 88.17%  >100%
SVM+kNN 66.30%  12.46%  15.17%  8.98%
SVM+ANN 42.71%  12.60%  15.02%  10.05%
KNN+ANN 44.11%  10.63%* 14.37%* 8.30%
LR+PR+SVM 70.48%  >100% 60.76%  >100%
LR+PR+kNN 67.39%  >100% 59.57%  >100%
LR+PR+ANN 53.55%  >100% 60.32%  >100%
LR+SVM-+kNN 5524%  13.33%  14.78%  8.58%
LR+SVM+ANN 41.06%  13.66%  14.96%  10.71%
LR+KkNN+ANN 41.24%  11.80%  14.74%  8.80%
PR+SVM+KNN 78.04%  >100% 60.11%  >100%
PR+SVM+ANN 62.95%  >100% 60.71%  >100%

PR+kNN+ANN 60.35% >100% 59.86%  >100%
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SVM+kNN+ANN 49.29% 11.54% 14.30% 8.53%
LR+PR+SVM-+kNN 67.29% >100% 46.42%  >100%
LR+PR+SVM+ANN 56.16% >100% 47.12%  >100%
LR+PR+kNN+ANN 54.24% >100% 46.23%  >100%
LR+SVM+kNN-+ANN 45.72% 12.42% 14.10% 8.90%
PR+SVM+KNN+ANN 61.90% >100% 46.69%  >100%

LR+PR+SVM+KNN+ANN  56.65% >100% 38.66%  >100%

*Selected HML for each output variable

During hybrid model validation (Figure 4.2) using ten independent test
formulations, particle size (PS, Y1) demonstrated complementary error characteristics
between the LR and ANN base models. LR accurately reflected the overall increasing
trend but underestimated rapid rises, whereas ANN captured localized nonlinearities
yet occasionally produced overshoots near transitional regions (Formulations 6-9). The
LR+ANN weighted ensemble consistently aligned more closely with the experimental
trajectory than either individual model, particularly around the inflection observed
between Formulations 6—8 and in the higher PS range (Formulations 9-10). This hybrid
effectively mitigated LR’s linear underestimation and reduced ANN’s variance,
producing smooth, physically credible predictions free from artificial fluctuations.

For PDI (Y2), both k-NN and ANN reproduced the bounded 0.2—0.6 domain but
showed model-specific deviations at local maxima and minima (Formulations 2—4 and
8-10). The k-NN+ANN weighted ensemble delivered a balanced profile—sufficiently
smooth to avoid unrealistic peaks yet responsive enough to reflect gradual upward
movement. By combining the neighborhood sensitivity of k-NN with the nonlinear
adaptability of ANN, the ensemble better matched the empirical trend and avoided non-
physical artifacts, which is essential for reliable feasibility mapping during design-
space construction.

Zeta potential (ZP, Ys) shifted from approximately —30 mV toward —15 mV
across the test set. k-NN tended to underpredict the magnitude of this upward shift,
while ANN captured the curvature but exhibited heightened pointwise variability. The

k-NN+ANN ensemble moderated these contrasting tendencies, generating predictions
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that followed the observed smooth progression and closely matched the measured
values across the middle formulations (4-9). This hybrid preserved overall trend
accuracy while reducing localized errors, thereby ensuring stable enforcement of
charge-related constraints.

For drug loading (%DL, Y4), the response increased monotonically with notable
step changes (Formulations 3-4 and 8-10). LR modeled the general upward
progression but failed to reproduce the step at Formulation 4 and underestimated higher
loading values. In contrast, k-NN captured localized increases more effectively but
produced conservative mid-range estimates. The LR+k-NN ensemble combined these
complementary behaviors, improving accuracy at the step change and maintaining
strong performance in the high-loading region (Formulations 8-10). As a result, the
hybrid yielded robust, trend-consistent predictions suitable for supporting downstream

design-space evaluation.
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Figure 4.2 Actual and predicted values of (A) PS, (B) PDI, (C) ZP, and (D) %DL
obtained from single machine learning models and the hybrid machine learning
(HML) model using weighted averaging ensemble, based on the testing dataset.

Across all CQAs, the weighted hybrid models demonstrated superior
consistency with the experimental data compared with their individual component

models, effectively minimizing variance-induced deviations and maintaining
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physiologically plausible response patterns. The resulting prediction curves were well
suited for high-resolution mesh analysis and feasibility masking, thereby providing
dependable inputs for the subsequent GA-RL optimization aimed at identifying robust

operating regions within the multidimensional design space.

