

DELIVERY OPTIMIZATION VIA HETEROGENEOUS

FLEET

BY

PEESIT TANGTUNG

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF ENGINEERING (LOGISTICS AND SUPPLY

CHAIN SYSTEMS ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2025

Ref. code: 25686722041131TFW

(1)

Independent Study Title DELIVERY OPTIMIZATION VIA

HETEROGENEOUS FLEET

Author Peesit Tangtung

Degree Master of Engineering (Logistics and Supply

Chain Systems Engineering)

Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Advisor Associate Professor Sun Olapiriyakul, Ph.D.

Academic Years 2025

ABSTRACT

 This research optimizes tire distribution operations through a heterogeneous

fleet vehicle routing problem with time window (HFVRPTW) solved with Google OR-

Tools. The model minimizes total transportation costs, including fixed and distance-

based variable costs, while meeting customer demands from a central depot. A

heterogeneous fleet with varying capacities and cost structures is considered, enabling

efficient vehicle allocation and allowing multiple trips per vehicle. By addressing key

constraints such as vehicle capacity, demand, and route distances, the model determines

optimal routes and vehicle assignments. Results show that a heterogeneous fleet

provides greater flexibility and significant cost savings compared to a uniform fleet,

offering practical insights for logistics optimization and efficiency improvement in

distribution networks.

Keywords: Vehicle routing problem (vrp), Fleet routing problem, Distribution routing

problem, Delivery routing problem, Route optimization problem, Distribution

system optimization, Time window, Heterogeneous fleet

Ref. code: 25686722041131TFW

(2)

ACKNOWLEDGEMENTS

 First and foremost, I would like to express my deepest and most sincere

gratitude to my advisor, Associate Professor Sun Olapiriyakul, Ph.D., for his invaluable

guidance, and dedicated support throughout the entire process of this thesis. His

expertise, insightful feedback, and patience have not only shaped the direction of my

research but have also greatly enriched my academic journey. Without his kind

mentorship, this thesis would not have been possible. I am truly indebted for the

countless hours he has devoted to guiding me, the constructive criticisms that

challenged me to think critically, and the inspiration he has given me to strive for

academic excellence.

 I am also profoundly grateful to the faculty members and staff of

the Sirindhorn International Institute of Technology (SIIT), Thammasat University, for

providing me with a world-class academic environment in which to learn, grow, and

pursue my Master’s degree in Logistics and Supply Chain Systems Engineering

(LSCSE). Their knowledge, professionalism, and support have been essential in

expanding my perspective and deepening my understanding in this field.

 I would like to extend heartfelt appreciation to my friends and classmates,

who have shared this academic journey with me. The discussions, collaborations, and

encouragement we exchanged not only helped me academically but also made this

journey enjoyable and fulfilling. Their friendship and support have created cherished

memories that I will carry with me long after this program.

 Most importantly, I am profoundly grateful to my beloved family for their

unconditional love, understanding, and endless encouragement. Their faith in me has

been a constant source of strength and motivation. To my parents, who have always

believed in my potential and supported me in every possible way, this achievement is

as much theirs as it is mine.

 Finally, to everyone who has contributed, directly or indirectly, to the

completion of this thesis, I extend my sincere thanks and appreciation. This work stands

as a testament not only to my efforts but also to the collective support, inspiration, and

kindness I have been fortunate to receive along the way.

Peesit Tangtung

Ref. code: 25686722041131TFW

(3)

TABLE OF CONTENTS

 Page

ABSTRACT (1)

ACKNOWLEDGEMENTS (2)

LIST OF TABLES (6)

LIST OF FIGURES (7)

LIST OF SYMBOLS/ABBREVIATIONS (8)

CHAPTER 1 INTRODUCTION 1

1.1 Background and Problem context 1

1.1.1 Challenges in Transportation Planning 2

1.1.2 The Role of a Heterogeneous Fleet 2

1.2 Objectives and Methodological Framework 2

1.2.1Application of Google OR-Tools 3

CHAPTER 2 REVIEW OF LITERATURE 4

2.1 Importance of Vehicle Routing Optimization in Heterogeneous Fleet

Distribution Systems 4

2.2 Leveraging Heterogeneous Fleet Models for Realistic Routing Scenarios 5

2.3 Addressing Multi-Vehicle and Multi-Depot Routing Challenges 6

2.4 Integrating OR-Tools and AI for Scalable Routing Solutions 7

2.5 Integrating Sensitivity Analysis for Robust Vehicle Routing and

Distribution Optimization 8

2.6 Research Gap and Contributions of the Study 9

Ref. code: 25686722041131TFW

(4)

CHAPTER 3 METHODOLOGY 11

3.1 Research Design 11

3.1.1 Scenario 1: Baseline Performance Quantification 11

3.1.2 Scenario 2: Unconstrained Theoretical Optimum 12

3.1.3 Scenario 3: Prescriptive Optimization & Robustness Testing 12

3.2 Mathematical Model Formulation 13

3.2.1 Sets and Indices 13

3.2.2 Parameters 14

3.2.3 Decision Variables 14

3.2.4 Objective Function 15

3.2.5 Constraints 16

3.3 Model Assumptions 18

3.4 Tools and Technologies 19

3.4.1 Python Programming Language 20

3.4.2 Google OR-Tools 20

3.4.3 Routing Model Components 21

3.4.4 Metaheuristic Optimization 22

3.4.5 Visualization Tools 23

3.5 Data Preparation 24

3.6 Implementation Process 28

CHAPTER 4 RESULT 29

4.1 Scenario 1 Analysis: The Legacy Policy Structure 29

4.1.1 Interpretation of Findings Scenario 1 30

4.2 Scenario 2: Establishing the True Cost Baseline (The Constraint Trap) 30

4.2.1 Interpretation of Findings: The Constraint Trap 31

4.3 Scenario 3: Optimal Policy Discovery & Sensitivity Analysis 31

4.3.1 The Marginal Cost of Perfection (Policy Extremes) 31

4.3.2 The Global Optimum ("Sweet Spot" Policy) 32

4.3.2.1 Analysis and Conclusion 33

Ref. code: 25686722041131TFW

(5)

CHAPTER 5 DISCUSSION AND CONCLUSION 34

5.1 Discussion of Key Findings 34

5.1.1 The Global Optimum and the Failure of Pure Cost Minimization 34

5.1.2 The Economic Impact of Legacy Constraint 35

5.1.3 The De-coupling of Service Quality from Resource Scarcity 35

5.2 Conclusion 36

5.3 Strategic Recommendations 36

5.4 Limitations and Future Research 37

REFERENCES 38

APPENDICES

APPENDIX A 41

APPENDIX B 53

APPENDIX C 56

BIOGRAPHY 57

Ref. code: 25686722041131TFW

(6)

LIST OF TABLES

Tables Page

2.1 Literature on VRP Models and Solution Methods 8

3.1 Table comparing different metaheuristics 22

3.2 Node to Customer Mapping for Routing Model 25

3.3 Customer Distance Matrix 26

3.4 Customer Nodes and Weekly Demand 27

3.5 Vehicle Specifications by Type 27

4.1 Fleet-Level Summary of Routing Metrics 29

4.2 Comparative Routing Performance by Vehicle Type 30

4.3 Marginal Cost Analysis of Service Level Extremes 31

4.4 Sensitivity Analysis and Global Optimum Discovery 32

C.1 Solver configuration and platform details 56

Ref. code: 25686722041131TFW

(7)

LIST OF FIGURES

Figures Page

3.1 Visualization Map from Google my map 24

Ref. code: 25686722041131TFW

(8)

LIST OF SYMBOLS/ABBREVIATIONS

Symbols/Abbreviations Terms

ALNS Adaptive Large Neighborhood

 Search

CP Constraint Programming

CVRP Capacitated Vehicle Routing

 Problem

GLS Guided Local Search

HFVRP Heterogeneous Fleet Vehicle

 Routing Problem

HFVRPTW Heterogeneous Fleet Vehicle

 Routing Problem with Time

 Windows

KPIs Key Performance Indicators

LNS Large Neighborhood Search

LSCSE Logistics and Supply Chain Systems

 Engineering

MDVRP Multi-Depot Vehicle Routing

 Problem

MILP Mixed-Integer Linear Programming

MVRP Multi-Vehicle Routing Problem

OT Overtime

SA Simulated Annealing

TS Tabu Search

VNS Variable Neighborhood Search

VRP Vehicle Routing Problem

Ref. code: 25686722041131TFW

1

CHAPTER 1

INTRODUCTION

In the evolving domain of logistics and supply chain management,

transportation planning has emerged as a strategic function that directly influences cost

efficiency, service reliability, and operational agility. As distribution networks grow

more complex and customer expectations for on-time delivery intensify, organizations

must adopt intelligent planning tools to manage operations with precision. This study

explores a real-world transportation challenge at "DC NP TIRE," a Bangkok-based tire

distributor, where the selection of appropriate vehicle types from a heterogeneous fleet

plays a pivotal role in optimizing performance.

This chapter begins by establishing the background and context of the specific

problem facing DC NP TIRE, followed by a discussion of the multifaceted challenges

inherent in its transportation planning. It then introduces the company's heterogeneous

fleet as a strategic lever for cost control. Finally, the chapter outlines the objectives and

methodological framework of the study, highlighting the application of Google OR-

Tools to solve a complex Vehicle Routing Problem (VRP) and uncover a non-intuitive

"Sweet Spot" (Win-Win) solution.

1.1 Background and Problem Context

Transportation planning is a cornerstone of the operation at DC NP TIRE. It

determines not only how goods are moved to its 15 key customers but also how

effectively resources are utilized across this network. In this tire distribution context,

where delivery demands vary and service requirements differ by location, relying on

manual planning or a "one-size-fits-all" strategy leads to significant inefficiencies such

as underutilized vehicle capacity, excessive fuel consumption, and missed delivery

windows. These inefficiencies are amplified by the need to manage driver overtime and

avoid costly penalties.

Ref. code: 25686722041131TFW

2

1.1.1 Challenges in Transportation Planning

The complexity of delivering goods to 15 destinations with varying demand

levels, all while adhering to specific ideal time windows, presents a formidable

optimization problem. Without a strategic framework, the system suffers from

mismatched vehicle assignments, redundant trips, and elevated operational costs. The

core challenge lies in balancing two conflicting objectives:

• Cost Minimization: Reducing fixed costs (number of vehicles used),

variable costs (fuel and distance), and overtime pay.

• Service Quality: Maximizing customer satisfaction by ensuring on-time

delivery, especially to VIP customers where late arrivals incur real

financial penalties.

1.1.2 The Role of a Heterogeneous Fleet

Deploying a heterogeneous fleet—comprising 5 "Cage Trucks" (70 capacity)

and 8 "Small Lorries" (120 capacity), each with different fixed and variable operating

costs—offers a pragmatic solution to these challenges. By aligning the correct vehicle

selection with specific route characteristics and customer demands, the organization

can achieve higher resource utilization and lower total costs. This study leverages this

fleet diversity as a key tactical advantage in the optimization model.

1.2 Objectives and Methodological Framework

The primary objective of this study is to develop a delivery optimization model

tailored to the specific context of DC NP TIRE. The model evaluates customer demand

and determines the optimal vehicle type, sequence, and route for each delivery.

A key objective is to challenge the conventional wisdom that higher service

must result in higher costs. This study seeks to prove that a "globally optimal" solution

exists that is both lower in cost and higher in service than the baseline "cost-focused"

strategy. The model emphasizes integrating real-world constraints, including vehicle

capacities, ideal time windows, and the asymmetric cost of service failures.

Ref. code: 25686722041131TFW

3

1.2.1 Application of Google OR-Tools

To address the complexity of this Heterogeneous Fleet Vehicle Routing

Problem with Time Windows (HFVRPTW), the study employs Google OR-Tools. This

library is well-suited for this application, supporting multi-vehicle routing, capacity

constraints, and complex cost structures.

The model is used to conduct a comparative scenario analysis (Baseline vs. No-

OT models) and a decisive sensitivity analysis on service-level penalties. The outputs

optimal routes, total costs, and satisfaction scores serve as actionable insights to prove

the existence of the "Sweet Spot" and provide a clear, data-driven recommendation for

management.

Ref. code: 25686722041131TFW

4

CHAPTER 2

REVIEW OF LITERATURE

2.1 Importance of Vehicle Routing Optimization in Heterogeneous Fleet

Distribution Systems

In today’s increasingly complex and competitive logistics landscape,

optimizing vehicle routing is essential for improving delivery efficiency, reducing

operational costs, and enhancing customer satisfaction. The Vehicle Routing Problem

(VRP) and its variants such as the Capacitated VRP (CVRP), Multi-Vehicle Routing

Problem (MVRP), and Fleet Routing Problem play a central role in distribution system

optimization, especially when dealing with heterogeneous fleets. These fleets,

composed of vehicles with varying capacities, costs, and operational constraints,

introduce additional layers of complexity that demand advanced algorithmic solutions.

