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ABSTRACT 
 

 This research optimizes tire distribution operations through a heterogeneous 

fleet vehicle routing problem with time window (HFVRPTW) solved with Google OR-

Tools. The model minimizes total transportation costs, including fixed and distance-

based variable costs, while meeting customer demands from a central depot. A 

heterogeneous fleet with varying capacities and cost structures is considered, enabling 

efficient vehicle allocation and allowing multiple trips per vehicle. By addressing key 

constraints such as vehicle capacity, demand, and route distances, the model determines 

optimal routes and vehicle assignments. Results show that a heterogeneous fleet 

provides greater flexibility and significant cost savings compared to a uniform fleet, 

offering practical insights for logistics optimization and efficiency improvement in 

distribution networks. 

 

Keywords: Vehicle routing problem (vrp), Fleet routing problem, Distribution routing 

problem, Delivery routing problem, Route optimization problem, Distribution 

system optimization, Time window, Heterogeneous fleet 
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CHAPTER 1 

INTRODUCTION 
 

In the evolving domain of logistics and supply chain management, 

transportation planning has emerged as a strategic function that directly influences cost 

efficiency, service reliability, and operational agility. As distribution networks grow 

more complex and customer expectations for on-time delivery intensify, organizations 

must adopt intelligent planning tools to manage operations with precision. This study 

explores a real-world transportation challenge at "DC NP TIRE," a Bangkok-based tire 

distributor, where the selection of appropriate vehicle types from a heterogeneous fleet 

plays a pivotal role in optimizing performance. 

This chapter begins by establishing the background and context of the specific 

problem facing DC NP TIRE, followed by a discussion of the multifaceted challenges 

inherent in its transportation planning. It then introduces the company's heterogeneous 

fleet as a strategic lever for cost control. Finally, the chapter outlines the objectives and 

methodological framework of the study, highlighting the application of Google OR-

Tools to solve a complex Vehicle Routing Problem (VRP) and uncover a non-intuitive 

"Sweet Spot" (Win-Win) solution. 

1.1 Background and Problem Context 

Transportation planning is a cornerstone of the operation at DC NP TIRE. It 

determines not only how goods are moved to its 15 key customers but also how 

effectively resources are utilized across this network. In this tire distribution context, 

where delivery demands vary and service requirements differ by location, relying on 

manual planning or a "one-size-fits-all" strategy leads to significant inefficiencies such 

as underutilized vehicle capacity, excessive fuel consumption, and missed delivery 

windows. These inefficiencies are amplified by the need to manage driver overtime and 

avoid costly penalties. 
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1.1.1 Challenges in Transportation Planning 

The complexity of delivering goods to 15 destinations with varying demand 

levels, all while adhering to specific ideal time windows, presents a formidable 

optimization problem. Without a strategic framework, the system suffers from 

mismatched vehicle assignments, redundant trips, and elevated operational costs. The 

core challenge lies in balancing two conflicting objectives: 

• Cost Minimization: Reducing fixed costs (number of vehicles used), 

variable costs (fuel and distance), and overtime pay. 

• Service Quality: Maximizing customer satisfaction by ensuring on-time 

delivery, especially to VIP customers where late arrivals incur real 

financial penalties. 

1.1.2 The Role of a Heterogeneous Fleet 

Deploying a heterogeneous fleet—comprising 5 "Cage Trucks" (70 capacity) 

and 8 "Small Lorries" (120 capacity), each with different fixed and variable operating 

costs—offers a pragmatic solution to these challenges. By aligning the correct vehicle 

selection with specific route characteristics and customer demands, the organization 

can achieve higher resource utilization and lower total costs. This study leverages this 

fleet diversity as a key tactical advantage in the optimization model. 

1.2 Objectives and Methodological Framework 

The primary objective of this study is to develop a delivery optimization model 

tailored to the specific context of DC NP TIRE. The model evaluates customer demand 

and determines the optimal vehicle type, sequence, and route for each delivery. 