4.3 Quality control by design space

A multidimensional design space was developed by superimposing feasibility
masks derived from the HML-generated response surfaces for all CQAs, using the
predefined acceptance limits (PS: 80-400 nm; PDI: 0.10-0.40; ZP: —60 to —15 mV;
%DL: 60-100%). In the contour overlays (Figure 4.3), colored regions indicated
violation of at least one CQA, whereas the central white region represented the set of
operating conditions that simultaneously complied with all quality specifications.

Across CMA-CMA planes, feasible zones were primarily located at
intermediate levels of components. In the PAA-GT plane (Figure 4.3A), a wedge-
shaped white region emerged, bounded predominantly by PS constraints on one side
and %DL on the other, highlighting trade-offs between particle growth and loading
efficiency at elevated polymer concentrations. In the PAA-P407 plane (Figure 4.3B),
the viable region progressively narrowed as P407 increased, reflecting tighter
constraints imposed by PDI and ZP. In the GT-P407 plane (Figure 4.3E), a small island
at low-to-moderate concentrations indicated that excessive surfactant or gel strength
could compromise either size uniformity (PDI) or surface charge stability (ZP).

CMA-CPP interactions imposed additional restrictions. In both the PAA-Hz
(Figure 4.3C) and GT-Hz (Figure 4.3F) planes, feasible areas were confined to
moderate sonication frequencies, where high-frequency conditions were limited mainly
by PDI and ZP. In the PAA-Time (Figure 4.3D) and GT-Time (Figure 4.3G) planes,
extended sonication times improved %DL but were counterbalanced by PS constraints
at higher polymer contents, resulting in narrow ridges where entrapment efficiency
improved without excessive particle enlargement.

CPP-CPP overlays further demonstrated the need for coordinated process
control. The P407-Hz (Figure 4.3H) and P407-Time (Figure 4.3I) planes each
produced thin corridors of feasibility, underscoring the sensitivity of dispersion quality

to interactions between surfactant concentration and sonication conditions; PDI and ZP
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were the primary limiting factors. The Hz—Time plane (Figure 4.3])) revealed a compact
feasible region at moderate frequency and duration, consistent with energy input
sufficient for entrapment while avoiding charge destabilization and broad particle-size
distributions.

Together, these overlays delineated a continuous and practically accessible
white region that enabled definition of acceptable CMA/CPP ranges, recommended
sonication setpoints, and final specification limits for PS, PDI, ZP, and %DL. The
resulting control strategy conforms to ICH Q10 principles by explicitly linking material
attributes and process parameters to quality outcomes, reducing the likelihood of out-
of-specification results, and establishing a defensible operating window suitable for

routine manufacturing and GA-RL-driven optimization.
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Figure 4.3 Overlay of individual CQA contours based on the HML prediction model.
The relationships between CMAs or CPPs were shown as follows: A) PAA vs GT, B)

Ref. code: 25686722041230FLX



51

PAA vs P407, C) PAA vs sonication frequency, D) PAA vs sonication time, E) GT vs
P407, F) GT vs sonication frequency, G) GT vs sonication time, H) P407 vs
sonication frequency, I) P407 vs sonication time, and J) sonication frequency vs
sonication time. The colored areas (red = PS, green = PDI, yellow = ZP, blue = DL)
represented regions that were not suitable for achieving adequate product
performance. The white area denoted the design space where variations in input

parameters yielded suitable responses.

4.4 Genetic algorithm with reinforcement learning

The GA was initialized with a population size of 100,000, selected on the basis
of an ablation study comparing population sizes of 1,000, 10,000, 100,000, and
1,000,000. Among these configurations, 100,000 individuals consistently produced the
highest final fitness and the lowest retrospective prediction error under identical
stopping conditions. Fitness was defined and normalized as f=—PS — PDI - ZP + %DL,
yielding a theoretical maximum of —2 following normalization. Figure 4.4 illustrates
the progression of maximum fitness across 100 generations for ten RL-tuned GA runs.
Fitness increased rapidly within the first 1020 generations, reached approximately
99% of its terminal value by 30—40 generations, and stabilized by 40—60 generations.
Episodes 2—5 and 9—-10 achieved the highest terminal fitness (—1.025), while Episodes
67 converged more quickly to a slightly lower plateau (—1.088). These patterns
suggest that RL-driven adjustment of crossover and mutation rates enhanced
convergence speed and minimized variance-related oscillations compared with fixed-
parameter GAs, producing stable optimization outcomes appropriate for subsequent
design-space integration.

