DELIVERY OPTIMIZATION VIA HETEROGENEOUS
FLEET

BY

PEESIT TANGTUNG

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF MASTER OF ENGINEERING (LOGISTICS AND SUPPLY
CHAIN SYSTEMS ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY
THAMMASAT UNIVERSITY
ACADEMIC YEAR 2025

Ref. code: 25686722041131TFW

THAMMASAT UNIVERSITY
SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

INDEPENDENT STUDY

BY
PEESIT TANGTUNG
ENTITLED
DELIVERY OPTIMIZATION VIA HETEROGENEOUS FLEET

was approved as partial fulfillment of the requirements for
the degree of Master of Engineering
(Logistics and Supply Chain Systems Engineering)

on November 23, 2025

Member and Advisor 9

(Associate Professor Sun Olapiriyakul, Ph.D.)
Member i —_j—;g(—L)

(Associate Professor Jirachai Buddhakulsor;'lsiri, Ph.D.)

Director M -

(Associate Professor Kriengsak Panuwatwanich, Ph.D.)

Ref. code: 25686722041131TFW

(D

Independent Study Title DELIVERY OPTIMIZATION VIA
HETEROGENEOUS FLEET

Author Peesit Tangtung

Degree Master of Engineering (Logistics and Supply

Chain Systems Engineering)
Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Advisor Associate Professor Sun Olapiriyakul, Ph.D.
Academic Years 2025
ABSTRACT

This research optimizes tire distribution operations through a heterogeneous
fleet vehicle routing problem with time window (HFVRPTW) solved with Google OR-
Tools. The model minimizes total transportation costs, including fixed and distance-
based variable costs, while meeting customer demands from a central depot. A
heterogeneous fleet with varying capacities and cost structures is considered, enabling
efficient vehicle allocation and allowing multiple trips per vehicle. By addressing key
constraints such as vehicle capacity, demand, and route distances, the model determines
optimal routes and vehicle assignments. Results show that a heterogeneous fleet
provides greater flexibility and significant cost savings compared to a uniform fleet,
offering practical insights for logistics optimization and efficiency improvement in

distribution networks.
Keywords: Vehicle routing problem (vrp), Fleet routing problem, Distribution routing

problem, Delivery routing problem, Route optimization problem, Distribution

system optimization, Time window, Heterogeneous fleet

Ref. code: 25686722041131TFW

)

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest and most sincere
gratitude to my advisor, Associate Professor Sun Olapiriyakul, Ph.D., for his invaluable
guidance, and dedicated support throughout the entire process of this thesis. His
expertise, insightful feedback, and patience have not only shaped the direction of my
research but have also greatly enriched my academic journey. Without his kind
mentorship, this thesis would not have been possible. I am truly indebted for the
countless hours he has devoted to guiding me, the constructive criticisms that
challenged me to think critically, and the inspiration he has given me to strive for
academic excellence.

[am also profoundly grateful to the faculty members and staff of
the Sirindhorn International Institute of Technology (SIIT), Thammasat University, for
providing me with a world-class academic environment in which to learn, grow, and
pursue my Master’s degree in Logistics and Supply Chain Systems Engineering
(LSCSE). Their knowledge, professionalism, and support have been essential in
expanding my perspective and deepening my understanding in this field.

I would like to extend heartfelt appreciation to my friends and classmates,
who have shared this academic journey with me. The discussions, collaborations, and
encouragement we exchanged not only helped me academically but also made this
journey enjoyable and fulfilling. Their friendship and support have created cherished
memories that [will carry with me long after this program.

Most importantly, I am profoundly grateful to my beloved family for their
unconditional love, understanding, and endless encouragement. Their faith in me has
been a constant source of strength and motivation. To my parents, who have always
believed in my potential and supported me in every possible way, this achievement is
as much theirs as it is mine.

Finally, to everyone who has contributed, directly or indirectly, to the
completion of this thesis, I extend my sincere thanks and appreciation. This work stands
as a testament not only to my efforts but also to the collective support, inspiration, and
kindness I have been fortunate to receive along the way.

Peesit Tangtung

Ref. code: 25686722041131TFW

TABLE OF CONTENTS
ABSTRACT
ACKNOWLEDGEMENTS
LIST OF TABLES
LIST OF FIGURES

LIST OF SYMBOLS/ABBREVIATIONS

CHAPTER 1 INTRODUCTION
1.1 Background and Problem context
1.1.1 Challenges in Transportation Planning
1.1.2 The Role of a Heterogeneous Fleet
1.2 Objectives and Methodological Framework
1.2.1Application of Google OR-Tools

CHAPTER 2 REVIEW OF LITERATURE

3)

Page
)

(2)

(6)

(7)

(8)

W NN N = =

2.1 Importance of Vehicle Routing Optimization in Heterogeneous Fleet

Distribution Systems

4

2.2 Leveraging Heterogeneous Fleet Models for Realistic Routing Scenarios 5

2.3 Addressing Multi-Vehicle and Multi-Depot Routing Challenges
2.4 Integrating OR-Tools and Al for Scalable Routing Solutions
2.5 Integrating Sensitivity Analysis for Robust Vehicle Routing and

Distribution Optimization

2.6 Research Gap and Contributions of the Study

6
7

Ref. code: 25686722041131TFW

4

CHAPTER 3 METHODOLOGY 11
3.1 Research Design 11
3.1.1 Scenario 1: Baseline Performance Quantification 11
3.1.2 Scenario 2: Unconstrained Theoretical Optimum 12
3.1.3 Scenario 3: Prescriptive Optimization & Robustness Testing 12
3.2 Mathematical Model Formulation 13
3.2.1 Sets and Indices 13
3.2.2 Parameters 14
3.2.3 Decision Variables 14
3.2.4 Objective Function 15
3.2.5 Constraints 16
3.3 Model Assumptions 18
3.4 Tools and Technologies 19
3.4.1 Python Programming Language 20
3.4.2 Google OR-Tools 20
3.4.3 Routing Model Components 21
3.4.4 Metaheuristic Optimization 22
3.4.5 Visualization Tools 23
3.5 Data Preparation 24
3.6 Implementation Process 28

CHAPTER 4 RESULT 29
4.1 Scenario 1 Analysis: The Legacy Policy Structure 29
4.1.1 Interpretation of Findings Scenario 1 30

4.2 Scenario 2: Establishing the True Cost Baseline (The Constraint Trap) 30

4.2.1 Interpretation of Findings: The Constraint Trap 31
4.3 Scenario 3: Optimal Policy Discovery & Sensitivity Analysis 31
4.3.1 The Marginal Cost of Perfection (Policy Extremes) 31
4.3.2 The Global Optimum ("Sweet Spot" Policy) 32

4.3.2.1 Analysis and Conclusion 33

Ref. code: 25686722041131TFW

)

CHAPTER 5 DISCUSSION AND CONCLUSION 34
5.1 Discussion of Key Findings 34
5.1.1 The Global Optimum and the Failure of Pure Cost Minimization 34
5.1.2 The Economic Impact of Legacy Constraint 35
5.1.3 The De-coupling of Service Quality from Resource Scarcity 35
5.2 Conclusion 36
5.3 Strategic Recommendations 36
5.4 Limitations and Future Research 37

REFERENCES 38

APPENDICES
APPENDIX A 41
APPENDIX B 53
APPENDIX C 56

BIOGRAPHY 57

Ref. code: 25686722041131TFW

(6)

LIST OF TABLES
Tables Page
2.1 Literature on VRP Models and Solution Methods 8
3.1 Table comparing different metaheuristics 22
3.2 Node to Customer Mapping for Routing Model 25
3.3 Customer Distance Matrix 26
3.4 Customer Nodes and Weekly Demand 27
3.5 Vehicle Specifications by Type 27
4.1 Fleet-Level Summary of Routing Metrics 29
4.2 Comparative Routing Performance by Vehicle Type 30
4.3 Marginal Cost Analysis of Service Level Extremes 31
4.4 Sensitivity Analysis and Global Optimum Discovery 32

C.1 Solver configuration and platform details 56

Ref. code: 25686722041131TFW

(7

LIST OF FIGURES

Figures Page
3.1 Visualization Map from Google my map 24

Ref. code: 25686722041131TFW

®)

LIST OF SYMBOLS/ABBREVIATIONS

Symbols/Abbreviations Terms

ALNS Adaptive Large Neighborhood
Search

CP Constraint Programming

CVRP Capacitated Vehicle Routing
Problem

GLS Guided Local Search

HFVRP Heterogeneous Fleet Vehicle
Routing Problem

HFVRPTW Heterogeneous Fleet Vehicle
Routing Problem with Time
Windows

KPIs Key Performance Indicators

LNS Large Neighborhood Search

LSCSE Logistics and Supply Chain Systems
Engineering

MDVRP Multi-Depot Vehicle Routing
Problem

MILP Mixed-Integer Linear Programming

MVRP Multi-Vehicle Routing Problem

oT Overtime

SA Simulated Annealing

TS Tabu Search

VNS Variable Neighborhood Search

VRP Vehicle Routing Problem

Ref. code: 25686722041131TFW

CHAPTER 1
INTRODUCTION

In the evolving domain of logistics and supply chain management,
transportation planning has emerged as a strategic function that directly influences cost
efficiency, service reliability, and operational agility. As distribution networks grow
more complex and customer expectations for on-time delivery intensify, organizations
must adopt intelligent planning tools to manage operations with precision. This study
explores a real-world transportation challenge at "DC NP TIRE," a Bangkok-based tire
distributor, where the selection of appropriate vehicle types from a heterogeneous fleet

plays a pivotal role in optimizing performance.

This chapter begins by establishing the background and context of the specific
problem facing DC NP TIRE, followed by a discussion of the multifaceted challenges
inherent in its transportation planning. It then introduces the company's heterogeneous
fleet as a strategic lever for cost control. Finally, the chapter outlines the objectives and
methodological framework of the study, highlighting the application of Google OR-
Tools to solve a complex Vehicle Routing Problem (VRP) and uncover a non-intuitive

"Sweet Spot" (Win-Win) solution.

1.1 Background and Problem Context

Transportation planning is a cornerstone of the operation at DC NP TIRE. It
determines not only how goods are moved to its 15 key customers but also how
effectively resources are utilized across this network. In this tire distribution context,
where delivery demands vary and service requirements differ by location, relying on
manual planning or a "one-size-fits-all" strategy leads to significant inefficiencies such
as underutilized vehicle capacity, excessive fuel consumption, and missed delivery
windows. These inefficiencies are amplified by the need to manage driver overtime and

avoid costly penalties.

Ref. code: 25686722041131TFW

1.1.1 Challenges in Transportation Planning

The complexity of delivering goods to 15 destinations with varying demand
levels, all while adhering to specific ideal time windows, presents a formidable
optimization problem. Without a strategic framework, the system suffers from
mismatched vehicle assignments, redundant trips, and elevated operational costs. The
core challenge lies in balancing two conflicting objectives:

e Cost Minimization: Reducing fixed costs (number of vehicles used),
variable costs (fuel and distance), and overtime pay.

e Service Quality: Maximizing customer satisfaction by ensuring on-time
delivery, especially to VIP customers where late arrivals incur real

financial penalties.

1.1.2 The Role of a Heterogeneous Fleet

Deploying a heterogeneous fleet—comprising 5 "Cage Trucks" (70 capacity)
and 8 "Small Lorries" (120 capacity), each with different fixed and variable operating
costs—offers a pragmatic solution to these challenges. By aligning the correct vehicle
selection with specific route characteristics and customer demands, the organization
can achieve higher resource utilization and lower total costs. This study leverages this

fleet diversity as a key tactical advantage in the optimization model.

1.2 Objectives and Methodological Framework

The primary objective of this study is to develop a delivery optimization model
tailored to the specific context of DC NP TIRE. The model evaluates customer demand

and determines the optimal vehicle type, sequence, and route for each delivery.

A key objective is to challenge the conventional wisdom that higher service
must result in higher costs. This study seeks to prove that a "globally optimal" solution
exists that is both lower in cost and higher in service than the baseline "cost-focused"
strategy. The model emphasizes integrating real-world constraints, including vehicle

capacities, ideal time windows, and the asymmetric cost of service failures.

Ref. code: 25686722041131TFW

1.2.1 Application of Google OR-Tools

To address the complexity of this Heterogeneous Fleet Vehicle Routing
Problem with Time Windows (HFVRPTW), the study employs Google OR-Tools. This
library is well-suited for this application, supporting multi-vehicle routing, capacity

constraints, and complex cost structures.

The model is used to conduct a comparative scenario analysis (Baseline vs. No-
OT models) and a decisive sensitivity analysis on service-level penalties. The outputs
optimal routes, total costs, and satisfaction scores serve as actionable insights to prove
the existence of the "Sweet Spot" and provide a clear, data-driven recommendation for

management.