A key objective is to challenge the conventional wisdom that higher service 

must result in higher costs. This study seeks to prove that a "globally optimal" solution 

exists that is both lower in cost and higher in service than the baseline "cost-focused" 

strategy. The model emphasizes integrating real-world constraints, including vehicle 

capacities, ideal time windows, and the asymmetric cost of service failures. 
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1.2.1 Application of Google OR-Tools 

To address the complexity of this Heterogeneous Fleet Vehicle Routing 

Problem with Time Windows (HFVRPTW), the study employs Google OR-Tools. This 

library is well-suited for this application, supporting multi-vehicle routing, capacity 

constraints, and complex cost structures. 

The model is used to conduct a comparative scenario analysis (Baseline vs. No-

OT models) and a decisive sensitivity analysis on service-level penalties. The outputs 

optimal routes, total costs, and satisfaction scores serve as actionable insights to prove 

the existence of the "Sweet Spot" and provide a clear, data-driven recommendation for 

management. 
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CHAPTER 2 

REVIEW OF LITERATURE 
 
2.1 Importance of Vehicle Routing Optimization in Heterogeneous Fleet 

Distribution Systems  

In today’s increasingly complex and competitive logistics landscape, 

optimizing vehicle routing is essential for improving delivery efficiency, reducing 

operational costs, and enhancing customer satisfaction. The Vehicle Routing Problem 

(VRP) and its variants such as the Capacitated VRP (CVRP), Multi-Vehicle Routing 

Problem (MVRP), and Fleet Routing Problem play a central role in distribution system 

optimization, especially when dealing with heterogeneous fleets. These fleets, 

composed of vehicles with varying capacities, costs, and operational constraints, 

introduce additional layers of complexity that demand advanced algorithmic solutions. 

Traditional VRP models often assume homogeneous fleets and static demand, 

which limits their applicability in real-world scenarios. To address this, modern 

approaches incorporate fleet heterogeneity, time windows, and multiple depots. Liu, 

Jabali, and Dekker (2023) proposed a green VRP model that integrates multi-depot, 

multi-tour, and split deliveries for heterogeneous fleets, demonstrating significant 

improvements in both cost and environmental performance. Their model reflects the 

growing need for flexible routing systems that accommodate diverse vehicle 

characteristics and sustainability goals. Nalepa and Blocho (2021) conducted a 

comprehensive review of VRP models, highlighting the evolution of routing strategies 

in response to real-world constraints such as traffic congestion, delivery time windows, 

and fleet diversity. Their classification framework provides a foundation for selecting 

appropriate algorithms based on operational context, reinforcing the importance of 

tailored routing solutions. Eksioglu, Vural, and Reisman (2020) emphasized the role 

of advanced heuristics and metaheuristics in solving large-scale VRPs, particularly 

those involving heterogeneous fleets. Their study demonstrated that hybrid approaches 

combining genetic algorithms, tabu search, and local search can effectively balance 

route efficiency with computational feasibility. Bouanane, Amrani and Benadada 

(2022) further explored the impact of fleet diversity on routing performance, showing 
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that heterogeneous fleet models outperform homogeneous ones in terms of cost savings 

and service reliability. Their findings underscore the practical benefits of incorporating 

vehicle-specific parameters into routing algorithms. 

As logistics systems evolve, the integration of intelligent routing algorithms 

with scalable optimization tools offers promising avenues for enhancing distribution 

performance. By capturing the nuances of vehicle diversity and operational constraints, 

heterogeneous fleet models enable more realistic and efficient routing strategies, paving 

the way for smarter transport networks. 

 

2.2 Leveraging Heterogeneous Fleet Models for Realistic Routing Scenarios 

In real-world logistics operations, fleets are rarely uniform. Vehicles differ in 

capacity, cost, fuel efficiency, and operational constraints, making heterogeneous fleet 

modeling a critical advancement in vehicle routing research. The Heterogeneous Fleet 

Vehicle Routing Problem (HFVRP) extends classical VRP formulations by 

incorporating these variations, enabling more accurate and cost-effective route 

planning. Traditional VRP models often assume identical vehicles, which 

oversimplifies the complexities of modern distribution systems. Subramanian and 

Ochi  (2012). addressed this gap by proposing a hybrid algorithm for HFVRP with time 

windows, combining genetic algorithms and local search to improve solution quality. 