The optimization objective prioritized minimizing PS, PDI, and ZP while
maximizing %DL. The optimum solution identified by the RL-enhanced GA
corresponded to PAA = 0.30, GT =0.13, P407 =8.11, Hz=11.56, and Time = 12.50,
with an objective value of —1.0235. The predicted CQAs for this formulation—PS =
80.00 nm, PDI = 0.31, ZP = —36.94 mV, and %DL = 68.02% —all met the predefined
feasibility constraints, confirming compatibility with the established design space.
After RL convergence, the policy consistently favored crossover and mutation

probabilities of cxpb = 0.10 and mutpb = 0.18. This configuration, characterized by
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relatively low crossover and moderate mutation intensity, enabled effective exploitation
of high-performing regions while preserving sufficient exploration to prevent
premature convergence.

Fitness Over Generations with RL-Tuned GA
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Figure 4.4 Trend of the maximum fitness value over 100 generations following
reinforcement learning (RL)-based tuning of the genetic algorithm (GA) across 10
episodes. Each curve representsed the progression of fitness improvement per

generation, reflecting the optimization performance of the RL-tuned GA.

4.5 Implementing and validating a hybrid machine learning model

Based on the predictive accuracy at the optimal solution summarized in Table
4.3, strong agreement was observed between the model predictions and experimental
measurements for all CQAs. The low RMSE values indicated that prediction errors
were small relative to the magnitude of each response, reflecting high local accuracy in
the vicinity of the optimum. Furthermore, t-tests comparing predicted and measured
values produced p-values greater than 0.05 for all CQAs, demonstrating the absence of
statistically significant differences. Taken together, these findings confirm that the
HML framework generated predictions that were both physically credible and
statistically reliable at the GA-identified optimum, thereby validating its applicability
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for design-space interpretation and for establishing a control strategy consistent with

ICH Q10 principles.

Table 4.3 The performance of the RL-GA algorithm was evaluated based on predicted
and actual CQA measurements values (PS, PDI, ZP, and DL) for RES-PNPs, as

measured by RMSE and #-test.

Best PS PDI 7p %DL
solution

Predict Actual Predict Actual Predict Actual Predict Actual
PAA=0.30, 80.00 79.58 0.31 0.40 -36.94 -39.60 68.02 70.65
GT=0.13, +0.00 +8.53 +0.00 +0.05 +0.00 +1.25 +0.00 +1.52
P407=8.11,
Hz=11.56,
Time=12.50
RMSE 6.98 0.10 12.66 2.90
MAPE 0.53% 22.5% 6.72% 3.72%
p-value 0.94 0.09 0.07 0.10
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CHAPTER 5
CONCLUSION

The development of resveratrol-loaded polymeric nanoparticles (RES-PNPs)
presents long-standing formulation challenges arising from resveratrol’s poor aqueous
solubility, rapid degradation, and limited biological retention. These intrinsic
physicochemical constraints have historically complicated efforts to produce
nanoparticles with reproducible size, uniformity, surface charge, and drug-loading
efficiency. This dissertation introduced a novel, data-driven workflow that integrates
hybrid machine learning (HML) models, reinforcement learning—tuned genetic
algorithms (RL-GA), and contour-based design-space analysis to address these barriers.
The primary aim was to construct a scientifically defensible and regulatory-aligned
strategy for rational formulation design, optimization, and quality control consistent
with ICH Q10 principles. The results collectively demonstrate that artificial
intelligence—augmented formulation science can substantially enhance predictive
accuracy, optimization efficiency, and robustness in nanoparticle development.

A key advancement in this study was the creation of hybrid ML models for
predicting four critical quality attributes (CQAs)—particle size (PS), polydispersity
index (PDI), zeta potential (ZP), and drug loading (%DL)—based on experimentally
derived critical material attributes (CMAs) and critical process parameters (CPPs).
Initial benchmarking of five standalone supervised learning methods (LR, PR, SVR, k-
NN, ANN) revealed substantial differences in modeling behavior. Linear regression
captured global monotonicity but underfit nonlinear curvature, while k-NN and ANN
more accurately followed local fluctuations. SVR produced moderate performance with
occasional bias, and polynomial regression consistently demonstrated numerical
instability and overfitting. Based on these patterns, hybrid models were formed by
combining the highest-performing learners for each response. This ensemble approach
significantly improved predictive fidelity: RMSE values for PS, PDI, ZP, and %DL
were reduced by 15-40% relative to their best single-model counterparts. The hybrid
models not only minimized variance-driven oscillations but also preserved physically
plausible response trajectories—an essential requirement for downstream feasibility

masking and design-space construction.
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The validated HML models were then embedded into an RL-enhanced GA
framework to identify optimal CMA/CPP combinations that satisfied all quality
constraints simultaneously. Through an ablation study comparing GA population sizes
of 1,000 to 1,000,000, a population of 100,000 individuals was selected for its superior
convergence behavior and lowest prediction error under matched stopping criteria. The
GA was executed over 100 generations across 10 RL-tuned episodes, with fitness
defined as f = —PS — PDI — ZP + %DL. RL dynamically optimized the crossover and
mutation probabilities, converging on values of 0.10 and 0.18, respectively. These
parameters provided an advantageous balance between exploitation and exploration,
suppressing premature convergence and improving the stability of terminal fitness
values. The best episodes achieved a fitness of —1.025, reflecting near-optimal
alignment of all CQAs within their predefined feasibility thresholds.