Ref. code: 25686722041131TFW

CHAPTER 2
REVIEW OF LITERATURE

2.1 Importance of Vehicle Routing Optimization in Heterogeneous Fleet
Distribution Systems

In today’s increasingly complex and competitive logistics landscape,
optimizing vehicle routing is essential for improving delivery efficiency, reducing
operational costs, and enhancing customer satisfaction. The Vehicle Routing Problem
(VRP) and its variants such as the Capacitated VRP (CVRP), Multi-Vehicle Routing
Problem (MVRP), and Fleet Routing Problem play a central role in distribution system
optimization, especially when dealing with heterogeneous fleets. These fleets,
composed of vehicles with varying capacities, costs, and operational constraints,
introduce additional layers of complexity that demand advanced algorithmic solutions.

Traditional VRP models often assume homogeneous fleets and static demand,
which limits their applicability in real-world scenarios. To address this, modern
approaches incorporate fleet heterogeneity, time windows, and multiple depots. Liu,
Jabali, and Dekker (2023) proposed a green VRP model that integrates multi-depot,
multi-tour, and split deliveries for heterogeneous fleets, demonstrating significant
improvements in both cost and environmental performance. Their model reflects the
growing need for flexible routing systems that accommodate diverse vehicle
characteristics and sustainability goals. Nalepa and Blocho (2021) conducted a
comprehensive review of VRP models, highlighting the evolution of routing strategies
in response to real-world constraints such as traffic congestion, delivery time windows,
and fleet diversity. Their classification framework provides a foundation for selecting
appropriate algorithms based on operational context, reinforcing the importance of
tailored routing solutions. Eksioglu, Vural, and Reisman (2020) emphasized the role
of advanced heuristics and metaheuristics in solving large-scale VRPs, particularly
those involving heterogeneous fleets. Their study demonstrated that hybrid approaches
combining genetic algorithms, tabu search, and local search can effectively balance
route efficiency with computational feasibility. Bouanane, Amrani and Benadada

(2022) further explored the impact of fleet diversity on routing performance, showing

Ref. code: 25686722041131TFW

that heterogeneous fleet models outperform homogeneous ones in terms of cost savings
and service reliability. Their findings underscore the practical benefits of incorporating
vehicle-specific parameters into routing algorithms.

As logistics systems evolve, the integration of intelligent routing algorithms
with scalable optimization tools offers promising avenues for enhancing distribution
performance. By capturing the nuances of vehicle diversity and operational constraints,
heterogeneous fleet models enable more realistic and efficient routing strategies, paving

the way for smarter transport networks.

2.2 Leveraging Heterogeneous Fleet Models for Realistic Routing Scenarios

In real-world logistics operations, fleets are rarely uniform. Vehicles differ in
capacity, cost, fuel efficiency, and operational constraints, making heterogeneous fleet
modeling a critical advancement in vehicle routing research. The Heterogeneous Fleet
Vehicle Routing Problem (HFVRP) extends classical VRP formulations by
incorporating these variations, enabling more accurate and cost-effective route
planning. Traditional VRP models often assume identical vehicles, which
oversimplifies the complexities of modern distribution systems. Subramanian and
Ochi (2012). addressed this gap by proposing a hybrid algorithm for HFVRP with time
windows, combining genetic algorithms and local search to improve solution quality.
Their model demonstrated superior performance in minimizing total travel distance
while respecting vehicle-specific constraints, highlighting the importance of hybrid
heuristics in heterogeneous environments. Afshar-Nadjafi (2016) further explored
HFVRP by integrating multiple depots and delivery time windows. Their optimization
framework used adaptive large neighborhood search (ALNS) to dynamically adjust
routes based on vehicle characteristics and depot availability. This approach
significantly reduced operational costs and improved delivery reliability, especially in
large-scale urban networks. Avei and Topaloglu (2016) introduced a hybrid
metaheuristic for HFVRP with split deliveries, allowing partial fulfillment of customer
demand across multiple vehicles. This flexibility is particularly useful in scenarios with
fluctuating demand and limited vehicle capacity. Their results showed that split
delivery strategies, when combined with fleet diversity, can enhance service levels and

reduce the number of required trips. Kaewman and Akararungruangkul (2018)

Ref. code: 25686722041131TFW

contributed to the practical implementation of HFVRP by developing heuristic
algorithms tailored to fleets with excessive demand and longest time constraints. Their
framework emphasized the importance of balancing delivery efficiency with service
time limitations, offering valuable insights for logistics providers operating under tight
schedules and varied vehicle capabilities.

As logistics systems become more dynamic and customer expectations rise,
heterogeneous fleet models provide the necessary flexibility to meet diverse operational
demands. By capturing the nuances of vehicle diversity, these models enable more
realistic and efficient routing solutions, paving the way for smarter distribution

strategies.

2.3 Addressing Multi-Vehicle and Multi-Depot Routing Challenges

As distribution networks scale and diversify, the complexity of coordinating
multiple vehicles across multiple depots becomes a central challenge in logistics
optimization. The Multi-Vehicle Routing Problem (MVRP) and Multi-Depot Vehicle
Routing Problem (MDVRP) extend classical VRP models by introducing additional
layers of operational coordination, such as depot assignment, vehicle scheduling, and
route synchronization. Despaux and Basterrech (2016) tackled the MDVRP with time
windows and heterogeneous fleets, proposing a hybrid algorithm that integrates tabu
search and adaptive memory programming. Their model demonstrated improved
delivery efficiency and reduced total cost, especially in scenarios with tight time
constraints and diverse vehicle capabilities. This highlights the importance of depot-
aware routing strategies in large-scale logistics systems. Stodola (2018) explored
metaheuristics for MDVRP, emphasizing the role of variable neighborhood search
(VNS) and genetic algorithms in solving complex routing problems. Their study
showed that combining multiple heuristics can significantly enhance solution quality
and computational speed, particularly in high-dimensional routing environments. wang,
Zhe , Sun and Wang (2022) introduced a coordinated routing framework for multi-
vehicle systems with depot constraints. Their model incorporated depot-specific service
levels and vehicle availability, enabling dynamic reassignment of routes based on real-
time demand fluctuations. This approach proved effective in minimizing delivery

delays and balancing workload across depots. Bektas and Laporte (2021) provided a

Ref. code: 25686722041131TFW

comprehensive review of MVRP models and solution methods, categorizing them
based on fleet composition, depot structure, and routing objectives. Their work serves
as a foundational reference for researchers and practitioners seeking to design scalable
and flexible routing systems. By addressing the intricacies of multi-vehicle and multi-
depot coordination, these models enable logistics providers to optimize resource

allocation, reduce operational bottlenecks, and improve overall service reliability.

2.4 Integrating OR-Tools and Al for Scalable Routing Solutions

The rise of open-source optimization libraries and artificial intelligence has
transformed the way vehicle routing problems are approached. Google’s OR-Tools, in
particular, has become a go-to platform for solving complex routing scenarios, offering
flexibility, scalability, and integration with real-time mapping APIs. Cuvelier,Didier,
Furnon, Gay, Mohajeri and Perron conducted a comparative study between OR-
Tools and SCIP, demonstrating that OR-Tools not only achieved faster execution times
but also required fewer lines of code to solve CVRP with time windows. This makes it
highly suitable for real-time delivery routing applications, especially in dynamic urban
environments developed a suite of customized VRP models using OR-Tools and
Python, incorporating constraints such as load/unload demands, depot scheduling, and
time windows. The integration with Google’s Distance Matrix API allowed for accurate
travel time estimation, showcasing the practical utility of OR-Tools in transport
network optimization. Tahir (2024) explored Al-enhanced routing using deep learning
and OR-Tools, proposing a hybrid framework that combines predictive modeling with
constraint-based optimization. Their approach improved route efficiency and reduced
computational overhead, particularly in scenarios with fluctuating demand and traffic
conditions.

Google Developers (n.d.) provide extensive documentation on OR-Tools,
including methods like AddDimensionWithVehicleCapacity, which allow for vehicle-
specific capacity modeling. This flexibility is crucial for heterogeneous fleet routing
and real-time logistics planning.

By integrating Al and scalable optimization tools, logistics systems can achieve
higher levels of responsiveness, adaptability, and cost-efficiency, paving the way for

smarter and more sustainable delivery networks.

Ref. code: 25686722041131TFW

2.5 Integrating Sensitivity Analysis for Robust Vehicle Routing and Distribution
Optimization

In complex logistics systems, small changes in input parameters such as
demand, travel time, fuel cost, or vehicle capacity can significantly impact routing
decisions and overall performance. Sensitivity analysis plays a crucial role in evaluating
the robustness of vehicle routing models by identifying which variables most influence
outcomes and how resilient solutions are to uncertainty. Sabet and Farooq
(2022)conducted a sensitivity analysis on heterogeneous fleet routing models,
examining how variations in fuel cost and vehicle capacity affect total delivery cost and
route feasibility. Their findings revealed that even minor fluctuations in fuel prices
could shift optimal vehicle assignments, underscoring the need for adaptable routing
strategies in volatile environments Yu, Zhang, Yu, Sun, & Huang (2020) applied
sensitivity analysis to a multi-depot vehicle routing problem with time windows,
focusing on demand variability and service time constraints. Their study demonstrated
that route efficiency and customer satisfaction were highly sensitive to changes in
delivery time windows, suggesting that flexible scheduling mechanisms are essential

for maintaining performance under uncertainty.

Table 2.1 Literature on VRP Models and Solution Methods

Depot Time

Objective Fleet Constraints Struct Windo Solution
Authors Routing Model Function Type Considered ure w Method
Minimize Capacity,
Liu, Jabali & Dekker Green VRP with cost & Heterogen emissions, multi- Multi- Ye Heuristic +
(2023) split deliveries emissions eous tour depot s MILP
Traffic, fleet Mi
Nalepa & Blocho VRP classification Model diversity, delivery ~ Variou xe Literature
(2021) review taxonomy Mixed constraints] d synthesis
Mi
Eksioglu, Vural & VRP solution Minimize Capacity, routing ~ Variou xe Heuristic &
Reisman (2020) methods cost Mixed complexity] d metaheuristic
Cost & Mi
Bouanane, K., Amrani VRP model service Fleet diversity, Variou xe Comparative
& Benadada (2022) review reliability Mixed demand patterns] d analysis

Ref. code: 25686722041131TFW

Kaewman &

Akararungruangkul HFVRP with time Minimize Heterogen Excess demand, Single Ye Heuristic
(2018) constraints cost eous longest time depot s algorithm
Subramanian, Penna, HFVRP with time Minimize Heterogen Capacity, time Single Ye Hybrid Genetic
Uchoa & Ochi (2012) windows distance eous windows depot s Algorithm
Depot
HFVRP with Minimize Heterogen assignment, time Multi- Ye Adaptive Large
Afshar-Nadjafi (2016). multiple depots total cost eous windows depot s Neighborhood
Avci & Topaloglu, HFVRP with split Minimize Heterogen Split delivery, Single Hybrid
(2016) deliveries cost eous route length depot No Metaheuristic
MDVRP with Tabu Search +
Despaux & Basterrech heterogeneous Minimize Heterogen Capacity, time Multi- Ye Adaptive
(2016) fleet total cost eous windows depot s Memory
Depot
coordination, Variable
Minimize Homogen route Multi- Ye Neighborhood
Stodola (2022) MDVRP route cost eous synchronization depot S Search
Coordinated Minimize Depot constraints,
Wang, Zhe , Sun & multi-vehicle delay & vehicle Multi- Ye Dynamic
Wang (2022) routing cost Mixed availability depot s Reassignment
Cuvelier, Didier,
Furnon, Gay, Mohajeri CVRP with time Minimize Capacity, time Single Ye OR-Tools vs
& Perron windows cost Mixed windows depot S SCIP
Minimize Traffic, demand Single Ye Deep Learning
Tahir (2024) Al-enhanced VRP route cost Mixed prediction depot S + OR-Tools
Minimize
Euchi & Yassine fuel & Fuel usage, route Single Hybrid
(2023) Sustainable VRP distance Mixed length depot No metaheuristics
Minimize Neighborhood Large
Yu, Zhang,Yu, Sun, & Green VRP with cost & selection, Single Neighborhood
Huang (2020) LNS emissions Mixed emissions depot No Search
Vehicle capacity,
CVRP, HFVRP, Minimize demand, time OR-Tools
VRPTW, total windows (after (Python),
Sensitivity distance, proposal), fuel constraint
Analysis (After vehicle Heterogen cost, demand Single Ye modeling, LNS,
This paper Proposal) usage, cost eous variability depot s scenario testing

Table 2.1 summarizes key studies on VRP models and solution methods. It
compares routing types, objectives, fleet configurations, constraints, and solution

techniques, providing context for the methodological choices in this study.