Their model demonstrated superior performance in minimizing total travel distance 

while respecting vehicle-specific constraints, highlighting the importance of hybrid 

heuristics in heterogeneous environments. Afshar-Nadjafi (2016) further explored 

HFVRP by integrating multiple depots and delivery time windows. Their optimization 

framework used adaptive large neighborhood search (ALNS) to dynamically adjust 

routes based on vehicle characteristics and depot availability. This approach 

significantly reduced operational costs and improved delivery reliability, especially in 

large-scale urban networks. Avci and Topaloglu (2016) introduced a hybrid 

metaheuristic for HFVRP with split deliveries, allowing partial fulfillment of customer 

demand across multiple vehicles. This flexibility is particularly useful in scenarios with 

fluctuating demand and limited vehicle capacity. Their results showed that split 

delivery strategies, when combined with fleet diversity, can enhance service levels and 

reduce the number of required trips. Kaewman and Akararungruangkul (2018) 
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contributed to the practical implementation of HFVRP by developing heuristic 

algorithms tailored to fleets with excessive demand and longest time constraints. Their 

framework emphasized the importance of balancing delivery efficiency with service 

time limitations, offering valuable insights for logistics providers operating under tight 

schedules and varied vehicle capabilities. 

As logistics systems become more dynamic and customer expectations rise, 

heterogeneous fleet models provide the necessary flexibility to meet diverse operational 

demands. By capturing the nuances of vehicle diversity, these models enable more 

realistic and efficient routing solutions, paving the way for smarter distribution 

strategies. 

 

2.3 Addressing Multi-Vehicle and Multi-Depot Routing Challenges 

As distribution networks scale and diversify, the complexity of coordinating 

multiple vehicles across multiple depots becomes a central challenge in logistics 

optimization. The Multi-Vehicle Routing Problem (MVRP) and Multi-Depot Vehicle 

Routing Problem (MDVRP) extend classical VRP models by introducing additional 

layers of operational coordination, such as depot assignment, vehicle scheduling, and 

route synchronization. Despaux and Basterrech (2016) tackled the MDVRP with time 

windows and heterogeneous fleets, proposing a hybrid algorithm that integrates tabu 

search and adaptive memory programming. Their model demonstrated improved 

delivery efficiency and reduced total cost, especially in scenarios with tight time 

constraints and diverse vehicle capabilities. This highlights the importance of depot-

aware routing strategies in large-scale logistics systems. Stodola (2018) explored 

metaheuristics for MDVRP, emphasizing the role of variable neighborhood search 

(VNS) and genetic algorithms in solving complex routing problems. Their study 

showed that combining multiple heuristics can significantly enhance solution quality 

and computational speed, particularly in high-dimensional routing environments. Wang, 

Zhe , Sun and Wang (2022) introduced a coordinated routing framework for multi-

vehicle systems with depot constraints. Their model incorporated depot-specific service 

levels and vehicle availability, enabling dynamic reassignment of routes based on real-

time demand fluctuations. This approach proved effective in minimizing delivery 

delays and balancing workload across depots. Bektas and Laporte (2021) provided a 
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comprehensive review of MVRP models and solution methods, categorizing them 

based on fleet composition, depot structure, and routing objectives. Their work serves 

as a foundational reference for researchers and practitioners seeking to design scalable 

and flexible routing systems. By addressing the intricacies of multi-vehicle and multi-

depot coordination, these models enable logistics providers to optimize resource 

allocation, reduce operational bottlenecks, and improve overall service reliability. 