Traditional VRP models often assume homogeneous fleets and static demand,

which limits their applicability in real-world scenarios. To address this, modern

approaches incorporate fleet heterogeneity, time windows, and multiple depots. Liu,

Jabali, and Dekker (2023) proposed a green VRP model that integrates multi-depot,

multi-tour, and split deliveries for heterogeneous fleets, demonstrating significant

improvements in both cost and environmental performance. Their model reflects the

growing need for flexible routing systems that accommodate diverse vehicle

characteristics and sustainability goals. Nalepa and Blocho (2021) conducted a

comprehensive review of VRP models, highlighting the evolution of routing strategies

in response to real-world constraints such as traffic congestion, delivery time windows,

and fleet diversity. Their classification framework provides a foundation for selecting

appropriate algorithms based on operational context, reinforcing the importance of

tailored routing solutions. Eksioglu, Vural, and Reisman (2020) emphasized the role

of advanced heuristics and metaheuristics in solving large-scale VRPs, particularly

those involving heterogeneous fleets. Their study demonstrated that hybrid approaches

combining genetic algorithms, tabu search, and local search can effectively balance

route efficiency with computational feasibility. Bouanane, Amrani and Benadada

(2022) further explored the impact of fleet diversity on routing performance, showing

Ref. code: 25686722041131TFW

5

that heterogeneous fleet models outperform homogeneous ones in terms of cost savings

and service reliability. Their findings underscore the practical benefits of incorporating

vehicle-specific parameters into routing algorithms.

As logistics systems evolve, the integration of intelligent routing algorithms

with scalable optimization tools offers promising avenues for enhancing distribution

performance. By capturing the nuances of vehicle diversity and operational constraints,

heterogeneous fleet models enable more realistic and efficient routing strategies, paving

the way for smarter transport networks.

2.2 Leveraging Heterogeneous Fleet Models for Realistic Routing Scenarios

In real-world logistics operations, fleets are rarely uniform. Vehicles differ in

capacity, cost, fuel efficiency, and operational constraints, making heterogeneous fleet

modeling a critical advancement in vehicle routing research. The Heterogeneous Fleet

Vehicle Routing Problem (HFVRP) extends classical VRP formulations by

incorporating these variations, enabling more accurate and cost-effective route

planning. Traditional VRP models often assume identical vehicles, which

oversimplifies the complexities of modern distribution systems. Subramanian and

Ochi (2012). addressed this gap by proposing a hybrid algorithm for HFVRP with time

windows, combining genetic algorithms and local search to improve solution quality.

Their model demonstrated superior performance in minimizing total travel distance

while respecting vehicle-specific constraints, highlighting the importance of hybrid

heuristics in heterogeneous environments. Afshar-Nadjafi (2016) further explored

HFVRP by integrating multiple depots and delivery time windows. Their optimization

framework used adaptive large neighborhood search (ALNS) to dynamically adjust

routes based on vehicle characteristics and depot availability. This approach

significantly reduced operational costs and improved delivery reliability, especially in

large-scale urban networks. Avci and Topaloglu (2016) introduced a hybrid

metaheuristic for HFVRP with split deliveries, allowing partial fulfillment of customer

demand across multiple vehicles. This flexibility is particularly useful in scenarios with

fluctuating demand and limited vehicle capacity. Their results showed that split

delivery strategies, when combined with fleet diversity, can enhance service levels and

reduce the number of required trips. Kaewman and Akararungruangkul (2018)

Ref. code: 25686722041131TFW

6

contributed to the practical implementation of HFVRP by developing heuristic

algorithms tailored to fleets with excessive demand and longest time constraints. Their

framework emphasized the importance of balancing delivery efficiency with service

time limitations, offering valuable insights for logistics providers operating under tight

schedules and varied vehicle capabilities.

As logistics systems become more dynamic and customer expectations rise,

heterogeneous fleet models provide the necessary flexibility to meet diverse operational

demands. By capturing the nuances of vehicle diversity, these models enable more

realistic and efficient routing solutions, paving the way for smarter distribution

strategies.

2.3 Addressing Multi-Vehicle and Multi-Depot Routing Challenges

As distribution networks scale and diversify, the complexity of coordinating

multiple vehicles across multiple depots becomes a central challenge in logistics

optimization. The Multi-Vehicle Routing Problem (MVRP) and Multi-Depot Vehicle

Routing Problem (MDVRP) extend classical VRP models by introducing additional

layers of operational coordination, such as depot assignment, vehicle scheduling, and

route synchronization. Despaux and Basterrech (2016) tackled the MDVRP with time

windows and heterogeneous fleets, proposing a hybrid algorithm that integrates tabu

search and adaptive memory programming. Their model demonstrated improved

delivery efficiency and reduced total cost, especially in scenarios with tight time

constraints and diverse vehicle capabilities. This highlights the importance of depot-

aware routing strategies in large-scale logistics systems. Stodola (2018) explored

metaheuristics for MDVRP, emphasizing the role of variable neighborhood search

(VNS) and genetic algorithms in solving complex routing problems. Their study

showed that combining multiple heuristics can significantly enhance solution quality

and computational speed, particularly in high-dimensional routing environments. Wang,

Zhe , Sun and Wang (2022) introduced a coordinated routing framework for multi-

vehicle systems with depot constraints. Their model incorporated depot-specific service

levels and vehicle availability, enabling dynamic reassignment of routes based on real-

time demand fluctuations. This approach proved effective in minimizing delivery

delays and balancing workload across depots. Bektas and Laporte (2021) provided a

Ref. code: 25686722041131TFW

7

comprehensive review of MVRP models and solution methods, categorizing them

based on fleet composition, depot structure, and routing objectives. Their work serves

as a foundational reference for researchers and practitioners seeking to design scalable

and flexible routing systems. By addressing the intricacies of multi-vehicle and multi-

depot coordination, these models enable logistics providers to optimize resource

allocation, reduce operational bottlenecks, and improve overall service reliability.

2.4 Integrating OR-Tools and AI for Scalable Routing Solutions

The rise of open-source optimization libraries and artificial intelligence has

transformed the way vehicle routing problems are approached. Google’s OR-Tools, in

particular, has become a go-to platform for solving complex routing scenarios, offering

flexibility, scalability, and integration with real-time mapping APIs. Cuvelier,Didier,

Furnon, Gay, Mohajeri and Perron conducted a comparative study between OR-

Tools and SCIP, demonstrating that OR-Tools not only achieved faster execution times

but also required fewer lines of code to solve CVRP with time windows. This makes it

highly suitable for real-time delivery routing applications, especially in dynamic urban

environments developed a suite of customized VRP models using OR-Tools and

Python, incorporating constraints such as load/unload demands, depot scheduling, and

time windows. The integration with Google’s Distance Matrix API allowed for accurate

travel time estimation, showcasing the practical utility of OR-Tools in transport

network optimization. Tahir (2024) explored AI-enhanced routing using deep learning

and OR-Tools, proposing a hybrid framework that combines predictive modeling with

constraint-based optimization. Their approach improved route efficiency and reduced

computational overhead, particularly in scenarios with fluctuating demand and traffic

conditions.

Google Developers (n.d.) provide extensive documentation on OR-Tools,

including methods like AddDimensionWithVehicleCapacity, which allow for vehicle-

specific capacity modeling. This flexibility is crucial for heterogeneous fleet routing

and real-time logistics planning.

By integrating AI and scalable optimization tools, logistics systems can achieve

higher levels of responsiveness, adaptability, and cost-efficiency, paving the way for

smarter and more sustainable delivery networks.

Ref. code: 25686722041131TFW

8

2.5 Integrating Sensitivity Analysis for Robust Vehicle Routing and Distribution

Optimization

In complex logistics systems, small changes in input parameters such as

demand, travel time, fuel cost, or vehicle capacity can significantly impact routing

decisions and overall performance. Sensitivity analysis plays a crucial role in evaluating

the robustness of vehicle routing models by identifying which variables most influence

outcomes and how resilient solutions are to uncertainty. Sabet and Farooq

(2022)conducted a sensitivity analysis on heterogeneous fleet routing models,

examining how variations in fuel cost and vehicle capacity affect total delivery cost and

route feasibility. Their findings revealed that even minor fluctuations in fuel prices

could shift optimal vehicle assignments, underscoring the need for adaptable routing

strategies in volatile environments Yu, Zhang, Yu, Sun, & Huang (2020) applied

sensitivity analysis to a multi-depot vehicle routing problem with time windows,

focusing on demand variability and service time constraints. Their study demonstrated

that route efficiency and customer satisfaction were highly sensitive to changes in

delivery time windows, suggesting that flexible scheduling mechanisms are essential

for maintaining performance under uncertainty.

Table 2.1 Literature on VRP Models and Solution Methods

Authors Routing Model

Objective

Function

Fleet

Type

Constraints

Considered

Depot

Struct

ure

Time

Windo

w

Solution

Method

Liu, Jabali & Dekker

(2023)

Green VRP with

split deliveries

Minimize

cost &

emissions

Heterogen

eous

Capacity,

emissions, multi-

tour

Multi-

depot

Ye

s

Heuristic +

MILP

Nalepa & Blocho

(2021)

VRP classification

review

Model

taxonomy Mixed

Traffic, fleet

diversity, delivery

constraints

Variou

s

Mi

xe

d

Literature

synthesis

Eksioglu, Vural &

Reisman (2020)

VRP solution

methods

Minimize

cost Mixed

Capacity, routing

complexity

Variou

s

Mi

xe

d

Heuristic &

metaheuristic

Bouanane, K., Amrani

& Benadada (2022)

VRP model

review

Cost &

service

reliability Mixed

Fleet diversity,

demand patterns

Variou

s

Mi

xe

d

Comparative

analysis

Ref. code: 25686722041131TFW

9

Kaewman &

Akararungruangkul

(2018)

HFVRP with time

constraints

Minimize

cost

Heterogen

eous

Excess demand,

longest time

Single

depot

Ye

s

Heuristic

algorithm

Subramanian, Penna,

Uchoa & Ochi (2012)

HFVRP with time

windows

Minimize

distance

Heterogen

eous

Capacity, time

windows

Single

depot

Ye

s

Hybrid Genetic

Algorithm

Afshar-Nadjafi (2016).

HFVRP with

multiple depots

Minimize

total cost

Heterogen

eous

Depot

assignment, time

windows

Multi-

depot

Ye

s

Adaptive Large

Neighborhood

Avci & Topaloglu,

(2016)

HFVRP with split

deliveries

Minimize

cost

Heterogen

eous

Split delivery,

route length

Single

depot No

Hybrid

Metaheuristic

Despaux & Basterrech

(2016)

MDVRP with

heterogeneous

fleet

Minimize

total cost

Heterogen

eous

Capacity, time

windows

Multi-

depot

Ye

s

Tabu Search +

Adaptive

Memory

Stodola (2022) MDVRP

Minimize

route cost

Homogen

eous

Depot

coordination,

route

synchronization

Multi-

depot

Ye

s

Variable

Neighborhood

Search

Wang, Zhe , Sun &

Wang (2022)

Coordinated

multi-vehicle

routing

Minimize

delay &

cost Mixed

Depot constraints,

vehicle

availability

Multi-

depot

Ye

s

Dynamic

Reassignment

Cuvelier, Didier,

Furnon, Gay, Mohajeri

& Perron

CVRP with time

windows

Minimize

cost Mixed

Capacity, time

windows

Single

depot

Ye

s

OR-Tools vs

SCIP

Tahir (2024) AI-enhanced VRP

Minimize

route cost Mixed

Traffic, demand

prediction

Single

depot

Ye

s

Deep Learning

+ OR-Tools

Euchi & Yassine

(2023) Sustainable VRP

Minimize

fuel &

distance Mixed

Fuel usage, route

length

Single

depot No

Hybrid

metaheuristics

Yu, Zhang,Yu, Sun, &

Huang (2020)

Green VRP with

LNS

Minimize

cost &

emissions Mixed

Neighborhood

selection,

emissions

Single

depot No

Large

Neighborhood

Search

This paper

CVRP, HFVRP,

VRPTW,

Sensitivity

Analysis (After

Proposal)

Minimize

total

distance,

vehicle

usage, cost

Heterogen

eous

Vehicle capacity,

demand, time

windows (after

proposal), fuel

cost, demand

variability

Single

depot

Ye

s

OR-Tools

(Python),

constraint

modeling, LNS,

scenario testing

Table 2.1 summarizes key studies on VRP models and solution methods. It

compares routing types, objectives, fleet configurations, constraints, and solution

techniques, providing context for the methodological choices in this study.

2.6 Research Gap and Contributions of the Study

While vehicle routing problems (VRP) have been widely studied, many existing

models still rely on simplified assumptions such as homogeneous fleets, static demand,

and limited operational constraints. These limitations reduce their applicability in real-

Ref. code: 25686722041131TFW

10

world logistics systems, which often involve diverse vehicle types, fluctuating delivery

conditions, and the need for flexible, scalable solutions.

Moreover, although Google OR-Tools is a powerful and accessible optimization

platform, few academic studies provide detailed, customizable implementations that

reflect practical routing challenges especially for heterogeneous fleets. Sensitivity

analysis and time window constraints, which are crucial for evaluating robustness and

responsiveness, are often underrepresented in current literature.

This study addresses these gaps by developing a customizable VRP framework

using Google OR-Tools that supports heterogeneous fleet configurations and capacity

constraints. The model is designed to reflect operational realities and can be adapted to

various logistics scenarios.

In addition, the study provides a modular codebase that can be extended to

include time window constraints and sensitivity analysis in future phases. This

flexibility ensures that the model remains relevant as delivery conditions evolve and

complexity increases.

To support both academic and practical use, the research also includes a

structured comparative literature review and implementation summary. These

components serve as a reference for future studies and logistics teams seeking to apply

optimization tools in real-world settings.