The optimal formulation identified by the RL-GA—PAA = 0.30, GT = 0.13,
P407 =8.11, Hz=11.56, Time = 12.50—produced PS = 80.00 nm, PDI=0.31, ZP = —
36.94 mV, and %DL = 68.02%, each confirming compliance with the normalized CQA
limits (PS 80400 nm, PDI 0.10-0.40, ZP —60 to —15 mV, %DL 60-100%). The hybrid
model predictions were statistically validated through t-tests, which yielded p-values >
0.05 across all endpoints, indicating no significant difference between predicted and
measured values. This agreement confirms that the Al-driven predictions were not only
computationally reliable but also statistically indistinguishable from experimental
outcomes.

Following optimization, a multidimensional design space was constructed by
overlaying feasibility masks generated from hybrid-model response surfaces. These
contour overlays enabled the visualization of feasible operating regions in CMA-CMA,
CMA-CPP, and CPP—CPP planes. The resulting white intersection zones depicted the
combinations of input variables that simultaneously met all CQA requirements. The
design space revealed several formulation insights: (i) feasible regions were typically
centered at intermediate polymer and surfactant levels; (ii) excessive sonication
frequency or duration narrowed feasibility due to PDI and ZP instability; and (ii1) %DL
improvements at extended process times required careful balancing against particle

growth limits. These mechanistic insights demonstrate the value of Al-guided design
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spaces not only for optimization but also for scientific understanding and process
control.

Importantly, the defined design space served as the foundation for proposing an
ICH Q10-compliant control strategy. By linking CMAs and CPPs to measurable CQAs
through validated models, the study established a framework for raw material
acceptance criteria, in-process monitoring setpoints, and final product specifications.
This approach strengthens quality-by-design (QbD) decision-making and minimizes
the risk of out-of-specification outcomes during scale-up or routine manufacturing. The
incorporation of hybrid ML models ensures predictive robustness, while the RL-GA
optimization provides a systematic method for navigating multidimensional parameter
interactions that would be impractical to explore experimentally.

Overall, this work demonstrates the feasibility, accuracy, and regulatory
relevance of integrating hybrid ML, RL-GA optimization, and design-space analysis
for nanomedicine formulation. The successful prediction and experimental validation
of an optimal RES-PNP formulation highlight the transformative potential of Al-
assisted formulation science. Beyond its immediate application to resveratrol, this
framework provides a generalized and extensible model for the intelligent design of
polymeric nanoparticles, micellar systems, lipid-based carriers, and other complex
drug-delivery platforms. It further offers pharmaceutical scientists a structured
methodology to accelerate formulation development, reduce experimental burden, and
achieve more reliable quality outcomes.

In conclusion, this study marks a significant advancement in applying artificial
intelligence to pharmaceutical nanotechnology. The hybrid ML-GA-RL methodology
delivered high predictive accuracy, rapid optimization, and a robust design space
consistent with modern quality-system expectations. As nanomedicine continues to
expand in clinical and commercial importance, such Al-driven frameworks will be
essential to meeting the growing demand for precision, reproducibility, and efficiency
in formulation development. This research thus provides both a practical tool for
immediate application and a conceptual foundation for future innovations in intelligent

drug-delivery design.
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APPENDIX A
PYTHON CODE
1. Python Code Design space

import numpy as np

import matplotlib.pyplot as plt
import joblib

import itertools

from google.colab import drive

R P O 00 J o U b w N

# === Mount G e Drive orce remount to
dy mounted"

force remount=

# === Load pre-trained kNN models ===

pdi model path = '/ ent/drive/MyDrive/V
IoT/Colab No boks/IS/Mo e _knn PD
zp_model path
IoT/Colab Notebooks/
dl model path

WeightedKNNRegression:
def init (self, k=5):
self.k =
self.data =
self.targets =

fit(self, X, vy):
self.data = np.array (X)
self.targets = np.array(y)

predict (self, X):
X = np.array (X)
if X.ndim == 1:
X = X.reshape(l, -1)
preds []
for x in X:

dists = np.linalg.norm(self.data - x,
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idx = np.argsort (dists) [:self.k]
weights = 1 / (dists[idx] + 1le-9)
preds.append (np.dot (weights,
self.targets[idx]) / np.sum(weights))
return np.array (preds)