 

2.4 Integrating OR-Tools and AI for Scalable Routing Solutions 

The rise of open-source optimization libraries and artificial intelligence has 

transformed the way vehicle routing problems are approached. Google’s OR-Tools, in 

particular, has become a go-to platform for solving complex routing scenarios, offering 

flexibility, scalability, and integration with real-time mapping APIs. Cuvelier,Didier, 

Furnon, Gay, Mohajeri and Perron conducted a comparative study between OR-

Tools and SCIP, demonstrating that OR-Tools not only achieved faster execution times 

but also required fewer lines of code to solve CVRP with time windows. This makes it 

highly suitable for real-time delivery routing applications, especially in dynamic urban 

environments developed a suite of customized VRP models using OR-Tools and 

Python, incorporating constraints such as load/unload demands, depot scheduling, and 

time windows. The integration with Google’s Distance Matrix API allowed for accurate 

travel time estimation, showcasing the practical utility of OR-Tools in transport 

network optimization. Tahir (2024) explored AI-enhanced routing using deep learning 

and OR-Tools, proposing a hybrid framework that combines predictive modeling with 

constraint-based optimization. Their approach improved route efficiency and reduced 

computational overhead, particularly in scenarios with fluctuating demand and traffic 

conditions. 

Google Developers (n.d.) provide extensive documentation on OR-Tools, 

including methods like AddDimensionWithVehicleCapacity, which allow for vehicle-

specific capacity modeling. This flexibility is crucial for heterogeneous fleet routing 

and real-time logistics planning. 

By integrating AI and scalable optimization tools, logistics systems can achieve 

higher levels of responsiveness, adaptability, and cost-efficiency, paving the way for 

smarter and more sustainable delivery networks. 
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2.5 Integrating Sensitivity Analysis for Robust Vehicle Routing and Distribution 

Optimization 

In complex logistics systems, small changes in input parameters such as 

demand, travel time, fuel cost, or vehicle capacity can significantly impact routing 

decisions and overall performance. Sensitivity analysis plays a crucial role in evaluating 

the robustness of vehicle routing models by identifying which variables most influence 

outcomes and how resilient solutions are to uncertainty. Sabet and Farooq 

(2022)conducted a sensitivity analysis on heterogeneous fleet routing models, 

examining how variations in fuel cost and vehicle capacity affect total delivery cost and 

route feasibility. Their findings revealed that even minor fluctuations in fuel prices 

could shift optimal vehicle assignments, underscoring the need for adaptable routing 

strategies in volatile environments Yu, Zhang, Yu, Sun, & Huang (2020) applied 

sensitivity analysis to a multi-depot vehicle routing problem with time windows, 

focusing on demand variability and service time constraints. Their study demonstrated 

that route efficiency and customer satisfaction were highly sensitive to changes in 

delivery time windows, suggesting that flexible scheduling mechanisms are essential 

for maintaining performance under uncertainty.  

 

Table 2.1 Literature on VRP Models and Solution Methods 

      

Authors Routing Model 

Objective 

Function 

Fleet 

Type 

Constraints 

Considered 

Depot 

Struct

ure 

Time 

Windo

w 

Solution 

Method 

        

Liu, Jabali & Dekker 

(2023) 

Green VRP with 

split deliveries 

Minimize 

cost & 

emissions 

Heterogen

eous 

Capacity, 

emissions, multi-

tour 

Multi-

depot 

Ye

s 

Heuristic + 

MILP 

Nalepa & Blocho 

(2021) 

VRP classification 

review 

Model 

taxonomy Mixed 

Traffic, fleet 

diversity, delivery 

constraints 

Variou

s 

Mi

xe

d 

Literature 

synthesis 

Eksioglu, Vural & 

Reisman (2020) 

VRP solution 

methods 

Minimize 

cost Mixed 

Capacity, routing 

complexity 

Variou

s 

Mi

xe

d 

Heuristic & 

metaheuristic 

Bouanane, K., Amrani 

& Benadada (2022) 

VRP model 

review 

Cost & 

service 

reliability Mixed 

Fleet diversity, 

demand patterns 

Variou

s 

Mi

xe

d 

Comparative 

analysis 
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Kaewman & 

Akararungruangkul 

(2018) 

HFVRP with time 

constraints 

Minimize 

cost 

Heterogen

eous 

Excess demand, 

longest time 

Single 

depot 

Ye

s 

Heuristic 

algorithm 

Subramanian, Penna, 

Uchoa & Ochi (2012) 

HFVRP with time 

windows 

Minimize 

distance 

Heterogen

eous 

Capacity, time 

windows 

Single 

depot 

Ye

s 

Hybrid Genetic 

Algorithm 

Afshar-Nadjafi (2016). 