Finally, the study lays the foundation for scenario testing and robustness

evaluation, which will be conducted in the next stage of the research. By bridging the

gap between theoretical models and practical routing systems, this work contributes a

scalable and adaptable approach to distribution system optimization, with clear

pathways for future enhancement.

Ref. code: 25686722041131TFW

11

CHAPTER 3

METHODOLOGY

3.1 Research Design

This study employs a quantitative, computational modeling methodology to

investigate the impact of operational policies on logistics network performance. The

research design is anchored in a three-phase comparative scenario analysis, with each

phase structured to isolate specific variables and build upon the insights of the last.

The entire experimental framework is formulated as a Heterogeneous Fleet

Vehicle Routing Problem with Time Windows (HFVRPTW). This complex

optimization model accounts for the use of different vehicle types (heterogeneous fleet)

and the critical constraint of delivery deadlines (time windows). The model is

computationally solved using the Google OR-Tools library, a powerful open-source

suite for combinatorial optimization.

The core of the methodology unfolds across the following three experimental

scenarios.

3.1.1 Scenario 1: Baseline Performance Quantification

This initial phase serves as the experimental control for the entire study. It is

designed to create a high-fidelity benchmark of the company's current logistics

network.

• Objective: To establish a comprehensive, quantitative benchmark of the

existing operational status quo.

• Method: The HFVRPTW model is configured to mirror the company's

current operational reality, most notably by strictly enforcing its "overtime-

constrained" policy. All existing fleet sizes, driver schedules, customer

locations, and demand data are held constant.

• Expected Insight: The output from this scenario provides a clear baseline

dataset. It quantifies key performance indicators (KPIs) such as total

operational cost, on-time delivery percentages, total mileage, and asset

(vehicle/driver) utilization under the current rule set. This baseline is the

Ref. code: 25686722041131TFW

12

essential point of comparison against which all subsequent scenarios are

measured.

3.1.2 Scenario 2: Unconstrained Theoretical Optimum

The second phase moves from a descriptive model to a diagnostic one. It seeks to

understand the "true" capabilities and inherent trade-offs of the network by

computationally removing its most significant operational constraint.

• Objective: To isolate and quantify the specific impact of the overtime policy

on network performance and to identify the system's "true" unconstrained trade-

offs.

• Method: This scenario utilizes the same core data as Scenario 1 but with one

critical modification: the overtime constraint is completely removed. This

allows the optimization solver to operate in a "blue-sky" or "ideal-state"

environment, prioritizing the most efficient routing solutions regardless of

arbitrary work-hour limits.

• Expected Insight: By comparing the results of Scenario 2 to Scenario 1, this

study can precisely quantify the cost of the constraint—that is, how much cost,

time, and inefficiency are directly attributable to the overtime policy alone. This

phase reveals the latent optimization potential within the network and provides

a theoretical "best-case" ceiling for performance.

3.1.3 Scenario 3: Prescriptive Optimization & Robustness Testing

The final and most complex phase transitions the research from descriptive

analysis to prescriptive recommendation. It is a two-part experiment designed to first

find a new "globally optimal" policy and then validate its practicality against real-world

pressures.

• Objective: To identify a new, globally optimal "Sweet Spot" by tuning service-

level penalties and subsequently to test the robustness of this new policy against

the complexities of real-world operational exceptions.

• Method (Part A: Sensitivity Analysis): This sub-phase conducts a

comprehensive sensitivity analysis by systematically iterating the "service

penalty" parameter within the model. This parameter assigns a high virtual cost

Ref. code: 25686722041131TFW

13

for failing to meet a time window, allowing the model to find the most effective

balance between the cost of service(e.g., using more trucks) and the cost of

failure (e.g., missing a delivery). The configuration that yields the best system-

wide cost-service balance is identified as the "globally optimal" Sweet Spot.

• Method (Part B: Robustness Test): The newly identified optimal policy from

Part A is then subjected to a final "stress test." In this sub-phase, the model

incorporates a realistic "VIP Customer Policy"—an exception-handling rule

that forces the network to prioritize certain high-value clients, even if it is not a

"globally" efficient decision.

• Expected Insight: This scenario provides the study's primary recommendation.

It moves beyond a simple theoretical optimum (Scenario 2) to propose

a practically robust policy. By testing the Sweet Spot policy against the VIP

customer constraint, the research can confidently determine if the new policy is

resilient enough to handle the pragmatic, non-optimal demands of the real

world, ensuring the final recommendation is both data-driven and operationally

viable.

3.2 Mathematical Model Formulation

The mathematical foundation of this study is built upon the Heterogeneous Fleet

Vehicle Routing Problem with Time Windows (HFVRPTW). This model is specifically

adapted to include Soft Time Window Penalties, which are the core mechanism for the

sensitivity analysis in this research.

3.2.1 Sets and Indices

• 𝑁 = {0,1, … , 𝑛}: Set of nodes, where node 0 is the depot

• 𝐶	 =	Set of customer node, C = 𝑁	{0}

• 𝑉	 = {0,1, … ,𝑚 − 1}: Set of vehicles

• 𝑇 = {0,1}: Set of vehicle types (0 = small, 1 = large)

• 𝑡(𝑘) =	Function mapping vehicle 𝑘	 ∈ 𝑉 to its type t ∈ T

• 𝐶!"#	 ⊂ 𝐶: Set of VIP customer nodes (e.g., {1, 2}

• 𝐶%&'	 = 𝐶	\𝐶!"#	: Set of Regular customer nodes.

Ref. code: 25686722041131TFW

14

3.2.2 Parameters

• 𝑑():	Distance (km) between node 𝑖 and node 𝑗	

• 𝑡𝑡():	Travel time (minutes) from node 𝑖	to node 𝑗 (derived from 𝑑() 	and

average speed).	

• 𝑠𝑡(: Service time (minutes) required at node 𝑖 (where 𝑠𝑡* = 0).	

• 𝑞(:	Demand (units) at customer node 𝑖 (where 𝑞* = 0).	

• 𝑄+: Capacity (units) of type 𝑡.

• 𝑐+: Variable cost per kilometer (THB/km) for vehicle 𝑡.

• 𝑓+: Fixed cost (THB) for using vehicle 𝑡

• [𝑒(, 𝑙(]: The ideal time window for node 𝑖, where 𝑒(is the earliest arrival

time and 𝑙(is the latest arrival time.

• 𝑃,- 	: Penalty cost per minute for route duration exceeding 480 minutes.

• 𝑃&.%/0	: Penalty cost per minute for arriving at a customer before 𝑒(

• 𝑃/.-&	: Penalty cost per minute for arriving at a customer after 𝑙(

• 𝑃!"#	: Penalty cost for arriving at a 𝐶!"# after 𝑙(

3.2.3 Decision Variables

• 𝑥()1: A binary variable, = 1 if vehicle 𝑘	travels directly from node 𝑘 to

node 𝑗	, and 0 otherwise.

• 𝑦1: A binary variable, = 1 if vehicle 𝑘 is used, and 0 otherwise.

• 𝑠(1: A continuous variable representing the arrival time of vehicle 𝑘 at

node 𝑖.

• 𝑏(1: A continuous variable representing the departure time of vehicle

𝑘	from node 𝑖.

• 𝐷𝑒𝑣(1& : Amount of time (minutes) vehicle 𝑘	arrives early at node 𝑖	

• 𝐷𝑒𝑣(1/ : Amount of time (minutes) vehicle 𝑘	arrives late at node 𝑖	

• 𝑂𝑇1: Amount of time (minutes) vehicle 𝑘's route duration exceeds 480

minutes.

Ref. code: 25686722041131TFW

15

3.2.4 Objective Function

The objective is to minimize the Total System Cost, which is a composite

function of operational costs and service penalties, depending on the scenario.

Minimize Z = 𝑍23456+(2768 +	𝑍945:(;4	34768+< +	𝑍,-	34768+< + 𝑍!"#	#4768+(4=

Where:

1. Operational Cost

𝑍,3456+(2768	 =N𝑓+(1) ∙ 	𝑦1 +
1∈!

N N 𝑐+(1) ∙ 	𝑑()	 ∙ 	𝑥()1
(,)∈B1∈!

The operational cost component represents the tangible financial expenditure

required for fleet execution, aggregating both the fixed costs associated with activating

specific vehicle types and the variable costs incurred per unit of distance traveled. This

baseline cost ensures the model accounts for the fundamental economic resources

needed to service the logistical network, independent of service quality metrics.

2. Service Penalty

𝑍945:(;4#4768+< =NN(𝑃&658< ∙ 	𝐷𝐸𝑉(1& +	𝑃/.-& ∙ 	𝐷𝐸𝑉(1/

(∈C1∈!

The service penalty quantifies the degradation in general customer satisfaction

by penalizing temporal deviations outside the designated soft time windows. This

function accounts for both premature arrivals, which may necessitate waiting or cause

inventory inconveniences, and delayed arrivals, which directly negatively impact the

standard service level agreements.

3. Overtime Penalty

𝑍,-#4768+< =N(𝑃,- ∙ 	𝑂𝑇1)
1∈!

Ref. code: 25686722041131TFW

16

The overtime penalty captures the additional costs incurred when the total

duration of a vehicle's route exceeds the standard allowable working hours. This

component serves to regulate resource utilization by discouraging excessive route

lengths, thereby ensuring adherence to driver labor constraints and minimizing extra

workforce expenditures.

4. VIP Penalty

𝑍!"#	#4768+(4= = N N	
1∈!

(𝑃!"# ∙ 	𝐷𝐸𝑉(1/)
(∈C!"#

The VIP penalty introduces a strictly weighted cost associated with service

delays for high-priority clients, distinct from the standard service penalty. By assigning

a significantly higher penalty rate to lateness for these specific customers, the model is

mathematically coerced to prioritize punctuality for key accounts to mitigate potential

reputational damage or severe contractual violations.

(Note: In Scenario 1, 𝑍945:(;4#4768+<was set to 0 or ∞. In Scenarios 2 & 3, 𝑍,-#4768+<

was set to 0, and the "Knobs" 𝑃&658<and 𝑃/6+4 were adjusted. The real financial penalty

for 𝐶!"# is handled as a business rule in the experimental design, Section 3.4.3, not in

this solver's objective function.)

3.2.5 Constraints

Routing Constraints:

Each customer is visited exactly once:

∑ ∑ 𝑥()1 =(∈B1∈! 1 ∀)∈ 𝐶 (3.1)

Flow Conservation For each vehicle, the number of arrivals equals the number of

departures:

∑ 𝑥()1 −	∑ 𝑥)(1 	(∈B 	(∈B = 0 ∀)∈ 𝑁	, ∀𝑘	 ∈ 𝑉 (3.2)

Ref. code: 25686722041131TFW

17

Each used vehicle stars and ends at the depot:

						∑ 𝑥*1)∈C = 𝑦1 and		∑ 𝑥(*1 	(∈C = 𝑦1 ∀𝑘	 ∈ 𝑉 (3.3)

The fundamental routing restrictions, including the mandate that every customer

node is visited exactly once (Equation 3.1) and the flow conservation principle ensuring

equal arrivals and departures at each node (Equation 3.2), are enforced structurally

within the Google OR-Tools framework. Specifically, the initialization of

the pywrapcp.RoutingIndexManager and pywrapcp.RoutingModel classes constructs

the underlying graph topology. By defining the number of nodes and vehicles, along

with the specific depot index, the solver implicitly applies these constraints to generate

valid, continuous closed-loop tours for each active vehicle starting and ending at the

designated depot as defined in Equation 3.3.

Capacity Constraints:

To ensure feasibility regarding fleet limitations, the capacity constraints are

modeled using the AddDimensionWithVehicleCapacity method within the OR-Tools

routing model. This function integrates a registered demand callback, which retrieves

the specific load requirement for each location, and cross-references the cumulative

load against the defined capacity vector for the heterogeneous fleet. The solver tracks

the accumulated demand variable along the route and strictly invalidates any solution

where the total load exceeds the maximum capacity of the specific vehicle type assigned

to that route.

Time Window and Flow Constraints:

Departure time from node 𝑖:

						𝑏(11= max(𝑒(, 𝑠(1) + 𝑠𝑡(∀(∈ 𝐶	, ∀𝑘 ∈ 𝑉 (3.4)

Arrival ime at node 𝑗 (if 𝑗 follows 𝑖) :

				𝑠)1 ≥ (𝑏(1 +	𝑡𝑡()) − 𝑀(1 −	𝑥()1) ∀𝑖, 𝑗	 ∈ 𝑁	, ∀𝑘	 ∈ 𝑉 (3.5)

(where M is a large constant)

Ref. code: 25686722041131TFW

18

 The temporal propagation across the network, as mathematically defined in

Equations 3.4 and 3.5, is implemented through the creation of a dedicated Time

Dimension using the routing.AddDimension method. This mechanism relies on a

registered transit callback function that computes the traversal cost of an arc by

summing the estimated travel time between nodes and the requisite service duration at

the origin node. This dimension accumulates the time variable cumulatively along the

route path, effectively modeling the continuity of time and ensuring that the arrival time

at a subsequent node logically follows the departure time from its predecessor.