# === Load models ===

with open (pdi model path, 'rb') as f:
pdi knn model = joblib.load (f)

with open (zp model path, 'rb') as g:
zp_knn model = joblib.load(g)

with open (dl model path, 'rb') as h:
dl knn model = joblib.load (h)

# ——— Helper functions ---
def sigmoid(x) :
return 1 / (1 + np.exp(-x))

def denormalize(x norm, X min, X max):
return ((x norm + 1) / 2) * (x max - x min) +

# —— 1) PS (LR + ANN) -—--
def PS(PAA, GT, P407, Hz, Time) :
ps 1lr = 465.692 * PAA - 142.043 * GT - 2.537 *
Time + 121.723
pPs_ann norm = (
-1.396 * sigmoid(-1.508*PAA + 0.715*GT -
.480*P407 + 1.750*Hz - 0.110*Time - 0.658)
- 1.291 * sigmoid(-1.564*PAA + 1.086*GT +
.094*pP407 + 0.836*Hz + 0.817*Time - 1.311)
+ 2.324 * sigmoid (2.366*PAA - 1.425*GT +
.447*%P407 + 0.173*Hz - 4.133*Time - 1.943)
- 2.308 * sigmoid (0.822*PAA - 1.416*GT +
.872*P407 - 1.739*Hz - 2.628*Time + 0.184)
+ 1.158
)

ps_ann = denormalize (ps_ann norm, 42.78, 400)

return (ps lr + ps ann) / 2

# ——— 2) PDI (ANN + kNN) —---
def PDI(PAA, GT, P407, Hz, Time):
pdi ann norm = (
-0.878 * sigmoid(-0.089*PAA + 0.101*GT -
0.464*P407 - 0.584*Hz - 0.823*Time - 0.552)
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+ 1.646 * sigmoid(0.155*PAA + 0.324*GT +
0.801*P407 - 1.891*Hz + 0.497*Time - 1.342)

- 0.814 * sigmoid(-0.033*PAA - 0.015*GT -
0.139*%P407 - 0.086*Hz - 0.771*Time - 0.107)

+ 2.204 * sigmoid(1.475*PAA + 0.122*GT -
2.712*P407 + 0.998*Hz - 3.068*Time + 1.287)

- 0.895

)

pdi ann = denormalize (pdi ann norm, 0.206, 0.586)

flat = [np.array(arg) .ravel () for arg in (PAA, GT,
P407, Hz, Time) ]

knn in = np.vstack(flat).T

knn pred =
pdi _knn model.predict (knn in) .reshape (pdi ann.shape)

return (pdi ann + knn pred) / 2

# -—— 3) ZP (ANN + kNN) ---
def ZP(PAA, GT, P407, Hz, Time):
ZPp_ann _norm (
1.279 * sigmoid (-2.539*PAA - 0.152*GT
.937*P407 - 0.041*Hz - 0.443*Time - 1.346)
+ 2.197 * sigmoid (-0.376*PAA + 3.147*GT
.065*P407 + 0.147*Hz + 0.166*Time + 2.936)
- 0.348 * sigmoid (-0.344*PAA + 0.424*GT
.101*P407 - 0.021*Hz - 0.179*Time - 0.519)
93. - 0.467 * sigmoid(-0.414*PAA + 0.560*GT
.125*pP407 - 0.113*Hz - 0.095*Time - 0.458)
94. - 1.408
95. )
96. zp_ann = denormalize (zp ann norm, -42.5, -15.3)
97.
98. flat = [np.array(arg) .ravel () for arg in (PAA, GT,
P407, Hz, Time) ]
99 . knn in = np.vstack(flat).T
100. knn pred =
zp_knn model.predict (knn_in) .reshape (zp_ann.shape)
101.
102. return (zp ann + knn pred) / 2
103.
104. # -——— 4) DL (LR + kNN) ---
105. def DL (PAA, GT, P407, Hz, Time) :
106. dl 1r = 9.775*PAA - 0.826*P407 - 0.129*Hz -
0.523*Time + 73.046
107.
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108. flat = [np.array(arg) .ravel () for arg in (PAA,
P407, Hz, Time) ]
1009. knn in = np.vstack(flat).T
110. knn pred =
dl knn model.predict (knn in) .reshape(dl lr.shape)
111.
112. return (dl lr + knn pred) / 2
113.
114. # --- 5) Define ranges & midpoints ---
115. ranges = {
116. "PAA': (0.001, 5.0),
117. 'GT': (0.001, 10.0),
118. 'P407': (0.01, 20.0),
119. 'Hz' (10.0, 40.0),
120. "Time' (1.0, 100.0)
121. }
122. mid =
ranges.items () }
123.
124. # ——— 6) Feasibility thresholds
125. ps_min, pPs_max 80, 400

126. pdi min, pdi max 0.1, 0.4

127. Zp_min, Zp_max =60, =15

128. dl min, dl max 60, 100

129.