2.6 Research Gap and Contributions of the Study
While vehicle routing problems (VRP) have been widely studied, many existing
models still rely on simplified assumptions such as homogeneous fleets, static demand,

and limited operational constraints. These limitations reduce their applicability in real-

Ref. code: 25686722041131TFW

10

world logistics systems, which often involve diverse vehicle types, fluctuating delivery
conditions, and the need for flexible, scalable solutions.

Moreover, although Google OR-Tools is a powerful and accessible optimization
platform, few academic studies provide detailed, customizable implementations that
reflect practical routing challenges especially for heterogeneous fleets. Sensitivity
analysis and time window constraints, which are crucial for evaluating robustness and
responsiveness, are often underrepresented in current literature.

This study addresses these gaps by developing a customizable VRP framework
using Google OR-Tools that supports heterogeneous fleet configurations and capacity
constraints. The model is designed to reflect operational realities and can be adapted to
various logistics scenarios.

In addition, the study provides a modular codebase that can be extended to
include time window constraints and sensitivity analysis in future phases. This
flexibility ensures that the model remains relevant as delivery conditions evolve and
complexity increases.

To support both academic and practical use, the research also includes a
structured comparative literature review and implementation summary. These
components serve as a reference for future studies and logistics teams seeking to apply
optimization tools in real-world settings.

Finally, the study lays the foundation for scenario testing and robustness
evaluation, which will be conducted in the next stage of the research. By bridging the
gap between theoretical models and practical routing systems, this work contributes a
scalable and adaptable approach to distribution system optimization, with clear

pathways for future enhancement.

Ref. code: 25686722041131TFW

11

CHAPTER 3
METHODOLOGY

3.1 Research Design

This study employs a quantitative, computational modeling methodology to
investigate the impact of operational policies on logistics network performance. The
research design is anchored in a three-phase comparative scenario analysis, with each
phase structured to isolate specific variables and build upon the insights of the last.

The entire experimental framework is formulated as a Heterogeneous Fleet
Vehicle Routing Problem with Time Windows (HFVRPTW). This complex
optimization model accounts for the use of different vehicle types (heterogeneous fleet)
and the critical constraint of delivery deadlines (time windows). The model is
computationally solved using the Google OR-Tools library, a powerful open-source
suite for combinatorial optimization.

The core of the methodology unfolds across the following three experimental

scenarios.

3.1.1 Scenario 1: Baseline Performance Quantification

This initial phase serves as the experimental control for the entire study. It is
designed to create a high-fidelity benchmark of the company's current logistics
network.

e Objective: To establish a comprehensive, quantitative benchmark of the
existing operational status quo.

e Method: The HFVRPTW model is configured to mirror the company's
current operational reality, most notably by strictly enforcing its "overtime-
constrained" policy. All existing fleet sizes, driver schedules, customer
locations, and demand data are held constant.

o Expected Insight: The output from this scenario provides a clear baseline
dataset. It quantifies key performance indicators (KPIs) such as total
operational cost, on-time delivery percentages, total mileage, and asset

(vehicle/driver) utilization under the current rule set. This baseline is the

Ref. code: 25686722041131TFW

12

essential point of comparison against which all subsequent scenarios are

measured.

3.1.2 Scenario 2: Unconstrained Theoretical Optimum

The second phase moves from a descriptive model to a diagnostic one. It seeks to
understand the "true" capabilities and inherent trade-offs of the network by
computationally removing its most significant operational constraint.

e Objective: To isolate and quantify the specific impact of the overtime policy
on network performance and to identify the system's "true" unconstrained trade-
offs.

e Method: This scenario utilizes the same core data as Scenario 1 but with one
critical modification: the overtime constraint is completely removed. This
allows the optimization solver to operate in a "blue-sky" or "ideal-state"
environment, prioritizing the most efficient routing solutions regardless of
arbitrary work-hour limits.

o Expected Insight: By comparing the results of Scenario 2 to Scenario 1, this
study can precisely quantify the cost of the constraint—that is, how much cost,
time, and inefficiency are directly attributable to the overtime policy alone. This
phase reveals the latent optimization potential within the network and provides

a theoretical "best-case" ceiling for performance.

3.1.3 Scenario 3: Prescriptive Optimization & Robustness Testing

The final and most complex phase transitions the research from descriptive
analysis to prescriptive recommendation. It is a two-part experiment designed to first
find a new "globally optimal" policy and then validate its practicality against real-world
pressures.

e Objective: To identify a new, globally optimal "Sweet Spot" by tuning service-
level penalties and subsequently to test the robustness of this new policy against
the complexities of real-world operational exceptions.

e Method (Part A: Sensitivity Analysis): This sub-phase conducts a
comprehensive sensitivity analysis by systematically iterating the "service

penalty" parameter within the model. This parameter assigns a high virtual cost

Ref. code: 25686722041131TFW

13

for failing to meet a time window, allowing the model to find the most effective
balance between the cost of service(e.g., using more trucks) and the cost of
failure (e.g., missing a delivery). The configuration that yields the best system-
wide cost-service balance is identified as the "globally optimal" Sweet Spot.

e Method (Part B: Robustness Test): The newly identified optimal policy from
Part A is then subjected to a final "stress test." In this sub-phase, the model
incorporates a realistic "VIP Customer Policy"—an exception-handling rule
that forces the network to prioritize certain high-value clients, even if it is not a
"globally" efficient decision.

o Expected Insight: This scenario provides the study's primary recommendation.
It moves beyond a simple theoretical optimum (Scenario 2) to propose
a practically robust policy. By testing the Sweet Spot policy against the VIP
customer constraint, the research can confidently determine if the new policy is
resilient enough to handle the pragmatic, non-optimal demands of the real
world, ensuring the final recommendation is both data-driven and operationally

viable.

3.2 Mathematical Model Formulation

The mathematical foundation of this study is built upon the Heterogeneous Fleet
Vehicle Routing Problem with Time Windows (HFVRPTW). This model is specifically
adapted to include Soft Time Window Penalties, which are the core mechanism for the

sensitivity analysis in this research.

3.2.1 Sets and Indices
) N = {0,1, ..., n}: Set of nodes, where node 0 is the depot
) C = Set of customer node, C = N {0}
o V ={0,1,...,m — 1}: Set of vehicles
. T = {0,1}: Set of vehicle types (0 = small, 1 = large)
. t(k) = Function mapping vehicle k € V toitstypet € T
o Cyip € C: Set of VIP customer nodes (e.g., {1, 2}

o Cree = C \Cy;p: Set of Regular customer nodes.

Ref. code: 25686722041131TFW

14

3.2.2 Parameters
o d;;: Distance (km) between node i and node j
o tt;;: Travel time (minutes) from node i to node j (derived from d;; and

average speed).

o st;: Service time (minutes) required at node i (where st = 0).
o q;: Demand (units) at customer node i (where g, = 0).

o Q- Capacity (units) of type t.

o c;: Variable cost per kilometer (THB/km) for vehicle t.

o f¢- Fixed cost (THB) for using vehicle t
. [e;, l;]: The ideal time window for node i, where e; is the earliest arrival

time and [; is the latest arrival time.

o Pyr : Penalty cost per minute for route duration exceeding 480 minutes.
o PgarLy : Penalty cost per minute for arriving at a customer before e;

o P; 47 : Penalty cost per minute for arriving at a customer after [;

o Py;p : Penalty cost for arriving at a Cy;p after [;

3.2.3 Decision Variables
o X;jk: A binary variable, = 1 if vehicle k travels directly from node k to

node j , and 0 otherwise.

. Vi A binary variable, = 1 if vehicle k is used, and 0 otherwise.

o Sik- A continuous variable representing the arrival time of vehicle k at
node i.

o b;,: A continuous variable representing the departure time of vehicle

k from node i.

o Devf,: Amount of time (minutes) vehicle k arrives early at node i
J Devk,: Amount of time (minutes) vehicle k arrives late at node i
o OT).: Amount of time (minutes) vehicle k's route duration exceeds 480

minutes.

Ref. code: 25686722041131TFW

15

3.2.4 Objective Function
The objective is to minimize the Total System Cost, which is a composite

function of operational costs and service penalties, depending on the scenario.

Minimize Z = Zoperational + ZService penalty + ZOT penalty + ZVIP Penalties
Where:

1. Operational Cost

ZOperational = th(k) " Yk +z z Cek) * dij © Xijk

kev keV i,jeN

The operational cost component represents the tangible financial expenditure
required for fleet execution, aggregating both the fixed costs associated with activating
specific vehicle types and the variable costs incurred per unit of distance traveled. This
baseline cost ensures the model accounts for the fundamental economic resources

needed to service the logistical network, independent of service quality metrics.

2. Service Penalty

ZServicePenalty = z Z(PEarly i DEI/li + PLATE ’ DEVLIIIC
kev iec

The service penalty quantifies the degradation in general customer satisfaction
by penalizing temporal deviations outside the designated soft time windows. This
function accounts for both premature arrivals, which may necessitate waiting or cause
inventory inconveniences, and delayed arrivals, which directly negatively impact the

standard service level agreements.

3. Overtime Penalty

ZOTPenalty = Z(Por - OTk)
kev

Ref. code: 25686722041131TFW

16

The overtime penalty captures the additional costs incurred when the total
duration of a vehicle's route exceeds the standard allowable working hours. This
component serves to regulate resource utilization by discouraging excessive route
lengths, thereby ensuring adherence to driver labor constraints and minimizing extra

workforce expenditures.

4. VIP Penalty

Zv1p penalties = z z (PVIP' DEViﬁ’,)

LECyip kEV

The VIP penalty introduces a strictly weighted cost associated with service
delays for high-priority clients, distinct from the standard service penalty. By assigning
a significantly higher penalty rate to lateness for these specific customers, the model is
mathematically coerced to prioritize punctuality for key accounts to mitigate potential

reputational damage or severe contractual violations.

(Note: In Scenario 1, ZseryicepenaityWas set to 0 or co. In Scenarios 2 & 3, Zorpenaity
was set to 0, and the "Knobs" Pgq,i,,and Py were adjusted. The real financial penalty

for Cy;p is handled as a business rule in the experimental design, Section 3.4.3, not in
this solver's objective function.)

3.2.5 Constraints

Routing Constraints:

Each customer is visited exactly once:

Ykev Zien Xijk = 1 V;EC (3.1

Flow Conservation For each vehicle, the number of arrivals equals the number of
departures:

Yien Xijk — XienXjie =0 V,EN ,Vk €V (3.2)

Ref. code: 25686722041131TFW

17

Each used vehicle stars and ends at the depot:

YjecXok =Yk and YiecXjor =Yk Vk EV (3.3)

The fundamental routing restrictions, including the mandate that every customer
node is visited exactly once (Equation 3.1) and the flow conservation principle ensuring
equal arrivals and departures at each node (Equation 3.2), are enforced structurally
within the Google OR-Tools framework. Specifically, the initialization of
the pywrapcp.RoutingIndexManager and pywrapcp.RoutingModel classes constructs
the underlying graph topology. By defining the number of nodes and vehicles, along
with the specific depot index, the solver implicitly applies these constraints to generate
valid, continuous closed-loop tours for each active vehicle starting and ending at the

designated depot as defined in Equation 3.3.

Capacity Constraints:

To ensure feasibility regarding fleet limitations, the capacity constraints are
modeled using the AddDimensionWithVehicleCapacity method within the OR-Tools
routing model. This function integrates a registered demand callback, which retrieves
the specific load requirement for each location, and cross-references the cumulative
load against the defined capacity vector for the heterogeneous fleet. The solver tracks
the accumulated demand variable along the route and strictly invalidates any solution
where the total load exceeds the maximum capacity of the specific vehicle type assigned

to that route.

Time Window and Flow Constraints:
Departure time from node i:

biklz maX(ei,Sik) + Sti le C ,Vk eV (34)
Arrival ime at node j (if j follows i) :

(where M is a large constant)

Ref. code: 25686722041131TFW

18

The temporal propagation across the network, as mathematically defined in
Equations 3.4 and 3.5, is implemented through the creation of a dedicated Time
Dimension using the routing. AddDimension method. This mechanism relies on a
registered transit callback function that computes the traversal cost of an arc by
summing the estimated travel time between nodes and the requisite service duration at
the origin node. This dimension accumulates the time variable cumulatively along the
route path, effectively modeling the continuity of time and ensuring that the arrival time

at a subsequent node logically follows the departure time from its predecessor.