Time window definition (for soft penalties):

				𝐷𝑒𝑣(1& ≥ 𝑒(− 𝑠(1

				𝐷𝑒𝑣(1& ≥ 0 (3.6)

				𝐷𝑒𝑣(1/ ≥ 𝑠(1 −	𝑙(

				𝐷𝑒𝑣(1/ ≥ 0 (3.7)

 The implementation of soft time window constraints, which permit temporal

deviations subject to penalty costs (Equations 3.6 and 3.7), is achieved through

the SetCumulVarSoftLowerBound and SetCumulVarSoftUpperBoundmethods

applied to the cumulative time variable of each node. These functions automatically

compute the linear deviation between the actual arrival time and the pre-defined

preferred time window boundaries. If the arrival time occurs earlier than the lower

bound or later than the upper bound, the solver adds a cost to the objective function

proportional to the magnitude of the violation multiplied by the specified early or late

penalty coefficients.

3.3 Model Assumptions

To ensure computational tractability and conceptual clarity, the mathematical

model is constructed under a set of simplifying assumptions that reflect a controlled

logistics environment. These assumptions serve as foundational constraints for the

Ref. code: 25686722041131TFW

19

initial phase of model development, allowing for focused analysis of routing efficiency

and fleet utilization.

It is assumed that all customer demand (𝑞() is fully known and remains constant

throughout the defined planning horizon. This eliminates the need for real-time demand

forecasting and enables deterministic route planning. Each customer is served exactly

once by a single vehicle, thereby excluding scenarios involving multiple visits or

demand splitting. All vehicles are dispatched from a single central depot and are

required to return to the same location upon completion of their assigned routes,

reinforcing a closed-loop delivery structure.

Travel distances between nodes are considered symmetric and deterministic,

implying that the cost and distance from point A to point B are identical to those from

point B to point A. This assumption disregards complex real-world factors such as

traffic congestion, road conditions, and time-dependent travel variability, which will be

addressed in future iterations of the model.

Crucially, Time Window Constraints (VRPTW) are central to the current

formulation, defining the core challenge. This model utilizes Soft Penalties as the

primary mechanic, allowing the solver to deviate from the ideal window [𝑒(, 𝑙(] by

incurring a weighted cost (𝑃&.%/0 , 𝑃/.-&). This design is the foundation for the

sensitivity analysis used to locate the optimal solution.

By establishing these assumptions, the study creates a structured baseline for

evaluating heterogeneous fleet performance under controlled conditions. This approach

facilitates rigorous testing of routing algorithms and provides a scalable foundation for

future enhancements that reflect the operational intricacies of real-world distribution

systems.

3.4 Tools and Technologies

To implement and evaluate the heterogeneous fleet vehicle routing model, this

study employs a suite of computational tools and technologies that support algorithmic

development, constraint modeling, and solution visualization. The integration of these

tools enables a robust experimental framework capable of handling complex logistics

scenarios and delivering actionable insights.

Ref. code: 25686722041131TFW

20

3.4.1 Python Programming Language

Python serves as the foundational programming language for model

construction and execution. Its versatility and extensive ecosystem of scientific libraries

make it particularly well-suited for operations research and optimization tasks. Python

facilitates the seamless integration of data structures, algorithmic logic, and

visualization modules, allowing for end-to-end development of the routing model. The

language’s readability and modular design also support iterative prototyping, enabling

rapid refinement of model components as new constraints and features are introduced.

3.4.2 Google OR-Tools

 Google OR-Tools functions as the core optimization engine within the modeling

framework. Designed specifically for combinatorial optimization problems, OR-Tools

offers powerful capabilities for solving the Vehicle Routing Problem (VRP) under

heterogeneous fleet conditions. The library supports constraint programming, routing

index management, and advanced metaheuristic techniques such as Large

Neighborhood Search (LNS), which are critical for navigating the vast solution space

of multi-vehicle routing scenarios. OR-Tools allows for precise modeling of vehicle-

specific attributes, including capacity limits, fixed and variable costs, and crucially,

time window constraints and soft penalties, as defined in the mathematical model. Its

efficient solver architecture ensures scalability and responsiveness, even when applied

to real-world datasets with complex delivery requirements.

 Together, Python and Google OR-Tools provide a synergistic platform for

developing, executing, and analyzing the HFVRPTW model. This combination enables

the study to move beyond theoretical formulation and into practical simulation, offering

a replicable and adaptable framework for future logistics optimization research.

Ref. code: 25686722041131TFW

21

3.4.3 Routing Model Components

 The core implementation of the vehicle routing model leverages key

components from Google OR-Tools, a specialized optimization library designed for

solving combinatorial problems. Central to the model architecture is the

RoutingIndexManager, which serves as the interface for mapping logical node indices

to physical locations and managing vehicle assignments. This abstraction simplifies the

handling of depot and customer nodes, especially in scenarios involving multiple

vehicles and complex routing constraints.

 The RoutingModel acts as the computational engine that defines the problem

structure and executes the optimization process. It encapsulates the routing logic, cost

functions, and constraint definitions, enabling the solver to generate feasible and cost-

effective delivery routes. Critical constraints are implemented using OR-Tools’

dimension features, which allow for the accumulation and tracking of quantities across

routes. These dimensions were utilized as follows:

1. Capacity Dimension: Enforces vehicle load limits and demand constraints

(𝑄+(1)).

2. Time Dimension: This is the core experimental dimension. It tracks cumulative

time (travel time + service time) and is essential for:

o Time Window Constraints (VRPTW): Ensuring routes respect the

customer's preferred arrival windows [𝑒(, 𝑙(].

o Soft Penalties: Allowing the tracking of service deviation and applying

the penalty rates (𝑃&.%/0 , 𝑃/.-&) central to the Sweet Spot sensitivity

analysis.

o Overtime Penalties: Applying soft penalties for exceeding the 8-hour

workday limit (Scenario 1).

By modularizing the routing logic and constraint handling using these advanced

dimension features, the model achieves both scalability and adaptability. This design

ensures that the model can accurately test strategic operational policies, such as

balancing service cost against utilization rates, which is essential for a robust and high-

fidelity simulation.

Ref. code: 25686722041131TFW

22

3.4.4 Metaheuristic Optimization

To enhance solution quality and computational efficiency, the model

incorporates advanced metaheuristic optimization strategies, with a particular emphasis

on Large Neighborhood Search (LNS). LNS is a highly robust technique designed

specifically for solving complex combinatorial problems like the VRP. Unlike

conventional local search methods that only make small, incremental adjustments, LNS

operates by strategically removing a large part of the current solution (the Destroy

phase) and then intelligently rebuilding that section (the Repair phase). This process

allows the solver to take "big jumps" across the solution space, effectively avoiding

being trapped in local optima which is critical for identifying the true global optimum.

In the context of heterogeneous fleet routing (HFVRPTW), LNS proves

especially effective because its design facilitates global restructuring of routes, adapting

to the complex interplay between diverse vehicle capacities, fixed costs, and soft

penalties. This ensures that when the service penalty "knob" is applied (Scenario 3), the

solver is capable of finding the counter-intuitive "Sweet Spot" solution—where costs

are lower and service is higher which a simpler algorithm (that gets stuck in local

optima) would have missed. The integration of LNS within the OR-Tools framework

positions the model as a practical, high-efficiency decision-support tool.

Table 3.1 Table comparing different metaheuristics

Metaheuristic Strengths Weaknesses
Typical Performance
in VRP

Guided Local
Search (GLS)

Escapes local minima by
penalizing frequent edges

May take longer to
diversify

Very good for medium–
large VRP

Tabu Search
(TS)

Strong diversification,
avoids cycling

Can be slower to
converge

Good for finding robust
solutions

Simulated
Annealing (SA)

Simple to implement,
probabilistic escape

Sensitive to cooling
schedule

Works but less efficient
than GLS/TS

Large
Neighborhood
Search (LNS)

Removes large parts of
solution, rebuilds for big
jumps

Rebuild step can be
computationally
heavy

Excellent for large-scale
VRP, often best quality

Ref. code: 25686722041131TFW

23

Table 3.1 presents a comparative overview of three prominent metaheuristics

applied in Vehicle Routing Problems: Guided Local Search (GLS), Tabu Search

combined with Simulated Annealing (TS-SA), and Large Neighborhood Search (LNS).

Each method offers distinct strengths and trade-offs. GLS effectively escapes local

minima but may require longer convergence times. TS-SA is simple to implement and

robust, though sensitive to parameter tuning. LNS stands out for its ability to restructure

large portions of the solution space, making it particularly suitable for large-scale VRP

instances. Given its performance advantages and compatibility with Google OR-Tools,

LNS is selected as the primary search strategy in this study.

3.4.5 Visualization Tools

To enhance interpretability and support stakeholder communication, this study

utilizes Google My Maps as a visualization platform for the optimized vehicle routes

generated by the routing model. Geographic data including customer locations, depot

coordinates, and route sequences is first structured in Microsoft Excel. These datasets

are then imported into My Maps to produce interactive maps that reflect the spatial

distribution of delivery points and the movement of vehicles across the network.

This visualization approach serves multiple purposes. It provides a clear and

intuitive representation of route efficiency, vehicle coverage, and geographic

clustering, which are critical for evaluating the practical feasibility of the model’s

output. Moreover, map-based visuals offer an accessible medium for conveying

complex routing results to non-technical stakeholders, such as logistics managers or

business decision-makers. By bridging the gap between algorithmic output and

operational insight, Google My Maps supports both analytical validation and strategic

planning, reinforcing the model’s applicability in real-world logistics environments.

Ref. code: 25686722041131TFW

24

Figure 3.1 Visualization Map from Google my map

Figure 3.1 displays a geographic visualization of selected tire service centers

across Bangkok, including locations where customer demand originates. This spatial

representation supports the routing model by illustrating the distribution of delivery

points and informing distance matrix construction. It also provides a practical reference

for evaluating route feasibility and vehicle assignment based on location clustering.

3.5 Data Preparation

The data preparation phase serves as the essential translation layer between the

physical supply chain and the computational model. The input dataset for the

heterogeneous fleet vehicle routing model is systematically prepared, involving the

organizing of operational parameters including raw customer demand profiles,

geographic coordinates, and the derived inter-location distance matrices. This phase is

crucial for transforming raw business requirements into normalized computational

parameters.

Prior to integration into the optimization engine, meticulous efforts are focused

on defining fleet heterogeneity within the data. This involves classifying vehicle

parameters to ensure that the distinct cost structures (e.g., the 17 THB/km vs. 22

THB/km variable cost) are accurately mapped to the corresponding load capacity.

Ref. code: 25686722041131TFW

25

Furthermore, the ideal time windows are precisely structured, as these soft constraints

define the operational performance boundaries for the entire network.

A rigorous data validation process is conducted to ensure completeness,

accuracy, and internal consistency. This validation goes beyond simple error checking;

it confirms the computational feasibility of the initial constraints and verifies that the

time window data is suitable for the subsequent application of the asymmetric service

penalties. By establishing a clean and reliable data foundation, the study ensures that

the optimization process operates on robust inputs, thereby enabling the credible

identification of the non-intuitive "Sweet Spot" solution in the analysis phase

Table 3.2 Node to Customer Mapping and Time window for Routing Model

Node Customer Time window Customer status
1 NV yangyont 08:00 - 09:15 VIP
2 TR Tyre auto 08:30 - 08:45 VIP
3 V Auto Tire 09:00 - 09:15 Regular
4 PWM Power Max 09:15 - 09:30 Regular
5 Lamlukka Max Shop 09:45 - 10:15 Regular
6 NumKarnYang Klong 4 10:30 - 10:40 Regular
7 Klong Chan Auto tire 11:00 - 11:35 Regular
8 G Max Wheels 11:30 - 11:55 Regular
9 Nawamin auto tyre 13:00 - 13:15 Regular

10 Sermmit Tire 13:45 - 14:15 Regular
11 Sportmag100 14:20 - 14:40 Regular
12 Max Design 14:45 - 15:20 Regular
13 LPAutomag 15:30 - 15:40 Regular
14 Sor KarnYang Rama2 16:00 - 16:30 Regular
15 71HHH AUTO.TIRE 16:40 - 17:00 Regular

Depot DC NP TIRE 08:00 - 17:00

Table 3.2 provides the essential node-to-customer mapping and its

corresponding Time Window constraints for the routing model. Each customer is

assigned a unique node index to facilitate consistent referencing within the optimization

logic. This structured mapping ensures data fidelity and is crucial for implementing the

Heterogeneous Fleet Vehicle Routing Problem with Time Windows (HFVRPTW).

Ref. code: 25686722041131TFW

26

Critically, the table specifies the Customer Status (VIP/Regular), allowing the model to

perform asymmetric risk assessment and calculate service penalties based on the

priority of the customer, which is central to the analysis in Scenario 3.