HFVRP with 

multiple depots 

Minimize 

total cost 

Heterogen

eous 

Depot 

assignment, time 

windows 

Multi-

depot 

Ye

s 

Adaptive Large 

Neighborhood 

Avci & Topaloglu, 

(2016) 

HFVRP with split 

deliveries 

Minimize 

cost 

Heterogen

eous 

Split delivery, 

route length 

Single 

depot No 

Hybrid 

Metaheuristic 

Despaux & Basterrech 

(2016) 

MDVRP with 

heterogeneous 

fleet 

Minimize 

total cost 

Heterogen

eous 

Capacity, time 

windows 

Multi-

depot 

Ye

s 

Tabu Search + 

Adaptive 

Memory 

Stodola (2022) MDVRP 

Minimize 

route cost 

Homogen

eous 

Depot 

coordination, 

route 

synchronization 

Multi-

depot 

Ye

s 

Variable 

Neighborhood 

Search 

Wang, Zhe , Sun & 

Wang (2022) 

Coordinated 

multi-vehicle 

routing 

Minimize 

delay & 

cost Mixed 

Depot constraints, 

vehicle 

availability 

Multi-

depot 

Ye

s 

Dynamic 

Reassignment 

Cuvelier, Didier, 

Furnon, Gay, Mohajeri 

& Perron 

CVRP with time 

windows 

Minimize 

cost Mixed 

Capacity, time 

windows 

Single 

depot 

Ye

s 

OR-Tools vs 

SCIP 

Tahir (2024) AI-enhanced VRP 

Minimize 

route cost Mixed 

Traffic, demand 

prediction 

Single 

depot 

Ye

s 

Deep Learning 

+ OR-Tools 

Euchi & Yassine 

(2023) Sustainable VRP 

Minimize 

fuel & 

distance Mixed 

Fuel usage, route 

length 

Single 

depot No 

Hybrid 

metaheuristics 

Yu, Zhang,Yu, Sun, & 

Huang (2020) 

Green VRP with 

LNS 

Minimize 

cost & 

emissions Mixed 

Neighborhood 

selection, 

emissions 

Single 

depot No 

Large 

Neighborhood 

Search 

This paper 

CVRP, HFVRP, 

VRPTW, 

Sensitivity 

Analysis (After 

Proposal) 

Minimize 

total 

distance, 

vehicle 

usage, cost 

Heterogen

eous 

Vehicle capacity, 

demand, time 

windows (after 

proposal), fuel 

cost, demand 

variability 

Single 

depot 

Ye

s 

OR-Tools 

(Python), 

constraint 

modeling, LNS, 

scenario testing 

 

Table 2.1 summarizes key studies on VRP models and solution methods. It 

compares routing types, objectives, fleet configurations, constraints, and solution 

techniques, providing context for the methodological choices in this study. 

 

2.6 Research Gap and Contributions of the Study 

While vehicle routing problems (VRP) have been widely studied, many existing 

models still rely on simplified assumptions such as homogeneous fleets, static demand, 

and limited operational constraints. These limitations reduce their applicability in real-
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world logistics systems, which often involve diverse vehicle types, fluctuating delivery 

conditions, and the need for flexible, scalable solutions. 

Moreover, although Google OR-Tools is a powerful and accessible optimization 

platform, few academic studies provide detailed, customizable implementations that 

reflect practical routing challenges especially for heterogeneous fleets. Sensitivity 

analysis and time window constraints, which are crucial for evaluating robustness and 

responsiveness, are often underrepresented in current literature. 

This study addresses these gaps by developing a customizable VRP framework 

using Google OR-Tools that supports heterogeneous fleet configurations and capacity 

constraints. The model is designed to reflect operational realities and can be adapted to 

various logistics scenarios. 

In addition, the study provides a modular codebase that can be extended to 

include time window constraints and sensitivity analysis in future phases. This 

flexibility ensures that the model remains relevant as delivery conditions evolve and 

complexity increases. 