Time window definition (for soft penalties):
Devi, > e; — sy
DevE, =0 (3.6)
Devj, = sy — |

Devj, >0 (3.7)

The implementation of soft time window constraints, which permit temporal
deviations subject to penalty costs (Equations 3.6 and 3.7), is achieved through
the SetCumulVarSoftLowerBound and SetCumulVarSoftUpperBoundmethods
applied to the cumulative time variable of each node. These functions automatically
compute the linear deviation between the actual arrival time and the pre-defined
preferred time window boundaries. If the arrival time occurs earlier than the lower
bound or later than the upper bound, the solver adds a cost to the objective function
proportional to the magnitude of the violation multiplied by the specified early or late

penalty coefficients.

3.3 Model Assumptions
To ensure computational tractability and conceptual clarity, the mathematical
model is constructed under a set of simplifying assumptions that reflect a controlled

logistics environment. These assumptions serve as foundational constraints for the

Ref. code: 25686722041131TFW

19

initial phase of model development, allowing for focused analysis of routing efficiency
and fleet utilization.

It is assumed that all customer demand (g;) is fully known and remains constant
throughout the defined planning horizon. This eliminates the need for real-time demand
forecasting and enables deterministic route planning. Each customer is served exactly
once by a single vehicle, thereby excluding scenarios involving multiple visits or
demand splitting. All vehicles are dispatched from a single central depot and are
required to return to the same location upon completion of their assigned routes,
reinforcing a closed-loop delivery structure.

Travel distances between nodes are considered symmetric and deterministic,
implying that the cost and distance from point A to point B are identical to those from
point B to point A. This assumption disregards complex real-world factors such as
traffic congestion, road conditions, and time-dependent travel variability, which will be
addressed in future iterations of the model.

Crucially, Time Window Constraints (VRPTW) are central to the current
formulation, defining the core challenge. This model utilizes Soft Penalties as the
primary mechanic, allowing the solver to deviate from the ideal window [e;, ;] by
incurring a weighted cost (Pgagrry, Prarg)- This design is the foundation for the
sensitivity analysis used to locate the optimal solution.

By establishing these assumptions, the study creates a structured baseline for
evaluating heterogeneous fleet performance under controlled conditions. This approach
facilitates rigorous testing of routing algorithms and provides a scalable foundation for
future enhancements that reflect the operational intricacies of real-world distribution

systems.

3.4 Tools and Technologies

To implement and evaluate the heterogeneous fleet vehicle routing model, this
study employs a suite of computational tools and technologies that support algorithmic
development, constraint modeling, and solution visualization. The integration of these
tools enables a robust experimental framework capable of handling complex logistics

scenarios and delivering actionable insights.

Ref. code: 25686722041131TFW

20

3.4.1 Python Programming Language

Python serves as the foundational programming language for model
construction and execution. Its versatility and extensive ecosystem of scientific libraries
make it particularly well-suited for operations research and optimization tasks. Python
facilitates the seamless integration of data structures, algorithmic logic, and
visualization modules, allowing for end-to-end development of the routing model. The
language’s readability and modular design also support iterative prototyping, enabling

rapid refinement of model components as new constraints and features are introduced.

3.4.2 Google OR-Tools

Google OR-Tools functions as the core optimization engine within the modeling
framework. Designed specifically for combinatorial optimization problems, OR-Tools
offers powerful capabilities for solving the Vehicle Routing Problem (VRP) under
heterogeneous fleet conditions. The library supports constraint programming, routing
index management, and advanced metaheuristic techniques such as Large
Neighborhood Search (LNS), which are critical for navigating the vast solution space
of multi-vehicle routing scenarios. OR-Tools allows for precise modeling of vehicle-
specific attributes, including capacity limits, fixed and variable costs, and crucially,
time window constraints and soft penalties, as defined in the mathematical model. Its
efficient solver architecture ensures scalability and responsiveness, even when applied
to real-world datasets with complex delivery requirements.

Together, Python and Google OR-Tools provide a synergistic platform for
developing, executing, and analyzing the HFVRPTW model. This combination enables
the study to move beyond theoretical formulation and into practical simulation, offering

a replicable and adaptable framework for future logistics optimization research.

Ref. code: 25686722041131TFW

21

3.4.3 Routing Model Components

The core implementation of the wvehicle routing model leverages key
components from Google OR-Tools, a specialized optimization library designed for
solving combinatorial problems. Central to the model architecture is the
RoutingIndexManager, which serves as the interface for mapping logical node indices
to physical locations and managing vehicle assignments. This abstraction simplifies the
handling of depot and customer nodes, especially in scenarios involving multiple
vehicles and complex routing constraints.

The RoutingModel acts as the computational engine that defines the problem
structure and executes the optimization process. It encapsulates the routing logic, cost
functions, and constraint definitions, enabling the solver to generate feasible and cost-
effective delivery routes. Critical constraints are implemented using OR-Tools’
dimension features, which allow for the accumulation and tracking of quantities across
routes. These dimensions were utilized as follows:

1. Capacity Dimension: Enforces vehicle load limits and demand constraints

(Qeqr))-

2. Time Dimension: This is the core experimental dimension. It tracks cumulative
time (travel time + service time) and is essential for:

o Time Window Constraints (VRPTW): Ensuring routes respect the
customer's preferred arrival windows [e; , [;].

o Soft Penalties: Allowing the tracking of service deviation and applying
the penalty rates (PgarLy, Prare) central to the Sweet Spot sensitivity
analysis.

o Overtime Penalties: Applying soft penalties for exceeding the 8-hour
workday limit (Scenario 1).

By modularizing the routing logic and constraint handling using these advanced
dimension features, the model achieves both scalability and adaptability. This design
ensures that the model can accurately test strategic operational policies, such as
balancing service cost against utilization rates, which is essential for a robust and high-

fidelity simulation.

Ref. code: 25686722041131TFW

22

3.4.4 Metaheuristic Optimization

To enhance solution quality and computational efficiency, the model
incorporates advanced metaheuristic optimization strategies, with a particular emphasis
on Large Neighborhood Search (LNS). LNS is a highly robust technique designed
specifically for solving complex combinatorial problems like the VRP. Unlike
conventional local search methods that only make small, incremental adjustments, LNS
operates by strategically removing a large part of the current solution (the Destroy
phase) and then intelligently rebuilding that section (the Repair phase). This process
allows the solver to take "big jumps" across the solution space, effectively avoiding
being trapped in local optima which is critical for identifying the true global optimum.

In the context of heterogeneous fleet routing (HFVRPTW), LNS proves
especially effective because its design facilitates global restructuring of routes, adapting
to the complex interplay between diverse vehicle capacities, fixed costs, and soft
penalties. This ensures that when the service penalty "knob" is applied (Scenario 3), the
solver is capable of finding the counter-intuitive "Sweet Spot" solution—where costs
are lower and service is higher which a simpler algorithm (that gets stuck in local
optima) would have missed. The integration of LNS within the OR-Tools framework

positions the model as a practical, high-efficiency decision-support tool.

Table 3.1 Table comparing different metaheuristics

Typical Performance

Metaheuristic Strengths Weaknesses in VRP

Guided Local

Search (GLS) Escapes local minima by May take longer to Very good for medium—
penalizing frequent edges diversify large VRP

Tabu Search Strong diversification, Can be slower to Good for finding robust

(TS) avoids cycling converge solutions

Simulated

Annealing (SA) Simple to implement, Sensitive to cooling Works but less efficient
probabilistic escape schedule than GLS/TS

Large Removes large parts of Rebuild step can be

Neighborhood solution, rebuilds for big computationally Excellent for large-scale

Search (LNS) jumps heavy VRP, often best quality

Ref. code: 25686722041131TFW

23

Table 3.1 presents a comparative overview of three prominent metaheuristics
applied in Vehicle Routing Problems: Guided Local Search (GLS), Tabu Search
combined with Simulated Annealing (TS-SA), and Large Neighborhood Search (LNS).
Each method offers distinct strengths and trade-offs. GLS effectively escapes local
minima but may require longer convergence times. TS-SA is simple to implement and
robust, though sensitive to parameter tuning. LNS stands out for its ability to restructure
large portions of the solution space, making it particularly suitable for large-scale VRP
instances. Given its performance advantages and compatibility with Google OR-Tools,

LNS is selected as the primary search strategy in this study.

3.4.5 Visualization Tools

To enhance interpretability and support stakeholder communication, this study
utilizes Google My Maps as a visualization platform for the optimized vehicle routes
generated by the routing model. Geographic data including customer locations, depot
coordinates, and route sequences is first structured in Microsoft Excel. These datasets
are then imported into My Maps to produce interactive maps that reflect the spatial
distribution of delivery points and the movement of vehicles across the network.

This visualization approach serves multiple purposes. It provides a clear and
intuitive representation of route efficiency, vehicle coverage, and geographic
clustering, which are critical for evaluating the practical feasibility of the model’s
output. Moreover, map-based visuals offer an accessible medium for conveying
complex routing results to non-technical stakeholders, such as logistics managers or
business decision-makers. By bridging the gap between algorithmic output and
operational insight, Google My Maps supports both analytical validation and strategic

planning, reinforcing the model’s applicability in real-world logistics environments.

Ref. code: 25686722041131TFW

24

cibo Y
9 TR:Tyre auto
Q v

9) 9 Klong Chan Auto tire

9 Sor KarnYang Rama2

Figure 3.1 Visualization Map from Google my map

Figure 3.1 displays a geographic visualization of selected tire service centers
across Bangkok, including locations where customer demand originates. This spatial
representation supports the routing model by illustrating the distribution of delivery
points and informing distance matrix construction. It also provides a practical reference

for evaluating route feasibility and vehicle assignment based on location clustering.

3.5 Data Preparation

The data preparation phase serves as the essential translation layer between the
physical supply chain and the computational model. The input dataset for the
heterogeneous fleet vehicle routing model is systematically prepared, involving the
organizing of operational parameters including raw customer demand profiles,
geographic coordinates, and the derived inter-location distance matrices. This phase is
crucial for transforming raw business requirements into normalized computational
parameters.

Prior to integration into the optimization engine, meticulous efforts are focused
on defining fleet heterogeneity within the data. This involves classifying vehicle
parameters to ensure that the distinct cost structures (e.g., the 17 THB/km vs. 22

THB/km variable cost) are accurately mapped to the corresponding load capacity.

Ref. code: 25686722041131TFW

25

Furthermore, the ideal time windows are precisely structured, as these soft constraints

define the operational performance boundaries for the entire network.

A rigorous data validation process is conducted to ensure completeness,

accuracy, and internal consistency. This validation goes beyond simple error checking;

it confirms the computational feasibility of the initial constraints and verifies that the

time window data is suitable for the subsequent application of the asymmetric service

penalties. By establishing a clean and reliable data foundation, the study ensures that

the optimization process operates on robust inputs, thereby enabling the credible

identification of the non-intuitive "Sweet Spot" solution in the analysis phase

Table 3.2 Node to Customer Mapping and Time window for Routing Model

Node Customer Time window Customer status
1 NV yangyont 08:00 - 09:15 VIP
2 TR Tyre auto 08:30 - 08:45 VIP
3 V Auto Tire 09:00 - 09:15 Regular
4 PWM Power Max 09:15 - 09:30 Regular
5 Lamlukka Max Shop 09:45 - 10:15 Regular
6 NumKarnYang Klong 4 10:30 - 10:40 Regular
7 Klong Chan Auto tire 11:00 - 11:35 Regular
8 G Max Wheels 11:30 - 11:55 Regular
9 Nawamin auto tyre 13:00 - 13:15 Regular
10 SermmitTire 13:45 - 14:15 Regular
11 Sportmagl00 14:20 - 14:40 Regular
12 Max Design 14:45 - 15:20 Regular
13 LPAutomag 15:30 - 15:40 Regular
14 Sor KarnYang Rama2 16:00 - 16:30 Regular
15 71HHHAUTO.TIRE 16:40 - 17:00 Regular

Depot DC NP TIRE 08:00 - 17:00

Table 3.2 provides the essential node-to-customer mapping and its

corresponding Time Window constraints for the routing model. Each customer is

assigned a unique node index to facilitate consistent referencing within the optimization

logic. This structured mapping ensures data fidelity and is crucial for implementing the

Heterogeneous Fleet Vehicle Routing Problem with Time Windows (HFVRPTW).

Ref. code: 25686722041131TFW

26

Critically, the table specifies the Customer Status (VIP/Regular), allowing the model to

perform asymmetric risk assessment and calculate service penalties based on the

priority of the customer, which is central to the analysis in Scenario 3.