130. # -—— 7) Plot overlays for each 2D slice with labeled
borders ---

131. for varl, var2 in
itertools.combinations (ranges.keys (), 2):

132. vl = np.linspace (*ranges([varl], 300)

133. v2 = np.linspace (*ranges|[var2], 300)

134. Gl, G2 = np.meshgrid(vl, v2)

135.

136. # build grid args

137. args = {}

138. for name in ranges:

139. if name == varl:

140. args[name] = G1

141. elif name == var2:

142. args[name] = G2

143. else:

144. args[name] = np.full (Gl.shape, mid[name])

145.

146. # compute on grid

147. PS grid = PS(**args)

148. PDI grid = PDI (**args)
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ZP grid ZP (**args)
DL grid DL (**args)

# individual feasibility masks

m ps = (PS grid >= ps min) (PS grid
m pdi (PDI_grid >= pdi min) (PDI_grid
m zp (ZP_grid >= zp min) (ZP_grid

m dl (DL grid >= dl min) (DL _grid

# intersection of all four
mall =m ps &m pdi & m zp & m dl

# subtract intersection so it remains blank
m ps plot = m ps & ~m all
m pdi plot m pdi & ~m all
m zp plot mzp & ~m all
m dl plot m dl & ~m all

plt.figure(figsize=(6,4))
# overlay each region
plt.contourf (G1, G2,
m ps plot.astype (int), levels=[0.5,1.57,
colors=['red'], alpha=0.3)
170. plt.contourf (Gl1, G2, m pdi plot.astype (int),
levels=[0.5,1.5], colors=['green'], alpha=0.3)
171. plt.contourf (G1, G2,
m zp plot.astype (int), levels=[0.5,1.5], colors=['yellow'],
alpha=0.3)
172. plt.contourf (G1, G2,
m dl plot.astype (int), levels=[0.5,1.57,
colors=["'blue'], alpha=0.3)
173.
174. # draw and label borderline contours
175. cs ps = plt.contour(Gl, G2,
PS grid, Ilevels=[ps min,
ps _max], colors=['red'], linestyles=["--","-"])
176. cs pdi = plt.contour (Gl, G2, PDI grid,
levels=[pdi min, pdi max], colors=['green'], linestyles=["-
-,
cs zp = plt.contour(Gl, G2,
ZP grid, levels=[zp min, zp max], colors=['yellow'],
linestyles=["'--',"'-"])
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178. cs dl = plt.contour(Gl, G2,
DL grid, levels=[dl min,
dl max], colors=["'blue'], linestyles=["'--","'-"])

179.

180. fmt ps {ps min: , 80 ps max: 'PS =
400"}

181. fmt pdi {pdi min: 0.10', pdi max: 'PDI =
0.40"} ; ; -

182. fmt zp {zp min: 'ZP 60 zp_max: 'ZP
15"}

183. fmt dl {dl min: ) 60 dl max: 'DL
100"}

184.

185. plt.clabel (cs ps, fmt=fmt ps, inline=
fontsize=8)

186. plt.clabel (cs pdi, fmt=fmt pdi, inline=
fontsize=8)

187. plt.clabel (cs zp, fmt=fmt zp, inline=
fontsize=8)

188. plt.clabel (cs dl, fmt=fmt dl, inline=
fontsize=8)

189.

190. plt.xlabel (varl)

191. plt.ylabel (var2)

192. plt.title(f'{varl} vs {var2}:\n
3 i Blue=DL\n g
e ble Region i:

193. plt.tight

194. plt.show ()

195.
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2. Python Code GA-RL
# Install DEAP if not already available
'pip install deap

# Mount Google Drive
from google.colab import drive

drive.mount ('/content/drive')

import numpy as np
import math

import joblib

from deap import base, creator, tools, algorithms
import random

from collections import defaultdict

import matplotlib.pyplot as plt

# Load pre-trained kNN models
pdi model path =
Notebooks/IS/ModelCode/weighted knn PDImodel.pkl'
zp_model path =

Notebooks/IS/ModelCode/weighted knn ZPmodel.pkl'

dl model path =
Notebooks/IS/ModelCode/weighted knn DLmodel.pkl'
T o
class WeightedKNNRegression:
def init (self, k=5):

self.k = k

self.data =

self.targets =

Define Weighted kNN Regression class

fit(self, X, y):
self.data = X
self.targets =y

predict (self, X):

preds = []

for x in X:
dists =

np.argsort (dists) [:self.k]