Table 3.3 Customer Distance Matrix

Location Depot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Depot 0 17.5 16.6 12.9 23.1 27 26 24 25 21 22 20.7 20 26.1 37 30.5

1 18.1 0 11.5 15 16.5 19.5 18.5 17.5 18.5 16 16.5 16.5 16 17.6 31.6 26.2

2 17 11.7 0 13.8 15.5 18.5 17.8 16.8 17.8 15.5 16 17 15.9 15.4 30.5 25.1

3 13.2 15.5 14.1 0 22.1 25.1 24.3 22.1 23.3 19.7 20.7 18.6 18.1 22.8 33.5 27.3

4 24 17 15.9 22.1 0 13.8 12.7 13.3 14.4 15.4 16.5 18.1 18.6 15.9 26.2 23

5 28.2 20.3 19.1 25.1 13.8 0 11.6 12.8 13.8 17 17.6 18.6 19.7 18.1 25.1 21.9

6 27.3 19.2 18.4 24.3 12.7 11.6 0 11.1 12.2 15.9 17 17.6 18.6 17 24 20.8

7 25 18.1 17.4 22.1 13.3 12.8 11.1 0 11.7 14.3 15.4 16.5 17 15.9 21.9 19.2

8 26.1 19.2 18.4 23.3 14.4 13.8 12.2 11.7 0 15.5 16 17.1 17.6 16.5 23 19.7

9 21.8 16.5 15.9 19.7 15.4 17 15.9 14.3 15.5 0 13.2 14.3 14.8 14.3 20.8 17.6

10 22.8 17 16.5 20.7 16.5 17.6 17 15.4 16 13.2 0 12.7 13.2 13.8 21.9 18.6

11 20.7 16.5 17 18.6 18.1 18.6 17.6 16.5 17.1 14.3 12.7 0 12.7 14.3 20.8 18.1

12 20 16 15.9 18.1 18.6 19.7 18.6 17 17.6 14.8 13.2 12.7 0 14.8 21.9 17.6

13 26.1 17.6 15.4 22.8 15.9 18.1 17 15.9 16.5 14.3 13.8 14.3 14.8 0 24 20.8

14 37 31.6 30.5 33.5 26.2 25.1 24 21.9 23 20.8 21.9 20.8 21.9 24 0 19.5

15 30.5 26.2 25.1 27.3 23 21.9 20.8 19.2 19.7 17.6 18.6 18.1 17.6 20.8 19.5 0

Table 3.3 presents the customer distance matrix used in the routing model. It

quantifies the pairwise distances between the depot and each customer location,

forming the basis for route cost calculations and feasibility checks. These values are

essential for constructing the cost matrix within the optimization engine and directly

influence route selection, vehicle assignment, and total travel cost estimation.

Ref. code: 25686722041131TFW

27

Table 3.4 Customer Nodes and Weekly Demand

Node Customer Name
Weekly
Demand

DEPOT DC NP TIRE 0
1 NV yangyont 70
2 TR Tyre auto 120
3 V Auto Tire 80
4 PWM Power Max 30

5
Lamlukka Max

Shop 70

6
NumKarnYang

Yong 110

7
Klong Chan auto

tire 105
8 G Max Wheels 95
9 Nawamin auto tyre 110
10 Sermmit Tire 25
11 Sportmag100 10
12 G Max Design 85
13 LPAutomag 25

14
Sor KarnYang

Rama2 65

15
7HIHH

AUTO.TIRE 10

Table 3.4 outlines the weekly demand associated with each customer node in

the routing model. This data serves as a critical input for vehicle capacity planning and

route feasibility analysis. By quantifying demand at the node level, the model ensures

that vehicle assignments align with load constraints and that delivery routes are

optimized to meet service requirements efficiently.

Table 3.5 Vehicle Specifications by Type

Vehicle
Type

Capacity
(Units)

Cost per Kilometer
(THB)

Available
Unit

Fixed Cost
(THB)

Cage Truck 70 10.5 5 600
Small Lorry 120 19 8 1,000

Ref. code: 25686722041131TFW

28

Table 3.5 summarizes the specifications of the two vehicle types used in the

routing model: Cage Truck and Small Lorry.These parameters are critical for modeling

fleet heterogeneity and directly influence route feasibility, cost calculations, and vehicle

assignment decisions within the optimization framework.

 3.6 Implementation Process

The implementation of the heterogeneous fleet vehicle routing model is carried

out using Python in conjunction with Google OR-Tools, a specialized optimization

library designed for solving complex routing problems. The process begins with the

definition of fundamental model components (sets, parameters, and decision variables)

which form the mathematical backbone of the model and are structured to reflect the

operational realities of tire distribution logistics.

Once the foundational elements are defined, the RoutingModel acts as the

computational engine. Critical constraints are implemented using OR-Tools’ dimension

features, which allow for the enforcement of path history and cumulative constraints.

While the Capacity Dimension enforces volumetric limits, the Time Dimension is the

core mechanism for policy testing and multiobjective evaluation. This dimension tracks

cumulative time (travel time + service time), which is essential for implementing the

soft time window constraints and the soft overtime penalty across all strategic scenarios.

To enhance solution quality and guarantee convergence to the global optimum, the

model incorporates Large Neighborhood Search (LNS) metaheuristic optimization.

LNS is selected because it effectively balances Exploration (discovering new areas of

the solution space) and Exploitation (refining known good solutions). This strategic

balance ensures that the solver is not trapped in the local optima observed in Scenario

2a, but successfully identifies the globally superior Sweet Spot solution. The final stage

then synthesizes the solver's output with post-processing logic to yield the final real

cost (Travel + Fixed + VIP Penalty) and the crucial service metrics, completing the

robust experimental framework.

Ref. code: 25686722041131TFW

29

CHAPTER 4

RESULT

This chapter presents the empirical findings derived from the computational

optimization model. The analysis is structured as a sequential investigation across three

distinct strategic policy environments (Scenarios). The objective is to move beyond a

simple presentation of costs to provide a deep interpretation of the underlying

operational dynamics.

This chapter will:

1. Deconstruct the legacy policy (Scenario 1) to quantify its structural

inefficiencies.

2. Establish the true minimal expenditure baseline (Scenario 2) by removing

artificial constraints, thereby identifying a critical "Constraint Trap."

3. Present the core discovery (Scenario 3) by conducting a sensitivity analysis on

service penalties, culminating in the identification of a non-linear, globally

optimal "Sweet Spot" policy that challenges the conventional cost-service trade-

off.

The analysis is performed by evaluating the interaction between Total Overall Cost

(THB), Average Customer Satisfaction (%), and Fleet Utilization (Fixed Cost).

4.1 Scenario 1 Analysis: The Legacy Policy Structure

Objective: To quantify the operational performance and cost ceiling of the

current operational paradigm, which is defined by a rigid, 8-hour workday constraint

(simulated via a soft OT penalty).

Table 4.1 Legacy Policy Trade-off (OT-Constrained Model)

Strategy Policy Intent
Total Overall
Cost (THB) Avg. Satisfaction

Vehicles
Used

Total OT
Cost (THB)

1a Legacy Cost Baseline 20,200.40 69.80% 10 0
1b Legacy Service Focus 21,047.95 98.50% 11 260.85

Ref. code: 25686722041131TFW

30

Table 4.1 presents the results of the baseline analysis (Scenario 1), comparing

the financial and service outcomes under the rigid operational assumption of the soft

OT penalty. The data establishes the high structural cost imposed by the legacy

constraint.

4.1.1 Interpretation of Findings Scenario 1

The analysis of Scenario 1 reveals that the legacy policy framework is

structurally inefficient and expensive. While the solver could find a 10-vehicle solution

for the pure cost model (1a), the resulting service level 69.8% was unacceptably low,

marked by significant, unpenalized service failures.

More critically, when forced to achieve high service (1b), the model’s cost

increased by 847.55 THB. This cost was not just from variable overtime; it was

structurally driven by the necessity to deploy an eleventh vehicle (a Cage Truck,

increasing fixed cost by 600 THB. This proves that the 8-hour constraint prevented the

optimal utilization of the 10-vehicle fleet, forcing an expensive and inefficient

expansion of the asset base. This 21,047.95 THB cost represents the high operational

ceiling imposed by the legacy policy.

4.2 Scenario 2: Establishing the True Cost Baseline (The Constraint Trap)

Objective: To isolate the system's inherent cost floor by removing the OT

penalty (P_OT= 0), allowing the solver to optimize purely for asset utilization (Fixed

Cost) and variable cost (Travel Cost).

Table 4.2 Analysis of Legacy Constraint Impact on Operational Cost

Policy Intent
Total

Overall
Cost (THB)

Avg.
Satisfaction

Total Fixed
Cost (THB) Net Change in Cost

Scenario 1A 20,200.40 69.80% 8,800.00 Benchmark
 Scenario 2A 17,410.00 82.40% 7,600.00 -2,790.4 THB (-13.8%)

Table 4.2 presents the comparative analysis demonstrating the financial and

service impact of removing the obsolete OT penalty (moving from Scenario 1A to

Ref. code: 25686722041131TFW

31

Scenario 2A). This comparison establishes the minimal expenditure baseline for the

entire network.

4.2.1 Interpretation of Findings: The Constraint Trap

The elimination of the OT penalty (moving from S1a to S2a) yielded a profound

and counter-intuitive result: 13.8% reduction in total cost (2,790.40 THB savings) while

service simultaneously increased by 12.6%.

This discovery confirms the existence of a Constraint Trap. The legacy OT rule

forced the solver into an inferior route structure to avoid the penalty, resulting in a

higher operational cost. The source of this saving is revealed in the Total Fixed Cost.

The S1a solution utilized a 10-vehicle mix (3 Cage Trucks, 7 Small Lorries) for a fixed

cost of 8,800 THB. Freed from the time constraint, the S2a solver found a superior 10-

vehicle mix (6 Cage Trucks, 4 Small Lorries) with a fixed cost of only 7,600 THB.

This demonstrates that the legacy constraint was a structural cost driver that

prevented optimal fleet mix allocation. The 17,410.00 THB cost is therefore established

as the verified minimal expenditure baseline for all subsequent policy calibration.

4.3 Scenario 3: Optimal Policy Discovery & Sensitivity Analysis

Objective

 This final scenario details the core research contribution: the calibration of the

P_Late service penalty (the "Knob") to find the globally optimal solution that truly

balances cost and service.

4.3.1 The Marginal Cost of Perfection (Policy Extremes)

First, the analysis quantifies the cost of the two policy extremes in the

unconstrained model: a pure cost focus (Knob =0) versus a pure service focus (Knob

=1000).

Table 4.3 Marginal Cost Analysis of Service Level Extremes

Policy Comparison Total Overall
Cost (THB)

Avg.
Satisfaction

Net Cost for 17.5%
Sat Gain

Cost Floor (S2a, Knob=0) 17,410.00 82.40% Baseline

Ref. code: 25686722041131TFW

32

Perfection Ceiling (S3,
Knob=1000) 17,418.50 99.90% add 8.50 THB

Table 4.3 presents the comparative analysis between the minimal expenditure

baseline (Cost Floor) and the highest service achieved (Perfection Ceiling). This

comparison quantifies the marginal financial cost required to achieve maximum

customer satisfaction in the unconstrained model.

Interpretation: The cost difference between the 82.4% satisfaction baseline

and the 99.9% ceiling is only 8.50 THB. This negligible marginal cost proves that the

resources required for a 17.5% service gain were already available within the optimally

utilized 10-vehicle fleet. The improvement was entirely a function of superior route

sequencing precision, confirming that high service is "functionally free" when the

system is properly optimized.

4.3.2 The Global Optimum ("Sweet Spot" Policy)

This section analyzes the result of the intermediate Knob = 50 test, which

challenges the assumption that either extreme (0 or 1000) is the optimal choice.

Table 4.4 Sensitivity Analysis and Global Optimum Discovery

penalty_early
(Fixed)

penalty_late
(Knob)

Avg.
Satisfaction

Total Overall
Cost Notes

100 0.00 82.40% 17,410.00 THB
Baseline (High

lateness)

100 50.00 97.80% 17,321.60 THB
Sweet Spot (Win-

Win)

100 100 99.90% 17,418.50 THB
Diminishing

Returns

100 1,000.00 99.90% 17,418.50 THB
Stabilized (No

change)

Table 4.4 presents the results of the sensitivity analysis performed by adjusting

the penalty_late "Knob" against a fixed early penalty (penalty_early = 100$). This

analysis was conducted to empirically validate the non-linear relationship between

service policy and total operational cost.

Ref. code: 25686722041131TFW

33

4.3.2.1 Analysis and Conclusion

The sensitivity analysis conclusively identifies the optimum strategic policy at

P_Late = 50 . This discovery proves the existence of a globally superior solution that

defies the conventional linear trade-off.

• The Win-Win Relationship: The P_Late = 50 penalty served as an Intelligent

Steering Mechanism for the LNS solver. It forced the algorithm to abandon the

inferior Local Optimum (Knob = 0) and discover a new solution path that

resulted in a cost decrease of 88.40 THB while simultaneously achieving a

15.4% increase in service.

• Definitive Policy Recommendation: The Sweet Spot Policy is the definitive,

optimal strategic recommendation for DC NP TIRE. The solution is also robust,

having achieved 0.00 THB in VIP Penalties (Scenario 3), confirming its safety

and efficiency. This proves that a modest focus on service is not a cost, but a

catalyst for achieving true global efficiency.

Ref. code: 25686722041131TFW

34

CHAPTER 5

DISCUSSION AND CONCLUSION

5.1 Discussion of Key Findings

The results presented in Chapter 4 provide empirical validation of a non-linear

and counter-intuitive phenomenon in logistics optimization. The analysis moves

beyond a simple quantification of costs to interpret the strategic implications of

optimizing policy constraints. The findings are discussed in three distinct thematic

discoveries.

5.1.1 The Global Optimum and the Failure of Pure Cost Minimization

The most profound finding of this research is the empirical discovery of the

Sweet Spot Policy (P_Late = 50), which generated a 15.4% service gain while

simultaneously achieving a cost reduction of 88.40 THB (Table 4.3).