Table 3.3 Customer Distance Matrix

Location Depot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Depot 0 175 16.6 129 231 27 26 24 25 21 22 20.7 20 26.1 37 30.5
1 181 0 115 15 16.5 195 18.5 175 185 16 16.5 16.5 16 17.6 31.6 26.2
2 177 117 0 13.8 155 185 17.8 16.8 17.8 155 16 17 159 154 30.5 25.1
3 13.2 155 141 0 221 251 24.3 22.1 23.3 19.7 20.7 18.6 18.1 22.8 33.5 27.3
4 24 17 1569221 0 13.8 12.7 13.3 144 154 16.5 18.1 18.6 159 26.2 23
5 28.2 20.3 19.1 251 138 0 11.6 128 13.8 17 17.6 18.6 19.7 18.1 25.1 21.9
6 273 192 184 243 127 116 0 111 122 159 17 176 186 17 24 20.8
7 25 181 174 221 133 128 111 0 11.7 143 154 165 17 159 21.9 19.2
8 26.1 19.2 184 233 144 138 122 11.7 0 155 16 171 176 16.5 23 19.7
9 218 16.5 1569 19.7 164 17 159 143 155 0 13.2 14.3 14.8 14.3 20.8 17.6
10 228 17 16.5 20.7 16.5 176 17 154 16 132 0 12.7 13.2 13.8 21.9 18.6
1" 20.7 165 17 18.6 18.1 18.6 17.6 16.5 17.1 14.3 127 0 127 14.3 20.8 18.1
12 20 16 159 18.1 18.6 19.7 186 17 17.6 148 13.2 127 0 148 219 176
13 26.1 17.6 154 22.8 1569 181 17 159 16.5 14.3 13.8 143 148 0 24 20.8
14 37 31.6 30.5 33.5 26.2 2611 24 219 23 208 21.9 208 219 24 0 195
15 30.5 26.2 256.1 27.3 23 21.9 20.8 19.2 19.7 17.6 18.6 18.1 17.6 20.8 19.5 O

Table 3.3 presents the customer distance matrix used in the routing model. It

quantifies the pairwise distances between the depot and each customer location,

forming the basis for route cost calculations and feasibility checks. These values are

essential for constructing the cost matrix within the optimization engine and directly

influence route selection, vehicle assignment, and total travel cost estimation.

Ref. code: 25686722041131TFW

27

Table 3.4 Customer Nodes and Weekly Demand

Weekly
Node Customer Name Demand
DEPOT DC NP TIRE 0
1 NV yangyont 70
2 TR Tyre auto 120
3 V Auto Tire 80
4 PWM Power Max 30
Lamlukka Max
5 Shop 70
NumKarnYang
6 Yong 110
Klong Chan auto
7 tire 105
8 G Max Wheels 95
9 Nawamin auto tyre 110
10 Sermmit Tire 25
11 Sportmag100 10
12 G Max Design 85
13 LPAutomag 25
Sor KarnYang
14 Rama?2 65
7HIHH
15 AUTO.TIRE 10

Table 3.4 outlines the weekly demand associated with each customer node in
the routing model. This data serves as a critical input for vehicle capacity planning and
route feasibility analysis. By quantifying demand at the node level, the model ensures
that vehicle assignments align with load constraints and that delivery routes are

optimized to meet service requirements efficiently.

Table 3.5 Vehicle Specifications by Type

Vehicle Capacity Cost per Kilometer Available Fixed Cost
Type (Units) (THB) Unit (THB)
Cage Truck 70 10.5 5 600

Small Lorry 120 19 8 1,000

Ref. code: 25686722041131TFW

28

Table 3.5 summarizes the specifications of the two vehicle types used in the
routing model: Cage Truck and Small Lorry. These parameters are critical for modeling
fleet heterogeneity and directly influence route feasibility, cost calculations, and vehicle

assignment decisions within the optimization framework.

3.6 Implementation Process

The implementation of the heterogeneous fleet vehicle routing model is carried
out using Python in conjunction with Google OR-Tools, a specialized optimization
library designed for solving complex routing problems. The process begins with the
definition of fundamental model components (sets, parameters, and decision variables)
which form the mathematical backbone of the model and are structured to reflect the
operational realities of tire distribution logistics.

Once the foundational elements are defined, the RoutingModel acts as the
computational engine. Critical constraints are implemented using OR-Tools’ dimension
features, which allow for the enforcement of path history and cumulative constraints.
While the Capacity Dimension enforces volumetric limits, the Time Dimension is the
core mechanism for policy testing and multiobjective evaluation. This dimension tracks
cumulative time (travel time + service time), which is essential for implementing the
soft time window constraints and the soft overtime penalty across all strategic scenarios.
To enhance solution quality and guarantee convergence to the global optimum, the
model incorporates Large Neighborhood Search (LNS) metaheuristic optimization.
LNS is selected because it effectively balances Exploration (discovering new areas of
the solution space) and Exploitation (refining known good solutions). This strategic
balance ensures that the solver is not trapped in the local optima observed in Scenario
2a, but successfully identifies the globally superior Sweet Spot solution. The final stage
then synthesizes the solver's output with post-processing logic to yield the final real
cost (Travel + Fixed + VIP Penalty) and the crucial service metrics, completing the

robust experimental framework.

Ref. code: 25686722041131TFW

29

CHAPTER 4
RESULT

This chapter presents the empirical findings derived from the computational
optimization model. The analysis is structured as a sequential investigation across three
distinct strategic policy environments (Scenarios). The objective is to move beyond a
simple presentation of costs to provide a deep interpretation of the underlying

operational dynamics.

This chapter will:

1. Deconstruct the legacy policy (Scenario 1) to quantify its structural
inefficiencies.

2. Establish the true minimal expenditure baseline (Scenario 2) by removing
artificial constraints, thereby identifying a critical "Constraint Trap."

3. Present the core discovery (Scenario 3) by conducting a sensitivity analysis on
service penalties, culminating in the identification of a non-linear, globally
optimal "Sweet Spot" policy that challenges the conventional cost-service trade-
off.

The analysis is performed by evaluating the interaction between Total Overall Cost

(THB), Average Customer Satisfaction (%), and Fleet Utilization (Fixed Cost).

4.1 Scenario 1 Analysis: The Legacy Policy Structure
Objective: To quantify the operational performance and cost ceiling of the
current operational paradigm, which is defined by a rigid, 8-hour workday constraint

(simulated via a soft OT penalty).

Table 4.1 Legacy Policy Trade-off (OT-Constrained Model)

Total Overall Vehicles Total OT
Strategy Policy Intent Cost (THB) Avg. Satisfaction Used Cost (THB)
la Legacy Cost Baseline 20,200.40 69.80% 10 0

1b Legacy Service Focus 21,047.95 98.50% 11 260.85

Ref. code: 25686722041131TFW

30

Table 4.1 presents the results of the baseline analysis (Scenario 1), comparing
the financial and service outcomes under the rigid operational assumption of the soft
OT penalty. The data establishes the high structural cost imposed by the legacy

constraint.

4.1.1 Interpretation of Findings Scenario 1

The analysis of Scenario 1 reveals that the legacy policy framework is
structurally inefficient and expensive. While the solver could find a 10-vehicle solution
for the pure cost model (1a), the resulting service level 69.8% was unacceptably low,
marked by significant, unpenalized service failures.

More critically, when forced to achieve high service (1b), the model’s cost
increased by 847.55 THB. This cost was not just from variable overtime; it was
structurally driven by the necessity to deploy an eleventh vehicle (a Cage Truck,
increasing fixed cost by 600 THB. This proves that the 8-hour constraint prevented the
optimal utilization of the 10-vehicle fleet, forcing an expensive and inefficient
expansion of the asset base. This 21,047.95 THB cost represents the high operational
ceiling imposed by the legacy policy.

4.2 Scenario 2: Establishing the True Cost Baseline (The Constraint Trap)

Objective: To isolate the system's inherent cost floor by removing the OT
penalty (P_OT= 0), allowing the solver to optimize purely for asset utilization (Fixed

Cost) and variable cost (Travel Cost).

Table 4.2 Analysis of Legacy Constraint Impact on Operational Cost

Total .
Policy Intent Overall Sa ti?f:l gc.tion (Tjgzl(};ﬁg; Net Change in Cost
Cost (THB)
Scenario 1A 20,200.40 69.80% 8,800.00 Benchmark
Scenario 2A 17,410.00 82.40% 7,600.00 -2,790.4 THB (-13.8%)

Table 4.2 presents the comparative analysis demonstrating the financial and

service impact of removing the obsolete OT penalty (moving from Scenario 1A to

Ref. code: 25686722041131TFW

31

Scenario 2A). This comparison establishes the minimal expenditure baseline for the

entire network.

4.2.1 Interpretation of Findings: The Constraint Trap

The elimination of the OT penalty (moving from Slato S2a) yielded a profound
and counter-intuitive result: 13.8% reduction in total cost (2,790.40 THB savings) while
service simultaneously increased by 12.6%.

This discovery confirms the existence of a Constraint Trap. The legacy OT rule
forced the solver into an inferior route structure to avoid the penalty, resulting in a
higher operational cost. The source of this saving is revealed in the Total Fixed Cost.
The S1a solution utilized a 10-vehicle mix (3 Cage Trucks, 7 Small Lorries) for a fixed
cost of 8,800 THB. Freed from the time constraint, the S2a solver found a superior 10-
vehicle mix (6 Cage Trucks, 4 Small Lorries) with a fixed cost of only 7,600 THB.

This demonstrates that the legacy constraint was a structural cost driver that
prevented optimal fleet mix allocation. The 17,410.00 THB cost is therefore established

as the verified minimal expenditure baseline for all subsequent policy calibration.

4.3 Scenario 3: Optimal Policy Discovery & Sensitivity Analysis
Objective

This final scenario details the core research contribution: the calibration of the
P Late service penalty (the "Knob") to find the globally optimal solution that truly

balances cost and service.

4.3.1 The Marginal Cost of Perfection (Policy Extremes)
First, the analysis quantifies the cost of the two policy extremes in the

unconstrained model: a pure cost focus (Knob =0) versus a pure service focus (Knob

~1000).

Table 4.3 Marginal Cost Analysis of Service Level Extremes

Total Overall Avg. Net Cost for 17.5%
Cost (THB) Satisfaction Sat Gain

Cost Floor (S2a, Knob=0) 17,410.00 82.40% Baseline

Policy Comparison

Ref. code: 25686722041131TFW

32

Perfection Ceiling (S3,

0,
Knob=1000) 17,418.50 99.90% add 8.50 THB

Table 4.3 presents the comparative analysis between the minimal expenditure
baseline (Cost Floor) and the highest service achieved (Perfection Ceiling). This
comparison quantifies the marginal financial cost required to achieve maximum

customer satisfaction in the unconstrained model.

Interpretation: The cost difference between the 82.4% satisfaction baseline
and the 99.9% ceiling is only 8.50 THB. This negligible marginal cost proves that the
resources required for a 17.5% service gain were already available within the optimally
utilized 10-vehicle fleet. The improvement was entirely a function of superior route
sequencing precision, confirming that high service is "functionally free" when the

system is properly optimized.
4.3.2 The Global Optimum ("'Sweet Spot" Policy)
This section analyzes the result of the intermediate Knob = 50 test, which

challenges the assumption that either extreme (0 or 1000) is the optimal choice.

Table 4.4 Sensitivity Analysis and Global Optimum Discovery

penalty _early penalty late Avg. Total Overall
(Fixed) (Knob) Satisfaction Cost Notes
Baseline (High
100 0.00 82.40% 17,410.00 THB lateness)
Sweet Spot (Win-
100 50.00 97.80% 17,321.60 THB Win)
Diminishing
100 100 99.90% 17,418.50 THB Returns
Stabilized (No
100 1,000.00 99.90% 17,418.50 THB change)

Table 4.4 presents the results of the sensitivity analysis performed by adjusting
the penalty late "Knob" against a fixed early penalty (penalty early = 100$). This
analysis was conducted to empirically validate the non-linear relationship between

service policy and total operational cost.

Ref. code: 25686722041131TFW

33

4.3.2.1 Analysis and Conclusion

The sensitivity analysis conclusively identifies the optimum strategic policy at
P Late = 50 . This discovery proves the existence of a globally superior solution that
defies the conventional linear trade-off.

e The Win-Win Relationship: The P_Late = 50 penalty served as an Intelligent
Steering Mechanism for the LNS solver. It forced the algorithm to abandon the
inferior Local Optimum (Knob = 0) and discover a new solution path that
resulted in a cost decrease of 88.40 THB while simultaneously achieving a
15.4% increase in service.

e Definitive Policy Recommendation: The Sweet Spot Policy is the definitive,
optimal strategic recommendation for DC NP TIRE. The solution is also robust,
having achieved 0.00 THB in VIP Penalties (Scenario 3), confirming its safety
and efficiency. This proves that a modest focus on service is not a cost, but a

catalyst for achieving true global efficiency.

Ref. code: 25686722041131TFW

34

CHAPTER S
DISCUSSION AND CONCLUSION

5.1 Discussion of Key Findings

The results presented in Chapter 4 provide empirical validation of a non-linear
and counter-intuitive phenomenon in logistics optimization. The analysis moves
beyond a simple quantification of costs to interpret the strategic implications of
optimizing policy constraints. The findings are discussed in three distinct thematic

discoveries.