1 / (dists[idx] + 1le-9)

np.dot (weights, self.targets[idx]) /

np.linalg.norm(self.data - x, axis=l)

idx =

weights =

pred =
np.sum(weights)

preds.append (pred)

return np.array (preds)

'/content/drive/MyDrive/Master AI IoT/Colab

'/content/drive/MyDrive/Master AI IoT/Colab

'/content/drive/MyDrive/Master AI IoT/Colab
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# === Load models from Google Drive ===

with open (pdi model path, 'rb') as f:
pdi knn model = joblib.load (f)

with open (zp model path, 'rb') as g:
zp_knn model = joblib.load(g)

with open (dl model path, 'rb') as h:
dl knn model = joblib.load (h)

def sigmoid(x) :
return 1 / (1 + np.exp(-x))

# Denormalization helper
# X norm assumed in [-1,1]

def denormalize (X norm, xX min, X max):

return ((x norm + 1) / 2) * (x max - x min) + X min

def PS(PAA, GT, P407, Hz, Time):
ps_1lr = 465.692*PAA - 142.043*GT - 2.537*Time + 121.723
# raw ANN output in [-1,1]
pPs_ann norm = (
-1.396 * sigmoid(-1.508*PAA + 0.715*GT - 0.480*P407 +
.750*Hz - 0.110*Time - 0.658) -
1.291 * sigmoid(-1.564*PAA + 1.086*GT + 0.094*P407 +
.836*Hz + 0.817*Time - 1.311) +
2.324 * sigmoid(2.366*PAA - 1.425*GT + 2.447*P407 +
.173*Hz - 4.133*Time - 1.943) -
2.308 * sigmoid (0.822*PAA - 1.416*GT + 1.872*P407 -
.739*Hz - 2.628*Time + 0.184) +
1.158

# bring it back to the original PS scale (min=42.78, max=400)
ps_ann = denormalize (ps _ann norm, 42.78, 400)

return (ps lr + ps ann) / 2

def PDI (PAA, GT, P407, Hz, Time) :
# raw ANN output in [-1,1]
pdi ann norm = (
-0.878 * sigmoid(-0.089*PAA + 0.101*GT - 0.464*P407 -
0.584*Hz - 0.823*Time - 0.552) +
.646 * sigmoid(0.155*PAA + 0.324*GT + 0.801*P407 -
1.891*Hz 0.497*Time - 1.342) -
.814 * sigmoid(-0.033*PAA - 0.015*GT - 0.139*P407 -
0.086*Hz 0.771*Time - 0.107) +
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2.204 * sigmoid (1.475*PAA + 0.122*GT - 2.712*P407 +
0.998*Hz - 3.068*Time + 1.287) -
0.895

# denormalize (min=0.206, max=0.586)
pdi ann = denormalize (pdi ann norm, 0.206, 0.586)

knn pred = pdi knn model.predict ([[PAA, GT, P407, Hz,
Time]]) [0]
return (pdi ann + knn pred) / 2

def ZP(PAA, GT, P407, Hz, Time) :
# raw ANN output in [-1,1]
zZzp_ann norm = (
1.279 * sigmoid (-2.539*PAA .152*GT .937*P407
.041*Hz - 0.443*Time - 1.346) +
2.197 * sigmoid(-0.376*PAA .147*GT .065*P407
.147*Hz + 0.166*Time + 2.936) -
0.348 * sigmoid (-0.344*PAA LA24*GT .101*P40Q7
.021*Hz - 0.179*Time - 0.519) -
0.467 * sigmoid (-0.414*PAA .560*GT .125*P407
.113*Hz - 0.095*Time - 0.458) -
1.408

# denormalize (min = -42.5, max = —-15.3)
zp_ann = denormalize (zp ann norm, -42.5, -15.3)

knn pred = zp knn model.predict ([ [PAA, GT, P407, Hz,
Time]]) [0]

return (zp_ann + knn pred) / 2

def DL (PAA, GT, P407, Hz, Time) :

dl 1r = 9.775*PAA - 0.826*P407 - 0.129*Hz - 0.523*Time +
73.046

knn pred = dl _knn model.predict ([ [PAA, GT, P407, Hz,
Time]]) [0]

return (dl 1lr + knn pred) / 2

# Normalization helper
def normalize(value, min val, max val):

return (value - min val) / (max val - min val)

# Objective function with normalization
def objective (individual) :

Ref. code: 25686722041230FLX




PAA, GT, P407, Hz, Time = individual
= PS(PAA, GT, P407, Hz, Time)
pdi = PDI (PAA, GT, P407, Hz, Time)
ZP (PAA, GT, P407, Hz, Time)
DL (PAA, GT, P407, Hz, Time)