This "Win-Win" outcome refutes the conventional linear cost-service trade-off

assumption. It proves that the pure cost-focused baseline (Knob = 0) was, in fact, a

Local Optimum. The P_Late = 0 policy, by having an over-simplified objective

function, trapped the solver in an inefficient solution space, finding only the cheapest

route given its limited view.

The moderate P_Late =50 penalty acted as an Intelligent Steering Mechanism.

It enriched the objective function, providing the LNS metaheuristic with just enough

new information to justify exploring a different, more "rugged" part of the solution

space. In doing so, it was forced to discard the local minimum and converge upon the

true Global Optimum a solution path that was inherently more efficient in both

sequencing and asset utilization, thus yielding both lower costs and higher service. The

88.40 THB saving is the quantifiable value of this new strategic information.

Ref. code: 25686722041131TFW

35

5.1.2 The Economic Impact of Legacy Constraints

The comparative analysis of Scenario 1 (OT) and Scenario 2 (No-OT) revealed

a 13.8% cost leakage. The 2,790.40 THB loss under the legacy policy was not merely

an operational variance; it was a structural burden imposed by a flawed policy.

The root cause was not variable cost but sub optimal asset allocation. The rigid

8-hour constraint forced the solver into an inefficient Fleet Mix (3 Cage Trucks, 7 Small

Lorries) with a fixed cost of 8,800.00 THB. By removing this artificial constraint

(Scenario 2a), the solver was free to achieve optimal fleet utilization, selecting a

superior 10-vehicle mix (6 Cage Trucks, 4 Small Lorries) with a fixed cost of only

7,600.00 THB. This 1,200.00 THB saving in fixed costs alone provides crucial evidence

that obsolete operational rules can impose severe, hidden financial penalties on an

otherwise efficient logistics operation.

5.1.3 The De-coupling of Service Quality from Resource Scarcity

The analysis of the service ceiling (moving from 82.4% Sat. to 99.9% Sat.)

confirms that the marginal cost for achieving near-perfect service in the unconstrained

model is negligible (+8.50 THB).

This minimal expenditure is a critical insight: it proves that the service failures

in the baseline (82.4% Sat) were not a problem of resource scarcity (i.e., not enough

trucks or drivers). The resources required for a 17.5% service gain were already

available within the network's asset base. The failure was one of combinatorial

sequencing. The cost of high service, therefore, was not for more assets, but for the

algorithmic precision required to generate a superior sequencing plan, validating the

power of optimization over manual or simplified heuristic approaches.

Ref. code: 25686722041131TFW

36

5.2 Conclusion

This research successfully developed an empirical framework that moved

beyond a simplistic cost-minimization exercise to challenge the fundamental logistics

cost-service assumption. The investigation conclusively answers the main research

question: Yes, a non-linear, globally optimal "Sweet Spot" solution exists.

The final recommended policy achieved a 15.4% service gain while

simultaneously reducing the total operational cost by 88.40 THB. This contribution

demonstrates that service optimization, when performed using advanced computational

methods, functions not as a "cost center," but as a "lever" for achieving superior system-

wide efficiency and asset utilization. The research quantified the high cost of legacy

constraints (2,790.40 THB) and demonstrated that high service is a function of

algorithmic precision, not just resource allocation.

5.3 Strategic Recommendations

The findings dictate a clear paradigm shift in operational policy for DC NP TIRE

Management:

• Adopt the Global Optimum Policy: The company must formally adopt the Sweet

Spot Policy (P_Late = 50) and the No-OT Planning Model. This strategy provides

the best possible trade-off: lowest total cost 17,321.60 THB and highest safe

service level 97.8%.

• Shift from Micro-Management to Policy Management: Management should stop

managing the 8-hour rule (a micro-level constraint) and start managing the

objective function (a macro-level policy). The funds saved by adopting the Sweet

Spot policy should be used to cover any necessary driver overtime, as the total

expenditure will still be 3,629.45 THB cheaper than the legacy policy (S1b).

• Leverage Algorithmic Robustness: The P_Late = 50$ policy is confirmed to be

robust. The 0.00 THB VIP Penalty (Scenario 3) proves that no special, expensive

constraints are needed to protect high-value customers; the "Sweet Spot" policy

protects them automatically, simplifying the entire operational framework.

Ref. code: 25686722041131TFW

37

5.4 Limitations and Future Research

While the model is highly robust, its deterministic nature imposes certain

academic limitations, which in turn suggest clear avenues for future research.

• Limitation: Static Data: The model assumes static demand (q_i) and fixed service

times (st_i). This does not account for real-world demand variability or on-site

delays.

o Future Research: Future work should explore Stochastic VRP (S-VRP)

to model demand variability and service time uncertainty, creating plans

that are not just optimal, but also resilient to disruption.

• Limitation: Static Travel Times: The most critical limitation is the model's

reliance on static, average travel times, which does not reflect the congestion

patterns of the Bangkok Metropolitan Region.

o Future Research: The model should be evolved into a Dynamic VRP

(D-VRP) by integrating with real-time traffic APIs (e.g., Google

Distance Matrix API). This would transform the model from a static

strategic planner into a tactical, adaptive routing tool.

Ref. code: 25686722041131TFW

38

REFERENCES

Afshar-Nadjafi, B., & Afshar-Nadjafi, A. (2016). Multi-depot time dependent vehicle

routing problem with heterogeneous fleet and time windows. International

Journal of Operational Research, 26(1), 88-103.

Avci, M., & Topaloglu, S. (2016). A hybrid metaheuristic algorithm for heterogeneous

vehicle routing problem with simultaneous pickup and delivery. Expert Systems

with Applications, 53, 160-171.

Bouanane, K., Amrani, M. E., & Benadada, Y. (2022). The vehicle routing problem

with simultaneous delivery and pickup: a taxonomic survey. International

Journal of Logistics Systems and Management, 41(1-2), 77-119.

Cuvelier, T., Didier, F., Furnon, V., Gay, S., Mohajeri, S., & Perron, L. (2023,

February). Or-tools' vehicle routing solver: A generic constraint-programming

solver with heuristic search for routing problems. In 24e congrès annuel de la

société française de recherche opérationnelle et d'aide à la décision.

Despaux, F., & Basterrech, S. (2016). Multi-trip vehicle routing problem with time

window and heterogeneous fleet. International Journal of Computer

Information Systems and Industrial Management Applications, 8, 9-9.

Euchi, J., & Yassine, A. (2023). A hybrid metaheuristic algorithm to solve the electric

vehicle routing problem with battery recharging stations for sustainable

environmental and energy optimization. Energy Systems, 14(1), 243-267.

Garlotta, D. (2001). A literature review of poly (lactic acid). Journal of Polymers and

the Environment, 9(2), 63-84.

Kaewman, S., & Akararungruangkul, R. (2018). Heuristics algorithms for a

heterogeneous fleets VRP with excessive demand for the vehicle at the pickup

points, and the longest traveling time constraint: a case study in Prasitsuksa

Songkloe, Ubonratchathani Thailand. Logistics, 2(3), 15.

Kabadurmus, O., & Erdogan, M. S. (2023). A green vehicle routing problem

with multi-depot, multi-tour, heterogeneous fleet and split deliveries: a

mathematical model and heuristic approach. Journal of Combinatorial

Optimization, 45(3), 89.

Prokop, A., Helling, H. J., Hahn, U., Udomkaewkanjana, C., & Rehm, K. E. (2005).

Ref. code: 25686722041131TFW

39

Biodegradable implants for pipkin fractures. Clinical Orthopaedics and Related

Research, 12(32), 226-233.

Sabet, S., & Farooq, B. (2022). Green vehicle routing problem: State of the art and

 future directions. IEEE Access, 10, 101622-101642.

Stodola, P. (2018). Using metaheuristics on the multi-depot vehicle routing problem

With modified optimization criterion. Algorithms, 11(5), 74.Wang, Y., Zhe, J.,

Subramanian, A., Penna, P. H. V., Uchoa, E., & Ochi, L. S. (2012). A hybrid algorithm

for the heterogeneous fleet vehicle routing problem. European Journal of

Operational Research, 221(2), 285-295.

Tahir, M. A. (2024). Revolutionizing International Cargo Transportation: A Data-

Driven Strategy for Fleet Management Optimization and Workforce Efficiency.

Tan, S. Y., & Yeh, W. C. (2021). The vehicle routing problem: State-of-the-art

classification and review. Applied Sciences, 11(21), 10295.

Wang, X., Sun, Y., & Wang, H. (2022). Collaborative multidepot vehicle routing

problem with dynamic customer demands and time

windows. Sustainability, 14(11), 6709.

Yu, Z., Zhang, P., Yu, Y., Sun, W., & Huang, M. (2020). An Adaptive Large

Neighborhood Search for the Larger‐Scale Instances of Green Vehicle Routing

Problem with Time Windows. Complexity, 2020(1), 8210630.

Zhang, H., Ge, H., Yang, J., & Tong, Y. (2022). Review of vehicle routing problems:

Models, classification and solving algorithms. Archives of Computational

Methods in Engineering, 29(1), 195-221.

Ref. code: 25686722041131TFW

40

APPENDICES

Ref. code: 25686722041131TFW

41

APPENDIX A

SOURCE CODE

The following Python source code implements the Heterogeneous Fleet Vehicle

Routing Problem with Time Windows and Soft Penalties (HFVRPTW-SP). The code

was executed using Google Colab and the OR-Tools library. It defines all customer

demands, vehicle types (heterogeneous), distance matrix, and time window constraints.

The implementation uses Dimensions for capacity and time, and Soft Penalties

(P_Early = 100, P_Late = 50) to model the 'Sweet Spot' policy.

A.1 Data Setup

from ortools.constraint_solver import pywrapcp, routing_enums_pb2

import math

weekly_demands = [0, 70, 120, 80, 30, 70, 110, 105, 95, 110, 25, 10, 85, 25, 65, 10]

distance_matrix = [

[0.0, 17.5, 16.6, 12.9, 23.1, 27.0, 26.0, 24.0, 25.0, 21.0, 22.0, 20.0, 19.3, 25.0, 35.0, 29.0],

 [18.1, 0.0, 11.5, 15.0, 16.5, 19.5, 18.5, 17.5, 18.5, 16.0, 16.5, 16.0, 15.5, 17.0, 30.0, 25.0],

 [17.0, 11.7, 0.0, 13.8, 15.5, 18.5, 17.8, 16.8, 17.8, 15.5, 16.0, 16.5, 15.5, 15.0, 16.5, 29.0],

 [13.2, 15.5, 14.1, 0.0, 21.5, 24.5, 23.5, 21.5, 22.5, 19.0, 20.0, 18.0, 17.5, 22.0, 32.0, 26.0],

 [24.0, 17.0, 15.9, 22.1, 0.0, 13.5, 12.5, 13.0, 14.0, 15.0, 16.0, 17.5, 18.0, 15.5, 25.0, 22.0],

 [28.2, 20.3, 19.1, 25.1, 13.8, 0.0, 11.5, 12.5, 13.5, 16.5, 17.0, 18.0, 19.0, 17.5, 24.0, 21.0],

 [27.3, 19.2, 18.4, 24.3, 12.7, 11.6, 0.0, 11.0, 12.0, 15.5, 16.5, 17.0, 18.0, 16.5, 23.0, 20.0],

 [25.0, 18.1, 17.4, 22.1, 13.3, 12.8, 11.1, 0.0, 11.5, 14.0, 15.0, 16.0, 16.5, 15.5, 21.0, 18.5],

 [26.1, 19.2, 18.4, 23.3, 14.4, 13.8, 12.2, 11.7, 0.0, 15.0, 15.5, 16.5, 17.0, 16.0, 22.0, 19.0],

 [21.8, 16.5, 15.9, 19.7, 15.4, 17.0, 15.9, 14.3, 15.5, 0.0, 13.0, 14.0, 14.5, 14.0, 20.0, 17.0],

 [22.8, 17.0, 16.5, 20.7, 16.5, 17.6, 17.0, 15.4, 16.0, 13.2, 0.0, 12.5, 13.0, 13.5, 21.0, 18.0],

 [20.7, 16.5, 17.0, 18.6, 18.1, 18.6, 17.6, 16.5, 17.1, 14.3, 12.7, 0.0, 12.5, 14.0, 20.0, 17.5],

 [20.0, 16.0, 15.9, 18.1, 18.6, 19.7, 18.6, 17.0, 17.6, 14.8, 13.2, 12.7, 0.0, 14.5, 21.0, 17.0],

 [26.1, 17.6, 15.4, 22.8, 15.9, 18.1, 17.0, 15.9, 16.5, 14.3, 13.8, 14.3, 14.8, 0.0, 23.0, 20.0],

 [37.0, 31.6, 30.5, 33.5, 26.2, 25.1, 24.0, 21.9, 23.0, 20.8, 21.9, 20.8, 21.9, 24.0, 0.0, 19.5],

Ref. code: 25686722041131TFW

42

 [30.5, 26.2, 25.1, 27.3, 23.0, 21.9, 20.8, 19.2, 19.7, 17.6, 18.6, 18.1, 17.6, 20.8, 19.5, 0.0]

]

time_windows_min = [

 (480, 1020), (480, 555), (510, 525), (540, 555),

 (585, 615), (630, 640), (660, 695), (690, 715),

 (555, 570), (780, 795), (825, 855), (860, 880),

 (885, 920), (930, 940), (960, 990), (1000, 1020)