5.1.1 The Global Optimum and the Failure of Pure Cost Minimization

The most profound finding of this research is the empirical discovery of the
Sweet Spot Policy (P _Late = 50), which generated a 15.4% service gain while
simultaneously achieving a cost reduction of 88.40 THB (Table 4.3).

This "Win-Win" outcome refutes the conventional linear cost-service trade-off
assumption. It proves that the pure cost-focused baseline (Knob = 0) was, in fact, a
Local Optimum. The P Late = 0 policy, by having an over-simplified objective
function, trapped the solver in an inefficient solution space, finding only the cheapest
route given its limited view.

The moderate P_Late =50 penalty acted as an Intelligent Steering Mechanism.
It enriched the objective function, providing the LNS metaheuristic with just enough
new information to justify exploring a different, more "rugged" part of the solution
space. In doing so, it was forced to discard the local minimum and converge upon the
true Global Optimum a solution path that was inherently more efficient in both
sequencing and asset utilization, thus yielding both lower costs and higher service. The

88.40 THB saving is the quantifiable value of this new strategic information.

Ref. code: 25686722041131TFW

35

5.1.2 The Economic Impact of Legacy Constraints

The comparative analysis of Scenario 1 (OT) and Scenario 2 (No-OT) revealed
a 13.8% cost leakage. The 2,790.40 THB loss under the legacy policy was not merely
an operational variance; it was a structural burden imposed by a flawed policy.

The root cause was not variable cost but sub optimal asset allocation. The rigid
8-hour constraint forced the solver into an inefficient Fleet Mix (3 Cage Trucks, 7 Small
Lorries) with a fixed cost of 8,800.00 THB. By removing this artificial constraint
(Scenario 2a), the solver was free to achieve optimal fleet utilization, selecting a
superior 10-vehicle mix (6 Cage Trucks, 4 Small Lorries) with a fixed cost of only
7,600.00 THB. This 1,200.00 THB saving in fixed costs alone provides crucial evidence
that obsolete operational rules can impose severe, hidden financial penalties on an

otherwise efficient logistics operation.

5.1.3 The De-coupling of Service Quality from Resource Scarcity

The analysis of the service ceiling (moving from 82.4% Sat. to 99.9% Sat.)
confirms that the marginal cost for achieving near-perfect service in the unconstrained
model is negligible (+8.50 THB).

This minimal expenditure is a critical insight: it proves that the service failures
in the baseline (82.4% Sat) were not a problem of resource scarcity (i.e., not enough
trucks or drivers). The resources required for a 17.5% service gain were already
available within the network's asset base. The failure was one of combinatorial
sequencing. The cost of high service, therefore, was not for more assets, but for the
algorithmic precision required to generate a superior sequencing plan, validating the

power of optimization over manual or simplified heuristic approaches.

Ref. code: 25686722041131TFW

36

5.2 Conclusion

This research successfully developed an empirical framework that moved
beyond a simplistic cost-minimization exercise to challenge the fundamental logistics
cost-service assumption. The investigation conclusively answers the main research
question: Yes, a non-linear, globally optimal "Sweet Spot" solution exists.

The final recommended policy achieved a 15.4% service gain while
simultaneously reducing the total operational cost by 88.40 THB. This contribution
demonstrates that service optimization, when performed using advanced computational
methods, functions not as a "cost center," but as a "lever" for achieving superior system-
wide efficiency and asset utilization. The research quantified the high cost of legacy
constraints (2,790.40 THB) and demonstrated that high service is a function of

algorithmic precision, not just resource allocation.

5.3 Strategic Recommendations
The findings dictate a clear paradigm shift in operational policy for DC NP TIRE
Management:

e Adopt the Global Optimum Policy: The company must formally adopt the Sweet
Spot Policy (P_Late = 50) and the No-OT Planning Model. This strategy provides
the best possible trade-off: lowest total cost 17,321.60 THB and highest safe
service level 97.8%.

e Shift from Micro-Management to Policy Management: Management should stop
managing the 8-hour rule (a micro-level constraint) and start managing the
objective function (a macro-level policy). The funds saved by adopting the Sweet
Spot policy should be used to cover any necessary driver overtime, as the total
expenditure will still be 3,629.45 THB cheaper than the legacy policy (S1b).

e Leverage Algorithmic Robustness: The P_Late = 508 policy is confirmed to be
robust. The 0.00 THB VIP Penalty (Scenario 3) proves that no special, expensive
constraints are needed to protect high-value customers; the "Sweet Spot" policy

protects them automatically, simplifying the entire operational framework.

Ref. code: 25686722041131TFW

37

5.4 Limitations and Future Research

While the model is highly robust, its deterministic nature imposes certain
academic limitations, which in turn suggest clear avenues for future research.

e Limitation: Static Data: The model assumes static demand (q_1) and fixed service
times (st_1i). This does not account for real-world demand variability or on-site
delays.

o Future Research: Future work should explore Stochastic VRP (S-VRP)
to model demand variability and service time uncertainty, creating plans
that are not just optimal, but also resilient to disruption.

e Limitation: Static Travel Times: The most critical limitation is the model's
reliance on static, average travel times, which does not reflect the congestion
patterns of the Bangkok Metropolitan Region.

o Future Research: The model should be evolved into a Dynamic VRP
(D-VRP) by integrating with real-time traffic APIs (e.g., Google
Distance Matrix API). This would transform the model from a static

strategic planner into a tactical, adaptive routing tool.

Ref. code: 25686722041131TFW

38

REFERENCES

Afshar-Nadjafi, B., & Afshar-Nadjafi, A. (2016). Multi-depot time dependent vehicle
routing problem with heterogeneous fleet and time windows. International
Journal of Operational Research, 26(1), 88-103.

Avci, M., & Topaloglu, S. (2016). A hybrid metaheuristic algorithm for heterogeneous
vehicle routing problem with simultaneous pickup and delivery. Expert Systems
with Applications, 53, 160-171.

Bouanane, K., Amrani, M. E., & Benadada, Y. (2022). The vehicle routing problem
with simultaneous delivery and pickup: a taxonomic survey. International
Journal of Logistics Systems and Management, 41(1-2), 77-119.

Cuvelier, T., Didier, F., Furnon, V., Gay, S., Mohajeri, S., & Perron, L. (2023,
February). Or-tools' vehicle routing solver: A generic constraint-programming
solver with heuristic search for routing problems. In 24e congres annuel de la
societe frangaise de recherche opérationnelle et d'aide a la décision.

Despaux, F., & Basterrech, S. (2016). Multi-trip vehicle routing problem with time
window and heterogeneous fleet. International Journal of Computer
Information Systems and Industrial Management Applications, 8, 9-9.

Euchi, J., & Yassine, A. (2023). A hybrid metaheuristic algorithm to solve the electric
vehicle routing problem with battery recharging stations for sustainable
environmental and energy optimization. Energy Systems, 14(1), 243-267.

Garlotta, D. (2001). A literature review of poly (lactic acid). Journal of Polymers and
the Environment, 9(2), 63-84.

Kaewman, S., & Akararungruangkul, R. (2018). Heuristics algorithms for a
heterogeneous fleets VRP with excessive demand for the vehicle at the pickup
points, and the longest traveling time constraint: a case study in Prasitsuksa
Songkloe, Ubonratchathani Thailand. Logistics, 2(3), 15.

Kabadurmus, O., & Erdogan, M. S. (2023). A green vehicle routing problem
with multi-depot, multi-tour, heterogeneous fleet and split deliveries: a
mathematical model and heuristic approach. Journal of Combinatorial
Optimization, 45(3), 89.

Prokop, A., Helling, H. J., Hahn, U., Udomkaewkanjana, C., & Rehm, K. E. (2005).

Ref. code: 25686722041131TFW

39

Biodegradable implants for pipkin fractures. Clinical Orthopaedics and Related
Research, 12(32), 226-233.
Sabet, S., & Farooq, B. (2022). Green vehicle routing problem: State of the art and
future directions. IEEE Access, 10, 101622-101642.

Stodola, P. (2018). Using metaheuristics on the multi-depot vehicle routing problem
With modified optimization criterion. Algorithms, 11(5), 74.Wang, Y., Zhe, J.,

Subramanian, A., Penna, P. H. V., Uchoa, E., & Ochi, L. S. (2012). A hybrid algorithm
for the heterogeneous fleet vehicle routing problem. European Journal of
Operational Research, 221(2), 285-295.

Tahir, M. A. (2024). Revolutionizing International Cargo Transportation: A Data-
Driven Strategy for Fleet Management Optimization and Workforce Efficiency.

Tan, S. Y., & Yeh, W. C. (2021). The vehicle routing problem: State-of-the-art
classification and review. Applied Sciences, 11(21), 10295.

Wang, X., Sun, Y., & Wang, H. (2022). Collaborative multidepot vehicle routing
problem with dynamic customer demands and time
windows. Sustainability, 14(11), 6709.

Yu, Z., Zhang, P., Yu, Y., Sun, W., & Huang, M. (2020). An Adaptive Large
Neighborhood Search for the Larger-Scale Instances of Green Vehicle Routing
Problem with Time Windows. Complexity, 2020(1), 8210630.

Zhang, H., Ge, H., Yang, J., & Tong, Y. (2022). Review of vehicle routing problems:
Models, classification and solving algorithms. Archives of Computational

Methods in Engineering, 29(1), 195-221.

Ref. code: 25686722041131TFW

40

APPENDICES

Ref. code: 25686722041131TFW

41

APPENDIX A
SOURCE CODE

The following Python source code implements the Heterogeneous Fleet Vehicle
Routing Problem with Time Windows and Soft Penalties (HFVRPTW-SP). The code
was executed using Google Colab and the OR-Tools library. It defines all customer
demands, vehicle types (heterogeneous), distance matrix, and time window constraints.
The implementation uses Dimensions for capacity and time, and Soft Penalties

(P_Early = 100, P_Late = 50) to model the 'Sweet Spot' policy.

A.1 Data Setup

from ortools.constraint_solver import pywrapcp, routing _enums_pb2

import math

weekly demands = [0, 70, 120, 80, 30, 70, 110, 105, 95, 110, 25, 10, 85, 25, 65, 10]

distance matrix = [

0.0, 17.5, 16.6, 12.9, 23.1, 27.0, 26.0, 24.0, 25.0, 21.0, 22.0, 20.0, 19.3, 25.0, 35.0, 29.0],
[18.1,0.0,11.5,15.0, 16.5, 19.5, 18.5, 17.5, 18.5, 16.0, 16.5, 16.0, 15.5, 17.0, 30.0, 25.0],
[17.0,11.7,0.0, 13.8, 15.5, 18.5, 17.8, 16.8, 17.8, 15.5, 16.0, 16.5, 15.5, 15.0, 16.5, 29.0],
[13.2,15.5,14.1, 0.0, 21.5, 24.5, 23.5, 21.5, 22.5, 19.0, 20.0, 18.0, 17.5, 22.0, 32.0, 26.0],
[24.0,17.0,15.9,22.1, 0.0, 13.5, 12.5, 13.0, 14.0, 15.0, 16.0, 17.5, 18.0, 15.5, 25.0, 22.0],
[28.2,20.3,19.1, 25.1, 13.8, 0.0, 11.5, 12.5, 13.5, 16.5, 17.0, 18.0, 19.0, 17.5, 24.0, 21.0],
[27.3,19.2,18.4,24.3,12.7,11.6,0.0, 11.0, 12.0, 15.5, 16.5, 17.0, 18.0, 16.5, 23.0, 20.0],
[25.0,18.1,17.4,22.1,13.3,12.8,11.1, 0.0, 11.5, 14.0, 15.0, 16.0, 16.5, 15.5, 21.0, 18.5],
[26.1,19.2,18.4,23.3,14.4,13.8,12.2,11.7, 0.0, 15.0, 15.5, 16.5, 17.0, 16.0, 22.0, 19.0],
[21.8,16.5,15.9,19.7,154,17.0, 15.9, 14.3, 15.5, 0.0, 13.0, 14.0, 14.5, 14.0, 20.0, 17.0],
[22.8,17.0, 16.5,20.7,16.5,17.6,17.0, 15.4, 16.0, 13.2, 0.0, 12.5, 13.0, 13.5, 21.0, 18.0],
[20.7,16.5,17.0, 18.6, 18.1, 18.6, 17.6, 16.5, 17.1, 14.3, 12.7, 0.0, 12.5, 14.0, 20.0, 17.5],
[20.0, 16.0, 15.9, 18.1, 18.6, 19.7, 18.6, 17.0, 17.6, 14.8, 13.2, 12.7, 0.0, 14.5, 21.0, 17.0],
[26.1,17.6,15.4,22.8,15.9,18.1,17.0, 15.9, 16.5, 14.3, 13.8, 14.3, 14.8, 0.0, 23.0, 20.0],
[37.0,31.6, 30.5, 33.5, 26.2, 25.1, 24.0, 21.9, 23.0, 20.8, 21.9, 20.8, 21.9, 24.0, 0.0, 19.5],