To support both academic and practical use, the research also includes a 

structured comparative literature review and implementation summary. These 

components serve as a reference for future studies and logistics teams seeking to apply 

optimization tools in real-world settings. 

Finally, the study lays the foundation for scenario testing and robustness 

evaluation, which will be conducted in the next stage of the research. By bridging the 

gap between theoretical models and practical routing systems, this work contributes a 

scalable and adaptable approach to distribution system optimization, with clear 

pathways for future enhancement. 
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CHAPTER 3 

METHODOLOGY 
 

3.1 Research Design 

This study employs a quantitative, computational modeling methodology to 

investigate the impact of operational policies on logistics network performance. The 

research design is anchored in a three-phase comparative scenario analysis, with each 

phase structured to isolate specific variables and build upon the insights of the last. 

The entire experimental framework is formulated as a Heterogeneous Fleet 

Vehicle Routing Problem with Time Windows (HFVRPTW). This complex 

optimization model accounts for the use of different vehicle types (heterogeneous fleet) 

and the critical constraint of delivery deadlines (time windows). The model is 

computationally solved using the Google OR-Tools library, a powerful open-source 

suite for combinatorial optimization. 

The core of the methodology unfolds across the following three experimental 

scenarios. 

 

3.1.1 Scenario 1: Baseline Performance Quantification 

This initial phase serves as the experimental control for the entire study. It is 

designed to create a high-fidelity benchmark of the company's current logistics 

network. 

• Objective: To establish a comprehensive, quantitative benchmark of the 

existing operational status quo. 

• Method: The HFVRPTW model is configured to mirror the company's 

current operational reality, most notably by strictly enforcing its "overtime-

constrained" policy. All existing fleet sizes, driver schedules, customer 

locations, and demand data are held constant. 

• Expected Insight: The output from this scenario provides a clear baseline 

dataset. It quantifies key performance indicators (KPIs) such as total 

operational cost, on-time delivery percentages, total mileage, and asset 

(vehicle/driver) utilization under the current rule set. This baseline is the 
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essential point of comparison against which all subsequent scenarios are 

measured. 

 

3.1.2 Scenario 2: Unconstrained Theoretical Optimum  

The second phase moves from a descriptive model to a diagnostic one. It seeks to 

understand the "true" capabilities and inherent trade-offs of the network by 

computationally removing its most significant operational constraint. 

• Objective: To isolate and quantify the specific impact of the overtime policy 

on network performance and to identify the system's "true" unconstrained trade-

offs. 

• Method: This scenario utilizes the same core data as Scenario 1 but with one 

critical modification: the overtime constraint is completely removed. This 

allows the optimization solver to operate in a "blue-sky" or "ideal-state" 

environment, prioritizing the most efficient routing solutions regardless of 

arbitrary work-hour limits. 

• Expected Insight: By comparing the results of Scenario 2 to Scenario 1, this 

study can precisely quantify the cost of the constraint—that is, how much cost, 

time, and inefficiency are directly attributable to the overtime policy alone. This 

phase reveals the latent optimization potential within the network and provides 

a theoretical "best-case" ceiling for performance. 

 

3.1.3 Scenario 3: Prescriptive Optimization & Robustness Testing  

The final and most complex phase transitions the research from descriptive 

analysis to prescriptive recommendation. It is a two-part experiment designed to first 

find a new "globally optimal" policy and then validate its practicality against real-world 

pressures. 

• Objective: To identify a new, globally optimal "Sweet Spot" by tuning service-

level penalties and subsequently to test the robustness of this new policy against 

the complexities of real-world operational exceptions. 

• Method (Part A: Sensitivity Analysis): This sub-phase conducts a 

comprehensive sensitivity analysis by systematically iterating the "service 

penalty" parameter within the model. This parameter assigns a high virtual cost 
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for failing to meet a time window, allowing the model to find the most effective 

balance between the cost of service(e.g., using more trucks) and the cost of 

failure (e.g., missing a delivery). The configuration that yields the best system-

wide cost-service balance is identified as the "globally optimal" Sweet Spot. 