#### Add Constraints Input vaules #####4#

# Constraints
if not (80 <= ps <= 400 and 0.1 <= pdi <= 0.4 and -60 < zp <
-15 and 60 <= dl <= 100):
return -leb6,
if not (0.001 <= PAA <= 1 and 0.001 <= GT <= 1 and 0.01 <
P407 < 10 and 10 <= Hz <= 40 and 1 < Time < 30):

return -le6,

# Normalize

ps _norm = normalize (ps, 80, 400)
pdi norm = normalize (pdi, 0.1, 0.4)
Zp_norm normalize (zp, —-60, -15)
dl norm normalize (dl, 60, 100)

# Minimize ps, pdi, zp magnitude; maximize dl
obj = - ps norm - pdi norm - zp norm + dl norm

return obj,

# DEAP setup
creator.create ("FitnessMax", base.Fitness, weights=(1.0,))
creator.create ("Individual"™, list, fitness=creator.FitnessMax)

toolbox = base.Toolbox ()

toolbox.register ("attr PAA", random.uniform, 0.1, 0.5)
toolbox.register ("attr GT", random.uniform, 0.1, 0.5)
toolbox.register ("attr P407", random.uniform, 1, 5)

toolbox.register ("attr Hz", random.uniform, 10, 30)

(
(
(
(

toolbox.register ("attr Time", random.uniform, 5, 20)

toolbox.register ("individual", tools.initCycle,
creator.Individual,

(toolbox.attr PAA, toolbox.attr GT,
toolbox.attr P407,

toolbox.attr Hz, toolbox.attr Time), n=1)
toolbox.register ("population", tools.initRepeat, list,
toolbox.individual)

toolbox.register ("evaluate", objective)
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toolbox.register ("mate", tools.cxBlend, alpha=0.5)
toolbox.register ("mutate", tools.mutGaussian, mu=0, sigma=0.1,
indpb=0.2)

toolbox.register ("select", tools.selTournament, tournsize=3)

# O-learning setup

cxpb values = np.round(np.linspace (0.1, 0.5, 100), 2)
mutpb values = np.round(np.linspace(0.1, 0.5, 100), 2)
Q = defaultdict (float)

alpha = 0.1

gamma = 0.9

epsilon = 0.2

fitness history = []

def select action():
if random.random() < epsilon:
return random.choice ([ (cx, mu) for cx in cxpb values for
mu in mutpb values])
else:
return max ([ (cx, mu) for cx in cxpb values for mu in

mutpb values], key=lambda x: Q[x])

def run ga with params (cxpb, mutpb, n gen=100) :

population = toolbox.population (n=100000)

hof = tools.HallOfFame (1)

stats = tools.Statistics (lambda ind: ind.fitness.values)
stats.register ("avg", np.mean)

stats.register ("max", np.max)

stats.register ("min", np.min)

population, logbook = algorithms.eaSimple (population,
toolbox,
cxpb=cxpb, mutpb=mutpb,
ngen=n_gen,
stats=stats,
halloffame=hof,

verbose=

best = hof[0]
fitness = objective (best) [0]
fitness history.append([gen['max'] for gen in logbook])

print ("\nBest Solution:")

print (f"PAA={best[0]:.4f}, GT={best[1l]:.4f},
P407={best[2]:.4f}, Hz={best[3]:.4f}, Time={best[4]

print (f"Objective Value: {fitness:.4f}")
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= PS(*best)
pdi PDI (*best)
zZp ZP (*best)
dl = DL (*best)

print ("\nObjective Function Variables:")
print (f"PS: {ps:.4f}")

print (f"PDI: {pdi:.4f}")

print (f"zZP: {zp:.4f}")

print (£f"DL: {dl:.4f}")

return fitness, best

train rl on ga(episodes=10) :
for episode in range (episodes) :
action = select action()
cxpb, mutpb = action
reward, = run ga with params (cxpb, mutpb)
Qlaction] += alpha * (reward - Q[action])

print (f"Episode {episode + 1}, cxpb: {cxpb}, mutpb:

{mutpb}, reward: {reward:.4f}")

best params = max(Q.items (), key=lambda x: x[1]) [O]

print (f"\nBest hyperparameters after RL: cxpb =
{best params[0]}, mutpb = {best params[1]}")

return best params

# Run Q-learning GA
best cxpb, best mutpb = train rl on ga(episodes=10)
print ("\n=== Final Run with Best Hyperparameters ===")

# run ga with params (best cxpb, best mutpb, n gen=100)

# Plot
.figure (figsize=(10, 6))
i, run in enumerate (fitness history) :
plt.plot (run, label=f"Episode {i+1}")
.xlabel ("Generation")
.ylabel ("Max Fitness")
.title ("Fitness Over Generations with RL-Tuned GA")
.legend ()
.grid(
.show ()
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