Ref. code: 25686722041131TFW

42

[30.5,26.2,25.1,27.3, 23.0, 21.9, 20.8, 19.2, 19.7, 17.6, 18.6, 18.1, 17.6, 20.8, 19.5, 0.0]
]

time windows min = [
(480, 1020), (480, 555), (510, 525), (540, 555),
(585, 615), (630, 640), (660, 695), (690, 715),
(555, 570), (780, 795), (825, 855), (860, 880),
(885, 920), (930, 940), (960, 990), (1000, 1020)

service_times min = [0, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40]

avg_speed kmh =30
time matrix_min = []
for from node dist in distance matrix:
row = []
for to_node_dist in from node_dist:
time hours =to node dist/avg speed kmh
time minutes = math.ceil(time hours * 60)
row.append(time_minutes)

time matrix_min.append(row)

A.2 Vehicle & Fleet Parameters

vehicle capacities = [70, 120]
vehicle km costs =[17, 22]
vehicle fixed costs thb =[600, 1000]

demands = weekly demands
num_vehicles by type=[5, 8

]

num_vehicles = sum(num_vehicles by type)

Ref. code: 25686722041131TFW

43

num_vehicle types = len(vehicle capacities)

A.3 Model Setup

depot = 0 num_locations = len(distance matrix)
manager = pywrapcp.RoutinglndexManager(num_locations, num_vehicles, depot)

routing = pywrapcp.RoutingModel(manager) (3.1-3.3)

A.4 Capacity and Distance Constraints

def create_distance callback(distance matrix, vehicle costs per km, vehicle type):
def distance callback(from_index, to_index): from node =
manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index)
return int(distance matrix[from_node][to _node] *

vehicle costs per km[vehicle type] * 100) return distance callback for vehicle id in
range(num_vehicles): vehicle type id = vehicle id % num_vehicle types
transit_callback index = routing.RegisterTransitCallback(

create_distance callback(distance matrix, vehicle km costs, vehicle type id))
routing.SetArcCostEvaluatorOfVehicle(transit _callback index, vehicle id)

scaled fixed costs = [cost * 100 for cost in vehicle fixed costs thb]
vehicle index counter = 0 for type id, num_v in enumerate(num_vehicles by type):
for _inrange(num_v): routing.SetFixedCostOfVehicle(scaled fixed costs[type id],

vehicle index counter) vehicle index counter += 1

A.5 Capacity Constraint

def demand callback(from index): from node = manager.IndexToNode(from_index)
return demands[from_node] demand callback index =

routing.RegisterUnaryTransitCallback(demand callback) capacities_list = [cap for

cap, num in zip(vehicle capacities, num_vehicles by type) for _in range(num)]

Ref. code: 25686722041131TFW

44

routing. AddDimensionWithVehicleCapacity(demand callback index, 0,
capacities_list, True, 'Capacity') (3.4-3.5)

A.6 Time Constraints & Soft Penalties

def create time callback(time matrix, service times):
def time_callback(from_index, to_index):
from node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
travel time = time matrix[from_node][to_node]
service time = service times[from node]
return int(travel time + service time)

return time_callback

time_callback index = routing.RegisterTransitCallback(

create_time callback(time matrix_min, service times min)

time dimension_name = "Time'
horizon_minutes = 24 * 60
routing. AddDimension(
time_callback index, horizon minutes, horizon minutes, False,
time dimension_name

)

time dimension = routing.GetDimensionOrDie(time_dimension_name)

--- Sweet Spot Policy Settings (P_Late = 50) ---
penalty early = 100

penalty late = 50

#

depot_open_time = time_windows_min[depot][0]

Ref. code: 25686722041131TFW

45

depot_close time = time windows_min[depot][1]

for i in range(num_locations):
index = manager.NodeTolndex(i)
window_start = time windows_min[i][0]

window_end = time windows min[i][1]

if i == depot:
time dimension.CumulVar(index).SetRange(window_start, window_end)
else:
time dimension.SetCumulVarSoftLowerBound(index, window_start,
penalty early) (3.6)
time dimension.SetCumulVarSoftUpperBound(index, window_end,

penalty late) 3.7
for vehicle id in range(num_vehicles):
start_index = routing.Start(vehicle id)
time dimension.CumulVar(start_index).SetRange(depot open_time,
depot_close time)
A.7 Search Parameters & Execution
search params = pywrapcp.DefaultRoutingSearchParameters()
search_params.first_solution strategy = (
routing_enums_pb2.FirstSolutionStrategy. AUTOMATIC)

search_params.time_limit.seconds = 120

solution = routing.SolveWithParameters(search_params)

A.8 Solution Printing & Post-Analysis

Ref. code: 25686722041131TFW

46

def format_time(minutes):
hours = int(minutes // 60)
mins = int(minutes % 60)
return f"' {hours:02d}: {mins:02d}"

def print_solution(manager, routing, solution, distance matrix, demands,
vehicle capacities, vehicle km costs,
vehicle fixed costs_thb,
time dimension, time windows, service times,
penalty early val, penalty late val,
vip_nodes, vip_late penalty thb):

vehicle type names = ["cage truck", "small lorry"]

node names = {
0: "DC NP TIRE", 1: "NV yangyont", 2: "TR Tyre auto", 3: "V Auto Tire",
4: "PWM Power Max", 5: "Lamlukka Max Shop", 6: "NumKarnYang Klong 4",
7: "Klong Chan Auto tire", 8: "G Max Wheels", 9: "Nawamin auto tyre",
10: "Sermmit Tire", 11: "Sportmag100", 12: "Max Design", 13: "LPAutomag",
14: "Sor KarnYang Rama2", 15: "71HHH AUTO.TIRE"

}

if solution:
print(f"'Objective (Travel + Fixed + Solver Penalties):
{solution.ObjectiveValue() / 100:.2f} THB")
total distance =0
total travel cost=0

total _solver early penalty =0
total solver late penalty =0
total real vip penalty =0
vip_violation_details =[]

used vehicles with load =[]
node arrival times = {}

for vehicle id in range(manager.GetNumberOfVehicles()):

index = routing.Start(vehicle id)

route_load =0

temp_index = index

while not routing.IsEnd(temp_index):
node index = manager.IndexToNode(temp_index)
route load += demands[node index]
temp_index = solution.Value(routing. NextVar(temp_index))

if solution.Value(routing.NextVar(index)) != index and route load > 0:
used vehicles with load.append(vehicle id)

Ref. code: 25686722041131TFW

47

print(f"\n--- VIP Customer Policy ---")

vip_names = [node_names[i] for i in vip_nodes if i in node names]

print(f"VIP Customers (Must not be late): {', ' join(vip_names)}")

print(f"VIP Late Penalty (Real Cost): {vip_late penalty thb:.2f} THB per
incident")

print("\n--- Routes for Used Vehicles with Load > 0 ---")

for count, vehicle id in enumerate(used vehicles with load):
index = routing.Start(vehicle id)
route_distance =0
route_load =0
vehicle type id = vehicle id % len(vehicle capacities)
vehicle type name = vehicle type names[vehicle type id]

plan_output = f"Route for Vehicle {count + 1} (Virtual ID: {vehicle id + 1},
Type: {vehicle type name}, Cap: {vehicle capacities[vehicle type id]}, Cost/km:
{vehicle km costs[vehicle type id]}):\n"

time var = time_dimension.CumulVar(index)
arrival_time min = solution.Value(time var)

node index = manager.IndexToNode(index)

plan_output += f" -> {node names[node index]} (D:
{demands[node_index]})"

plan_output += f" [Start Time: {format time(arrival time min)}]\n"

previous_index = index
index = solution.Value(routing.NextVar(index))

while not routing.IsEnd(index):
time var = time_dimension.CumulVar(index)
arrival_time min = solution.Value(time var)

node index = manager.IndexToNode(index)
node arrival times[node index] = arrival time min
route load += demands[node index]

tw_start = time_windows[node_index][0]
tw_end = time_windows[node_index][1]

early diff = max(0, tw_start - arrival time min)

late diff = max(0, arrival time min - tw_end)

status_str=""

if node_index in vip_nodes and late diff> 0:
total real vip penalty += vip late penalty thb

Ref. code: 25686722041131TFW

48

vip_violation_details.append(f"{node names[node index]} (Late
{late_diff} min)")
status_str =" (!!! VIP LATE {late_diff} min !!!)"

elif late diff> 0:
total solver late penalty += late diff * penalty late val
status_str = " (LATE {late diff} min)"

elif early diff> 0:
total solver early penalty += early diff * penalty early val
status_str = {"' (Early {early diff} min)"

else:
status_str = {" (On-Time)"

plan_output += f" -> {node names[node index]} (D:
{demands[node_index]})"

plan_output +=f"\n [Window: {format time(tw_start)}-
{format_time(tw_end)}]"

plan_output += " [Arrive: {format time(arrival time min)}]"

plan_output += status_str

plan_output += f"\n"

route distance +=
distance matrix[manager.IndexToNode(previous_index)][manager.IndexToNode(ind
ex)]

previous_index = index

index = solution.Value(routing. NextVar(index))

time var = time_dimension.CumulVar(index)

arrival_time min = solution.Value(time var)

node index = manager.IndexToNode(index)

plan_output += f" -> {node names[node index]}"

plan_output += f" [Arrive back: {format time(arrival time min)}]\n"

route distance +=
distance matrix[manager.IndexToNode(previous_index)][manager.IndexToNode(ind

ex)]
route travel cost=route distance * vehicle km costs[vehicle type id]
plan_output += f"Total load on route: {route load} | Distance:

{route_distance:.2f} km | Travel Cost: {route travel cost:.2f} THB\n"
print(plan_output)

total distance += route_distance
total travel cost +=route travel cost

print(f"\n--- Summary ---")

Ref. code: 25686722041131TFW

49

print(f"Total number of vehicles used with load > 0:
{len(used vehicles with load)}")

typel count =sum(1 for v_id in used vehicles with load if v_id %
len(vehicle capacities) == 0)

type2 count = sum(1 for v_id in used_vehicles with load if v_id %
len(vehicle capacities) == 1)

print(f" - {vehicle type names[0]} (Cap {vehicle capacities[0]}, Cost
{vehicle fixed costs thb[0]}): {typel count}")

print(f" - {vehicle type names[1]} (Cap {vehicle capacities[1]}, Cost
{vehicle fixed costs thb[1]}): {type2 count}")

print(f"Total distance of all routes with load > 0: {total distance:.2f} km")
print(f"Total load served (across all routes): {sum(demands[1:])}")

print(f"\n--- Customer Satisfaction Summary ---")

print(f'{'Node":<20} | {'Ideal Time":<13} | {'Actual Arrival:<14} |
{'Deviation:<20} | {'Satisfaction':>12}")

print("-" * 87)

SAT PENALTY LATE PER MIN = 1
SAT PENALTY EARLY PER MIN=0.1

all satisfaction scores = []
total demand nodes = range(1, manager.GetNumberOfNodes())

served nodes = set(node_arrival times.keys())
for node index in vip_nodes:
if node_index != depot and node index not in served nodes:
total real vip penalty += vip_late penalty thb
vip_violation_details.append(f"' {node names[node index]} (Not Served)")

for node index in total demand nodes:
node name = node names[node index]
tw_start = time_windows[node index][0]
tw_end = time_windows[node_index][1]
ideal time str = {"{format time(tw_start)}-{format time(tw_end)}"

if node_index in node_arrival times:
arrival_time min = node_arrival times[node index]

arrival_str = format_time(arrival_time min)

early diff = max(0, tw_start - arrival_time min)
late diff = max(0, arrival time min - tw_end)

satisfaction = 100.0
dev_str=""

Ref. code: 25686722041131TFW

50

if node_index in vip_nodes and late diff> 0:
dev_str={"!!l VIP LATE {late diff} min !!!"
sat penalty = late diff * SAT PENALTY LATE PER MIN * 10
satisfaction = max(0, 100 - sat_penalty)

elif early diff> 0:
if early diff >= 60: dev_str = {"Early {early diff/ 60:.1f} hr"
else: dev_str = f"Early {early diff} min"
sat penalty = early diff * SAT PENALTY EARLY PER MIN
satisfaction = max(0, 100 - sat _penalty)

elif late diff> O:
if late_diff >= 60: dev_str = f"Late {late diff/ 60:.1f} hr"
else: dev_str = f"Late {late diff} min"
sat penalty = late diff * SAT PENALTY LATE PER MIN
satisfaction = max(0, 100 - sat_penalty)

else:
dev_str ="On Time"
satisfaction = 100.0

all satisfaction scores.append(satisfaction)
sat str = " {satisfaction:.0f} %"

else:
arrival_str ="---
dev_str ="Not Served"
sat_str="0%"
all satisfaction scores.append(0.0)

print(f'{node name:<20} | {ideal time str:<13} | {arrival str:<14} |
{dev_str:<20} | {sat_str:>12}")

if all satisfaction_scores:
avg sat = sum(all_satisfaction scores) / len(all satisfaction_ scores)
print("-" * 87)
print(f" {'Average Customer Satisfaction::<69} {avg sat:>11.1f}%")
else:
print("No customer nodes found to average.")