]

service_times_min = [0, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40]

avg_speed_kmh = 30

time_matrix_min = []

for from_node_dist in distance_matrix:

 row = []

 for to_node_dist in from_node_dist:

 time_hours = to_node_dist / avg_speed_kmh

 time_minutes = math.ceil(time_hours * 60)

 row.append(time_minutes)

 time_matrix_min.append(row)

A.2 Vehicle & Fleet Parameters

	
vehicle_capacities = [70, 120]

vehicle_km_costs = [17, 22]

vehicle_fixed_costs_thb = [600, 1000]

demands = weekly_demands

num_vehicles_by_type = [5, 8

]

num_vehicles = sum(num_vehicles_by_type)

Ref. code: 25686722041131TFW

43

num_vehicle_types = len(vehicle_capacities)

A.3 Model Setup

depot = 0 num_locations = len(distance_matrix)

manager = pywrapcp.RoutingIndexManager(num_locations, num_vehicles, depot)

routing = pywrapcp.RoutingModel(manager) (3.1 - 3.3)

A.4 Capacity and Distance Constraints

def create_distance_callback(distance_matrix, vehicle_costs_per_km, vehicle_type):

def distance_callback(from_index, to_index): from_node =

manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index)

return int(distance_matrix[from_node][to_node] *

vehicle_costs_per_km[vehicle_type] * 100) return distance_callback for vehicle_id in

range(num_vehicles): vehicle_type_id = vehicle_id % num_vehicle_types

transit_callback_index = routing.RegisterTransitCallback(

create_distance_callback(distance_matrix, vehicle_km_costs, vehicle_type_id))

routing.SetArcCostEvaluatorOfVehicle(transit_callback_index, vehicle_id)

scaled_fixed_costs = [cost * 100 for cost in vehicle_fixed_costs_thb]

vehicle_index_counter = 0 for type_id, num_v in enumerate(num_vehicles_by_type):

for _ in range(num_v): routing.SetFixedCostOfVehicle(scaled_fixed_costs[type_id],

vehicle_index_counter) vehicle_index_counter += 1

A.5 Capacity Constraint

def demand_callback(from_index): from_node = manager.IndexToNode(from_index)

return demands[from_node] demand_callback_index =

routing.RegisterUnaryTransitCallback(demand_callback) capacities_list = [cap for

cap, num in zip(vehicle_capacities, num_vehicles_by_type) for _ in range(num)]

Ref. code: 25686722041131TFW

44

routing.AddDimensionWithVehicleCapacity(demand_callback_index, 0,

capacities_list, True, 'Capacity') (3.4 – 3.5)

A.6 Time Constraints & Soft Penalties

def create_time_callback(time_matrix, service_times):

 def time_callback(from_index, to_index):

 from_node = manager.IndexToNode(from_index)

 to_node = manager.IndexToNode(to_index)

 travel_time = time_matrix[from_node][to_node]

 service_time = service_times[from_node]

 return int(travel_time + service_time)

 return time_callback

time_callback_index = routing.RegisterTransitCallback(

 create_time_callback(time_matrix_min, service_times_min)

)

time_dimension_name = 'Time'

horizon_minutes = 24 * 60

routing.AddDimension(

 time_callback_index, horizon_minutes, horizon_minutes, False,

time_dimension_name

)

time_dimension = routing.GetDimensionOrDie(time_dimension_name)

--- Sweet Spot Policy Settings (P_Late = 50) ---

penalty_early = 100

penalty_late = 50

depot_open_time = time_windows_min[depot][0]

Ref. code: 25686722041131TFW

45

depot_close_time = time_windows_min[depot][1]

for i in range(num_locations):

 index = manager.NodeToIndex(i)

 window_start = time_windows_min[i][0]

 window_end = time_windows_min[i][1]

 if i == depot:

 time_dimension.CumulVar(index).SetRange(window_start, window_end)

 else:

 time_dimension.SetCumulVarSoftLowerBound(index, window_start,

penalty_early) (3.6)

 time_dimension.SetCumulVarSoftUpperBound(index, window_end,

penalty_late) (3.7)

for vehicle_id in range(num_vehicles):

 start_index = routing.Start(vehicle_id)

 time_dimension.CumulVar(start_index).SetRange(depot_open_time,

depot_close_time)

A.7 Search Parameters & Execution

search_params = pywrapcp.DefaultRoutingSearchParameters()

search_params.first_solution_strategy = (

 routing_enums_pb2.FirstSolutionStrategy.AUTOMATIC)

search_params.time_limit.seconds = 120

solution = routing.SolveWithParameters(search_params)

A.8 Solution Printing & Post-Analysis

Ref. code: 25686722041131TFW

46

def format_time(minutes):
 hours = int(minutes // 60)
 mins = int(minutes % 60)
 return f"{hours:02d}:{mins:02d}"

def print_solution(manager, routing, solution, distance_matrix, demands,
 vehicle_capacities, vehicle_km_costs,
 vehicle_fixed_costs_thb,
 time_dimension, time_windows, service_times,
 penalty_early_val, penalty_late_val,
 vip_nodes, vip_late_penalty_thb):

 vehicle_type_names = ["cage truck", "small lorry"]
 node_names = {
 0: "DC NP TIRE", 1: "NV yangyont", 2: "TR Tyre auto", 3: "V Auto Tire",
 4: "PWM Power Max", 5: "Lamlukka Max Shop", 6: "NumKarnYang Klong 4",
 7: "Klong Chan Auto tire", 8: "G Max Wheels", 9: "Nawamin auto tyre",
 10: "Sermmit Tire", 11: "Sportmag100", 12: "Max Design", 13: "LPAutomag",
 14: "Sor KarnYang Rama2", 15: "71HHH AUTO.TIRE"
 }

 if solution:
 print(f"Objective (Travel + Fixed + Solver Penalties):
{solution.ObjectiveValue() / 100:.2f} THB")
 total_distance = 0
 total_travel_cost = 0

 total_solver_early_penalty = 0
 total_solver_late_penalty = 0
 total_real_vip_penalty = 0
 vip_violation_details = []

 used_vehicles_with_load = []
 node_arrival_times = {}

 for vehicle_id in range(manager.GetNumberOfVehicles()):
 index = routing.Start(vehicle_id)
 route_load = 0
 temp_index = index
 while not routing.IsEnd(temp_index):
 node_index = manager.IndexToNode(temp_index)
 route_load += demands[node_index]
 temp_index = solution.Value(routing.NextVar(temp_index))
 if solution.Value(routing.NextVar(index)) != index and route_load > 0:
 used_vehicles_with_load.append(vehicle_id)

Ref. code: 25686722041131TFW

47

 print(f"\n--- VIP Customer Policy ---")
 vip_names = [node_names[i] for i in vip_nodes if i in node_names]
 print(f"VIP Customers (Must not be late): {', '.join(vip_names)}")
 print(f"VIP Late Penalty (Real Cost): {vip_late_penalty_thb:.2f} THB per
incident")

 print("\n--- Routes for Used Vehicles with Load > 0 ---")
 for count, vehicle_id in enumerate(used_vehicles_with_load):
 index = routing.Start(vehicle_id)
 route_distance = 0
 route_load = 0
 vehicle_type_id = vehicle_id % len(vehicle_capacities)
 vehicle_type_name = vehicle_type_names[vehicle_type_id]

 plan_output = f"Route for Vehicle {count + 1} (Virtual ID: {vehicle_id + 1},
Type: {vehicle_type_name}, Cap: {vehicle_capacities[vehicle_type_id]}, Cost/km:
{vehicle_km_costs[vehicle_type_id]}):\n"

 time_var = time_dimension.CumulVar(index)
 arrival_time_min = solution.Value(time_var)

 node_index = manager.IndexToNode(index)
 plan_output += f" -> {node_names[node_index]} (D:
{demands[node_index]})"
 plan_output += f" [Start Time: {format_time(arrival_time_min)}]\n"

 previous_index = index
 index = solution.Value(routing.NextVar(index))

 while not routing.IsEnd(index):
 time_var = time_dimension.CumulVar(index)
 arrival_time_min = solution.Value(time_var)

 node_index = manager.IndexToNode(index)
 node_arrival_times[node_index] = arrival_time_min
 route_load += demands[node_index]

 tw_start = time_windows[node_index][0]
 tw_end = time_windows[node_index][1]

 early_diff = max(0, tw_start - arrival_time_min)
 late_diff = max(0, arrival_time_min - tw_end)

 status_str = ""
 if node_index in vip_nodes and late_diff > 0:
 total_real_vip_penalty += vip_late_penalty_thb

Ref. code: 25686722041131TFW

48

 vip_violation_details.append(f"{node_names[node_index]} (Late
{late_diff} min)")
 status_str = f" (!!! VIP LATE {late_diff} min !!!)"

 elif late_diff > 0:
 total_solver_late_penalty += late_diff * penalty_late_val
 status_str = f" (LATE {late_diff} min)"
 elif early_diff > 0:
 total_solver_early_penalty += early_diff * penalty_early_val
 status_str = f" (Early {early_diff} min)"
 else:
 status_str = f" (On-Time)"

 plan_output += f" -> {node_names[node_index]} (D:
{demands[node_index]})"
 plan_output += f"\n [Window: {format_time(tw_start)}-
{format_time(tw_end)}]"
 plan_output += f" [Arrive: {format_time(arrival_time_min)}]"
 plan_output += status_str
 plan_output += f"\n"

 route_distance +=
distance_matrix[manager.IndexToNode(previous_index)][manager.IndexToNode(ind
ex)]
 previous_index = index
 index = solution.Value(routing.NextVar(index))

 time_var = time_dimension.CumulVar(index)
 arrival_time_min = solution.Value(time_var)
 node_index = manager.IndexToNode(index)
 plan_output += f" -> {node_names[node_index]}"
 plan_output += f" [Arrive back: {format_time(arrival_time_min)}]\n"

 route_distance +=
distance_matrix[manager.IndexToNode(previous_index)][manager.IndexToNode(ind
ex)]

 route_travel_cost = route_distance * vehicle_km_costs[vehicle_type_id]
 plan_output += f"Total load on route: {route_load} | Distance:
{route_distance:.2f} km | Travel Cost: {route_travel_cost:.2f} THB\n"
 print(plan_output)

 total_distance += route_distance
 total_travel_cost += route_travel_cost

 print(f"\n--- Summary ---")

Ref. code: 25686722041131TFW

49

 print(f"Total number of vehicles used with load > 0:
{len(used_vehicles_with_load)}")
 type1_count = sum(1 for v_id in used_vehicles_with_load if v_id %
len(vehicle_capacities) == 0)
 type2_count = sum(1 for v_id in used_vehicles_with_load if v_id %
len(vehicle_capacities) == 1)
 print(f" - {vehicle_type_names[0]} (Cap {vehicle_capacities[0]}, Cost
{vehicle_fixed_costs_thb[0]}): {type1_count}")
 print(f" - {vehicle_type_names[1]} (Cap {vehicle_capacities[1]}, Cost
{vehicle_fixed_costs_thb[1]}): {type2_count}")

 print(f"Total distance of all routes with load > 0: {total_distance:.2f} km")
 print(f"Total load served (across all routes): {sum(demands[1:])}")

 print(f"\n--- Customer Satisfaction Summary ---")
 print(f"{'Node':<20} | {'Ideal Time':<13} | {'Actual Arrival':<14} |
{'Deviation':<20} | {'Satisfaction':>12}")
 print("-" * 87)

 SAT_PENALTY_LATE_PER_MIN = 1
 SAT_PENALTY_EARLY_PER_MIN = 0.1

 all_satisfaction_scores = []
 total_demand_nodes = range(1, manager.GetNumberOfNodes())

 served_nodes = set(node_arrival_times.keys())
 for node_index in vip_nodes:
 if node_index != depot and node_index not in served_nodes:
 total_real_vip_penalty += vip_late_penalty_thb
 vip_violation_details.append(f"{node_names[node_index]} (Not Served)")

 for node_index in total_demand_nodes:
 node_name = node_names[node_index]
 tw_start = time_windows[node_index][0]
 tw_end = time_windows[node_index][1]
 ideal_time_str = f"{format_time(tw_start)}-{format_time(tw_end)}"

 if node_index in node_arrival_times:
 arrival_time_min = node_arrival_times[node_index]
 arrival_str = format_time(arrival_time_min)

 early_diff = max(0, tw_start - arrival_time_min)
 late_diff = max(0, arrival_time_min - tw_end)

 satisfaction = 100.0
 dev_str = ""