print(f"\n--- Cost Breakdown ---")
print(f"Total travel cost: {total travel cost:.2f} THB")

total fixed cost=0
for v_id in used vehicles with load:

Ref. code: 25686722041131TFW

51

vehicle type id =v_id % len(vehicle capacities)
total fixed cost += vehicle fixed costs thb[vehicle type id]

print(f"Total fixed vehicle cost: {total fixed cost:.2f} THB")

print(f"Total VIP Customer Penalty (Real Cost): {total real vip penalty:.2f}
THB")
if vip_violation_details:
print(f" (Violations: {', '.join(sorted(list(set(vip_violation details))))})")

print(f"Total Early Penalty (Solver Guide): {total solver early penalty /
100:.2f} THB")

print(f"Total Late Penalty (Non-VIP, Solver Guide): {total solver late penalty /
100:.2f} THB")

total overall cost=total travel cost+ total fixed cost+ total real vip penalty
print(f"Total overall cost (Travel + Fixed + VIP Penalty):
{total_overall cost:.2f} THB")

print(f"(Solver Objective Value (Travel + Fixed + *Solver* Penalties):
{solution.ObjectiveValue() / 100:.2f} THB)")

else:
print("No solution found.")
print("\nPossible reasons for no solution:")
print("- Total demand exceeds total vehicle capacity.")
print("- Time windows are too tight / infeasible (e.g., travel time > window).")
print("- Solver could not find a solution within search limits/time.")

try:
total demands sum = sum(demands[1:])
num_vehicles_potential = manager.GetNumberOfVehicles() if manager else
num_vehicles
total potential capacity sum = sum([vehicle capacities[i %
len(vehicle capacities)] for i in range(num_vehicles potential)])
print(f"\nTotal demand to serve (excluding depot): {total demands sum}")
print(f"Total potential capacity across all virtual vehicles:
{total potential capacity sum}")
if total demands sum > total potential capacity sum:
print("Diagnosis: Total demand is greater than total potential capacity.")
else:
print("Diagnosis: Total demand is less than or equal to total potential
capacity. Infeasibility is likely due to TIME CONSTRAINTS.")
except Exception as e:
print(f"Diagnosis: Could not perform detailed capacity check. Error: {e}")

Ref. code: 25686722041131TFW

A.9 Main Execution

VIP_NODES = {1, 2}
VIP_LATE PENALTY_ THB = 5000.00

if solution:
print_solution(manager, routing, solution, distance matrix, demands,
vehicle capacities, vehicle km_costs,
vehicle fixed costs_thb,
time dimension, time windows_min, service times min,
penalty early, penalty late,
VIP_NODES, VIP LATE PENALTY_ THB)
else:
print_solution(manager, routing, None, distance matrix, demands,
vehicle capacities, vehicle km_costs,
vehicle fixed costs_thb,
None, time_windows_min, service_times_min,
penalty early, penalty late,
VIP NODES, VIP LATE PENALTY_ THB)

52

Ref. code: 25686722041131TFW

53

APPENDIX B
SOLVER OUTPUT

Objective (Travel + Fixed + Solver Penalties): 18938.09 THB

--- VIP Customer Policy ---
VIP Customers (Must not be late): NV yangyont, TR Tyre auto
VIP Late Penalty (Real Cost): 5000.00 THB per incident

--- Routes for Used Vehicles with Load > 0 ---
Route for Vehicle 1 (Virtual ID: 1, Type: cage truck, Cap: 70, Cost/km: 17):
->DC NP TIRE (D: 0) [Start Time: 08:00]
-> Lamlukka Max Shop (D: 70)
[Window: 10:30-10:40] [Arrive: 10:30] (On-Time)
-> DC NP TIRE [Arrive back: 12:07]
Total load on route: 70 | Distance: 55.20 km | Travel Cost: 938.40 THB

Route for Vehicle 2 (Virtual ID: 5, Type: cage truck, Cap: 70, Cost’km: 17):
-> DC NP TIRE (D: 0) [Start Time: 08:00]
-> NV yangyont (D: 70)
[Window: 08:00-09:15] [Arrive: 09:15] (On-Time)
-> DC NP TIRE [Arrive back: 10:32]
Total load on route: 70 | Distance: 35.60 km | Travel Cost: 605.20 THB

Route for Vehicle 3 (Virtual ID: 6, Type: small lorry, Cap: 120, Cost/km: 22):
-> DC NP TIRE (D: 0) [Start Time: 08:00]
-> Nawamin auto tyre (D: 110)
[Window: 13:00-13:15] [Arrive: 13:00] (On-Time)
-> DC NP TIRE [Arrive back: 14:24]
Total load on route: 110 | Distance: 42.80 km | Travel Cost: 941.60 THB

Route for Vehicle 4 (Virtual ID: 7, Type: cage truck, Cap: 70, Cost’/km: 17):
->DC NP TIRE (D: 0) [Start Time: 08:00]
-> G Max Wheels (D: 95)
[Window: 09:15-09:30] [Arrive: 09:15] (On-Time)
-> Sermmit Tire (D: 25)
[Window: 13:45-14:15] [Arrive: 13:45] (On-Time)
-> DC NP TIRE [Arrive back: 15:11]
Total load on route: 120 | Distance: 63.30 km | Travel Cost: 1076.10 THB

Route for Vehicle 5 (Virtual ID: 8, Type: small lorry, Cap: 120, Cost/km: 22):

->DC NP TIRE (D: 0) [Start Time: 08:00]
-> Klong Chan Auto tire (D: 105)

Ref. code: 25686722041131TFW

54

[Window: 11:30-11:55] [Arrive: 11:30] (On-Time)
-> DC NP TIRE [Arrive back: 13:00]
Total load on route: 105 | Distance: 49.00 km | Travel Cost: 1078.00 THB

Route for Vehicle 6 (Virtual ID: 9, Type: cage truck, Cap: 70, Cost’/km: 17):
-> DC NP TIRE (D: 0) [Start Time: 08:00]
-> NumKarnYang Klong 4 (D: 110)
[Window: 11:00-11:35] [Arrive: 11:00] (On-Time)
-> Sportmag100 (D: 10)
[Window: 14:20-14:40] [Arrive: 14:20] (On-Time)
-> DC NP TIRE [Arrive back: 15:42]
Total load on route: 120 | Distance: 63.70 km | Travel Cost: 1082.90 THB

Route for Vehicle 7 (Virtual ID: 10, Type: small lorry, Cap: 120, Cost/km: 22):
-> DC NP TIRE (D: 0) [Start Time: 08:00]
>V Auto Tire (D: 80)
[Window: 09:00-09:15] [Arrive: 09:00] (On-Time)
-> DC NP TIRE [Arrive back: 10:07]
Total load on route: 80 | Distance: 26.10 km | Travel Cost: 574.20 THB

Route for Vehicle 8 (Virtual ID: 11, Type: cage truck, Cap: 70, Cost/km: 17):
-> DC NP TIRE (D: 0) [Start Time: 08:00]
-> Max Design (D: 85)
[Window: 14:45-15:20] [Arrive: 14:45] (On-Time)
-> LPAutomag (D: 25)
[Window: 15:30-15:40] [Arrive: 15:54] (LATE 14 min)
-> DC NP TIRE [Arrive back: 17:27]
Total load on route: 110 | Distance: 59.90 km | Travel Cost: 1018.30 THB

Route for Vehicle 9 (Virtual ID: 12, Type: small lorry, Cap: 120, Cost/km: 22):
->DC NP TIRE (D: 0) [Start Time: 08:00]
-> TR Tyre auto (D: 120)
[Window: 08:30-08:45] [Arrive: 08:34] (On-Time)
-> DC NP TIRE [Arrive back: 09:48]
Total load on route: 120 | Distance: 33.60 km | Travel Cost: 739.20 THB

Route for Vehicle 10 (Virtual ID: 13, Type: cage truck, Cap: 70, Cost/km: 17):
-> DC NP TIRE (D: 0) [Start Time: 08:00]
-> PWM Power Max (D: 30)
[Window: 09:45-10:15] [Arrive: 10:15] (On-Time)
-> Sor KarnYang Rama?2 (D: 65)
[Window: 16:00-16:30] [Arrive: 16:00] (On-Time)
- 71HHH AUTO.TIRE (D: 10)
[Window: 16:40-17:00] [Arrive: 17:19] (LATE 19 min)
-> DC NP TIRE [Arrive back: 19:00]
Total load on route: 105 | Distance: 98.10 km | Travel Cost: 1667.70 THB

Ref. code: 25686722041131TFW

55

--- Summary ---
Total number of vehicles used with load > 0: 10
- cage truck (Cap 70, Cost 600): 6
- small lorry (Cap 120, Cost 1000): 4
Total distance of all routes with load > 0: 527.30 km
Total load served (across all routes): 1010

--- Customer Satisfaction Summary ---

Node | Ideal Time | Actual Arrival | Deviation | Satisfaction

NV yangyont | 08:00-09:15 |09:15 | On Time | 100%

TR Tyre auto | 08:30-08:45 |08:34 | On Time | 100%

V Auto Tire | 09:00-09:15 |09:00 | On Time | 100%

PWM Power Max | 09:45-10:15 |10:15 | On Time | 100%
Lamlukka Max Shop | 10:30-10:40 |10:30 | On Time] 100%
NumKarnYang Klong 4 | 11:00-11:35 | 11:00 | On Time | 100%
Klong Chan Auto tire | 11:30-11:55 | 11:30 | On Time] 100%

G Max Wheels | 09:15-09:30 |09:15 | On Time] 100%
Nawamin auto tyre | 13:00-13:15 | 13:00 | On Time | 100%
Sermmit Tire | 13:45-14:15 |13:45 | On Time | 100%
Sportmag100 | 14:20-14:40 | 14:20 | On Time | 100%

Max Design | 14:45-15:20 | 14:45 | On Time | 100%
LPAutomag | 15:30-15:40 | 15:54 | Late 14 min | 86%

Sor KarnYang Rama2 | 16:00-16:30 | 16:00 | On Time | 100%
71HHH AUTO.TIRE | 16:40-17:00 | 17:19 | Late 19 min | 81%
Average Customer Satisfaction: 97.8%

--- Cost Breakdown ---

Total travel cost: 9721.60 THB

Total fixed vehicle cost: 7600.00 THB

Total VIP Customer Penalty (Real Cost): 0.00 THB

Total Early Penalty (Solver Guide): 0.00 THB

Total Late Penalty (Non-VIP, Solver Guide): 16.50 THB

Total overall cost (Travel + Fixed + VIP Penalty): 17321.60 THB

(Solver Objective Value (Travel + Fixed + *Solver* Penalties): 18938.09 THB)

Ref. code: 25686722041131TFW

56

APPENDIX C
SOLVER SETTINGS AND CONFIGURATION

The heterogeneous fleet VRP model was implemented in Python using Google
Colab and solved with the OR-Tools routing library. Solver settings and platform

details are summarized below.

Table C.1 Solver configuration and platform details

Component Configuration Details
Platform Google Colab (Python 3 environment)
Solver OR-Tools Constraint Solver (Routing Library)
Engine Constraint Programming (CP) with LNS/GLS Metaheuristics
Model Tvpe Heterogeneous Fleet VRP with Time Windows (HFVRPTW)
yp Constraints: Capacity, Time Windows, Soft Penalties
Time Limit 120 seconds per run (stopping condition for search)
Metaheuristic Large Neighborhood Search (LNS) / Guided Local Search (GLS)
Search . . o
AUTOMATIC (Combines first solution heuristics + local search)
Strategy
Fixed Costs Applied per vehicle type (Cage Truck = 600 THB, Small Lorry = 1,000
THB)
Route assignments, vehicle usage, total cost (Fixed + Travel + VIP),
Output . .
satisfaction
Validation Feasibility checked via Capacity and Time Window dimensions

Ref. code: 25686722041131TFW

57

BIOGRAPHY

Name Peesit Tangtung

Education 2024: Bachelor of Science (Engineering Management)

Sirindhorn International Institute of Technology

Thammasat University

Ref. code: 25686722041131TFW