Ref. code: 25686722041131TFW

50

 if node_index in vip_nodes and late_diff > 0:
 dev_str = f"!!! VIP LATE {late_diff} min !!!"
 sat_penalty = late_diff * SAT_PENALTY_LATE_PER_MIN * 10
 satisfaction = max(0, 100 - sat_penalty)

 elif early_diff > 0:
 if early_diff >= 60: dev_str = f"Early {early_diff / 60:.1f} hr"
 else: dev_str = f"Early {early_diff} min"
 sat_penalty = early_diff * SAT_PENALTY_EARLY_PER_MIN
 satisfaction = max(0, 100 - sat_penalty)

 elif late_diff > 0:
 if late_diff >= 60: dev_str = f"Late {late_diff / 60:.1f} hr"
 else: dev_str = f"Late {late_diff} min"
 sat_penalty = late_diff * SAT_PENALTY_LATE_PER_MIN
 satisfaction = max(0, 100 - sat_penalty)

 else:
 dev_str = "On Time"
 satisfaction = 100.0

 all_satisfaction_scores.append(satisfaction)
 sat_str = f"{satisfaction:.0f}%"

 else:
 arrival_str = "---"
 dev_str = "Not Served"
 sat_str = "0%"
 all_satisfaction_scores.append(0.0)

 print(f"{node_name:<20} | {ideal_time_str:<13} | {arrival_str:<14} |
{dev_str:<20} | {sat_str:>12}")

 if all_satisfaction_scores:
 avg_sat = sum(all_satisfaction_scores) / len(all_satisfaction_scores)
 print("-" * 87)
 print(f"{'Average Customer Satisfaction:':<69} {avg_sat:>11.1f}%")
 else:
 print("No customer nodes found to average.")

 print(f"\n--- Cost Breakdown ---")
 print(f"Total travel cost: {total_travel_cost:.2f} THB")

 total_fixed_cost = 0
 for v_id in used_vehicles_with_load:

Ref. code: 25686722041131TFW

51

 vehicle_type_id = v_id % len(vehicle_capacities)
 total_fixed_cost += vehicle_fixed_costs_thb[vehicle_type_id]

 print(f"Total fixed vehicle cost: {total_fixed_cost:.2f} THB")

 print(f"Total VIP Customer Penalty (Real Cost): {total_real_vip_penalty:.2f}
THB")
 if vip_violation_details:
 print(f" (Violations: {', '.join(sorted(list(set(vip_violation_details))))})")

 print(f"Total Early Penalty (Solver Guide): {total_solver_early_penalty /
100:.2f} THB")
 print(f"Total Late Penalty (Non-VIP, Solver Guide): {total_solver_late_penalty /
100:.2f} THB")

 total_overall_cost = total_travel_cost + total_fixed_cost + total_real_vip_penalty
 print(f"Total overall cost (Travel + Fixed + VIP Penalty):
{total_overall_cost:.2f} THB")

 print(f"(Solver Objective Value (Travel + Fixed + *Solver* Penalties):
{solution.ObjectiveValue() / 100:.2f} THB)")

 else:
 print("No solution found.")
 print("\nPossible reasons for no solution:")
 print("- Total demand exceeds total vehicle capacity.")
 print("- Time windows are too tight / infeasible (e.g., travel time > window).")
 print("- Solver could not find a solution within search limits/time.")

 try:
 total_demands_sum = sum(demands[1:])
 num_vehicles_potential = manager.GetNumberOfVehicles() if manager else
num_vehicles
 total_potential_capacity_sum = sum([vehicle_capacities[i %
len(vehicle_capacities)] for i in range(num_vehicles_potential)])
 print(f"\nTotal demand to serve (excluding depot): {total_demands_sum}")
 print(f"Total potential capacity across all virtual vehicles:
{total_potential_capacity_sum}")
 if total_demands_sum > total_potential_capacity_sum:
 print("Diagnosis: Total demand is greater than total potential capacity.")
 else:
 print("Diagnosis: Total demand is less than or equal to total potential
capacity. Infeasibility is likely due to TIME CONSTRAINTS.")
 except Exception as e:
 print(f"Diagnosis: Could not perform detailed capacity check. Error: {e}")

Ref. code: 25686722041131TFW

52

A.9 Main Execution

VIP_NODES = {1, 2}
VIP_LATE_PENALTY_THB = 5000.00

if solution:
 print_solution(manager, routing, solution, distance_matrix, demands,
 vehicle_capacities, vehicle_km_costs,
 vehicle_fixed_costs_thb,
 time_dimension, time_windows_min, service_times_min,
 penalty_early, penalty_late,
 VIP_NODES, VIP_LATE_PENALTY_THB)
else:
 print_solution(manager, routing, None, distance_matrix, demands,
 vehicle_capacities, vehicle_km_costs,
 vehicle_fixed_costs_thb,
 None, time_windows_min, service_times_min,
 penalty_early, penalty_late,
 VIP_NODES, VIP_LATE_PENALTY_THB)

Ref. code: 25686722041131TFW

53

APPENDIX B

SOLVER OUTPUT

Objective (Travel + Fixed + Solver Penalties): 18938.09 THB

--- VIP Customer Policy ---
VIP Customers (Must not be late): NV yangyont, TR Tyre auto
VIP Late Penalty (Real Cost): 5000.00 THB per incident

--- Routes for Used Vehicles with Load > 0 ---
Route for Vehicle 1 (Virtual ID: 1, Type: cage truck, Cap: 70, Cost/km: 17):
 -> DC NP TIRE (D: 0) [Start Time: 08:00]
 -> Lamlukka Max Shop (D: 70)
 [Window: 10:30-10:40] [Arrive: 10:30] (On-Time)
 -> DC NP TIRE [Arrive back: 12:07]
Total load on route: 70 | Distance: 55.20 km | Travel Cost: 938.40 THB

Route for Vehicle 2 (Virtual ID: 5, Type: cage truck, Cap: 70, Cost/km: 17):
 -> DC NP TIRE (D: 0) [Start Time: 08:00]
 -> NV yangyont (D: 70)
 [Window: 08:00-09:15] [Arrive: 09:15] (On-Time)
 -> DC NP TIRE [Arrive back: 10:32]
Total load on route: 70 | Distance: 35.60 km | Travel Cost: 605.20 THB

Route for Vehicle 3 (Virtual ID: 6, Type: small lorry, Cap: 120, Cost/km: 22):
 -> DC NP TIRE (D: 0) [Start Time: 08:00]
 -> Nawamin auto tyre (D: 110)
 [Window: 13:00-13:15] [Arrive: 13:00] (On-Time)
 -> DC NP TIRE [Arrive back: 14:24]
Total load on route: 110 | Distance: 42.80 km | Travel Cost: 941.60 THB

Route for Vehicle 4 (Virtual ID: 7, Type: cage truck, Cap: 70, Cost/km: 17):
 -> DC NP TIRE (D: 0) [Start Time: 08:00]
 -> G Max Wheels (D: 95)
 [Window: 09:15-09:30] [Arrive: 09:15] (On-Time)
 -> Sermmit Tire (D: 25)
 [Window: 13:45-14:15] [Arrive: 13:45] (On-Time)
 -> DC NP TIRE [Arrive back: 15:11]
Total load on route: 120 | Distance: 63.30 km | Travel Cost: 1076.10 THB

Route for Vehicle 5 (Virtual ID: 8, Type: small lorry, Cap: 120, Cost/km: 22):
 -> DC NP TIRE (D: 0) [Start Time: 08:00]
 -> Klong Chan Auto tire (D: 105)

Ref. code: 25686722041131TFW

54

 [Window: 11:30-11:55] [Arrive: 11:30] (On-Time)
 -> DC NP TIRE [Arrive back: 13:00]
Total load on route: 105 | Distance: 49.00 km | Travel Cost: 1078.00 THB

Route for Vehicle 6 (Virtual ID: 9, Type: cage truck, Cap: 70, Cost/km: 17):
 -> DC NP TIRE (D: 0) [Start Time: 08:00]
 -> NumKarnYang Klong 4 (D: 110)
 [Window: 11:00-11:35] [Arrive: 11:00] (On-Time)
 -> Sportmag100 (D: 10)
 [Window: 14:20-14:40] [Arrive: 14:20] (On-Time)
 -> DC NP TIRE [Arrive back: 15:42]
Total load on route: 120 | Distance: 63.70 km | Travel Cost: 1082.90 THB

Route for Vehicle 7 (Virtual ID: 10, Type: small lorry, Cap: 120, Cost/km: 22):
 -> DC NP TIRE (D: 0) [Start Time: 08:00]
 -> V Auto Tire (D: 80)
 [Window: 09:00-09:15] [Arrive: 09:00] (On-Time)
 -> DC NP TIRE [Arrive back: 10:07]
Total load on route: 80 | Distance: 26.10 km | Travel Cost: 574.20 THB

Route for Vehicle 8 (Virtual ID: 11, Type: cage truck, Cap: 70, Cost/km: 17):
 -> DC NP TIRE (D: 0) [Start Time: 08:00]
 -> Max Design (D: 85)
 [Window: 14:45-15:20] [Arrive: 14:45] (On-Time)
 -> LPAutomag (D: 25)
 [Window: 15:30-15:40] [Arrive: 15:54] (LATE 14 min)
 -> DC NP TIRE [Arrive back: 17:27]
Total load on route: 110 | Distance: 59.90 km | Travel Cost: 1018.30 THB

Route for Vehicle 9 (Virtual ID: 12, Type: small lorry, Cap: 120, Cost/km: 22):
 -> DC NP TIRE (D: 0) [Start Time: 08:00]
 -> TR Tyre auto (D: 120)
 [Window: 08:30-08:45] [Arrive: 08:34] (On-Time)
 -> DC NP TIRE [Arrive back: 09:48]
Total load on route: 120 | Distance: 33.60 km | Travel Cost: 739.20 THB

Route for Vehicle 10 (Virtual ID: 13, Type: cage truck, Cap: 70, Cost/km: 17):
 -> DC NP TIRE (D: 0) [Start Time: 08:00]
 -> PWM Power Max (D: 30)
 [Window: 09:45-10:15] [Arrive: 10:15] (On-Time)
 -> Sor KarnYang Rama2 (D: 65)
 [Window: 16:00-16:30] [Arrive: 16:00] (On-Time)
 -> 71HHH AUTO.TIRE (D: 10)
 [Window: 16:40-17:00] [Arrive: 17:19] (LATE 19 min)
 -> DC NP TIRE [Arrive back: 19:00]
Total load on route: 105 | Distance: 98.10 km | Travel Cost: 1667.70 THB

Ref. code: 25686722041131TFW

55

--- Summary ---
Total number of vehicles used with load > 0: 10
 - cage truck (Cap 70, Cost 600): 6
 - small lorry (Cap 120, Cost 1000): 4
Total distance of all routes with load > 0: 527.30 km
Total load served (across all routes): 1010

--- Customer Satisfaction Summary ---
Node | Ideal Time | Actual Arrival | Deviation | Satisfaction

NV yangyont | 08:00-09:15 | 09:15 | On Time | 100%
TR Tyre auto | 08:30-08:45 | 08:34 | On Time | 100%
V Auto Tire | 09:00-09:15 | 09:00 | On Time | 100%
PWM Power Max | 09:45-10:15 | 10:15 | On Time | 100%
Lamlukka Max Shop | 10:30-10:40 | 10:30 | On Time | 100%
NumKarnYang Klong 4 | 11:00-11:35 | 11:00 | On Time | 100%
Klong Chan Auto tire | 11:30-11:55 | 11:30 | On Time | 100%
G Max Wheels | 09:15-09:30 | 09:15 | On Time | 100%
Nawamin auto tyre | 13:00-13:15 | 13:00 | On Time | 100%
Sermmit Tire | 13:45-14:15 | 13:45 | On Time | 100%
Sportmag100 | 14:20-14:40 | 14:20 | On Time | 100%
Max Design | 14:45-15:20 | 14:45 | On Time | 100%
LPAutomag | 15:30-15:40 | 15:54 | Late 14 min | 86%
Sor KarnYang Rama2 | 16:00-16:30 | 16:00 | On Time | 100%
71HHH AUTO.TIRE | 16:40-17:00 | 17:19 | Late 19 min | 81%

Average Customer Satisfaction: 97.8%

--- Cost Breakdown ---
Total travel cost: 9721.60 THB
Total fixed vehicle cost: 7600.00 THB
Total VIP Customer Penalty (Real Cost): 0.00 THB
Total Early Penalty (Solver Guide): 0.00 THB
Total Late Penalty (Non-VIP, Solver Guide): 16.50 THB
Total overall cost (Travel + Fixed + VIP Penalty): 17321.60 THB
(Solver Objective Value (Travel + Fixed + *Solver* Penalties): 18938.09 THB)

Ref. code: 25686722041131TFW

56

APPENDIX C

SOLVER SETTINGS AND CONFIGURATION

The heterogeneous fleet VRP model was implemented in Python using Google

Colab and solved with the OR-Tools routing library. Solver settings and platform

details are summarized below.

Table C.1 Solver configuration and platform details

Component Configuration Details

Platform Google Colab (Python 3 environment)

Solver OR-Tools Constraint Solver (Routing Library)

Engine Constraint Programming (CP) with LNS/GLS Metaheuristics

Model Type Heterogeneous Fleet VRP with Time Windows (HFVRPTW)
Constraints: Capacity, Time Windows, Soft Penalties

Time Limit 120 seconds per run (stopping condition for search)

Metaheuristic Large Neighborhood Search (LNS) / Guided Local Search (GLS)

Search
Strategy AUTOMATIC (Combines first solution heuristics + local search)

Fixed Costs Applied per vehicle type (Cage Truck = 600 THB, Small Lorry = 1,000
THB)

Output Route assignments, vehicle usage, total cost (Fixed + Travel + VIP),
satisfaction

Validation Feasibility checked via Capacity and Time Window dimensions

Ref. code: 25686722041131TFW

57

BIOGRAPHY

Name Peesit Tangtung

Education 2024: Bachelor of Science (Engineering Management)

Sirindhorn International Institute of Technology

Thammasat University

Ref. code: 25686722041131TFW