• Method (Part B: Robustness Test): The newly identified optimal policy from 

Part A is then subjected to a final "stress test." In this sub-phase, the model 

incorporates a realistic "VIP Customer Policy"—an exception-handling rule 

that forces the network to prioritize certain high-value clients, even if it is not a 

"globally" efficient decision. 

• Expected Insight: This scenario provides the study's primary recommendation. 

It moves beyond a simple theoretical optimum (Scenario 2) to propose 

a practically robust policy. By testing the Sweet Spot policy against the VIP 

customer constraint, the research can confidently determine if the new policy is 

resilient enough to handle the pragmatic, non-optimal demands of the real 

world, ensuring the final recommendation is both data-driven and operationally 

viable. 

 

3.2 Mathematical Model Formulation 

The mathematical foundation of this study is built upon the Heterogeneous Fleet 

Vehicle Routing Problem with Time Windows (HFVRPTW). This model is specifically 

adapted to include Soft Time Window Penalties, which are the core mechanism for the 

sensitivity analysis in this research. 

 

3.2.1 Sets and Indices 

• 𝑁 = {0,1, … , 𝑛}: Set of nodes, where node 0 is the depot 

• 𝐶	 =	Set of customer node, C = 𝑁	{0} 

• 𝑉	 = {0,1, … ,𝑚 − 1}: Set of vehicles 

• 𝑇 = {0,1}: Set of vehicle types (0 = small, 1 = large) 

• 𝑡(𝑘) =	Function mapping vehicle 𝑘	 ∈ 𝑉 to its type t ∈ T 

• 𝐶!"#	 ⊂ 𝐶: Set of VIP customer nodes (e.g., {1, 2} 

• 𝐶%&'	 = 𝐶	\𝐶!"#	: Set of Regular customer nodes. 
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3.2.2 Parameters 

• 𝑑():	Distance (km) between node 𝑖 and node 𝑗	

• 𝑡𝑡():	Travel time (minutes) from node 𝑖	to node 𝑗 (derived from 𝑑() 	and 

average speed).	

• 𝑠𝑡(: Service time (minutes) required at node 𝑖 (where 𝑠𝑡* = 0).	

• 𝑞(:	Demand (units) at customer node 𝑖 (where 𝑞* = 0).	

• 𝑄+: Capacity (units) of type 𝑡. 

• 𝑐+: Variable cost per kilometer (THB/km) for vehicle 𝑡. 

• 𝑓+: Fixed cost (THB) for using vehicle 𝑡 

• [𝑒( , 𝑙(]: The ideal time window for node 𝑖, where 𝑒( is the earliest arrival 

time and 𝑙( is the latest arrival time. 

• 𝑃,- 	: Penalty cost per minute for route duration exceeding 480 minutes. 

• 𝑃&.%/0	: Penalty cost per minute for arriving at a customer before 𝑒( 

• 𝑃/.-&	: Penalty cost per minute for arriving at a customer after 𝑙( 

• 𝑃!"#	: Penalty cost for arriving at a 𝐶!"# after 𝑙( 

 

 

3.2.3 Decision Variables 

• 𝑥()1: A binary variable, = 1 if vehicle 𝑘	travels directly from node 𝑘 to 

node 𝑗	, and 0 otherwise. 

• 𝑦1: A binary variable, = 1 if vehicle 𝑘 is used, and 0 otherwise. 

• 𝑠(1: A continuous variable representing the arrival time of vehicle 𝑘 at 

node 𝑖. 

• 𝑏(1: A continuous variable representing the departure time of vehicle 

𝑘	from node 𝑖. 

• 𝐷𝑒𝑣(1& : Amount of time (minutes) vehicle 𝑘	arrives early at node 𝑖	 

• 𝐷𝑒𝑣(1/ : Amount of time (minutes) vehicle 𝑘	arrives late at node 𝑖	 

• 𝑂𝑇1: Amount of time (minutes) vehicle 𝑘's route duration exceeds 480 

minutes. 
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3.2.4 Objective Function 

The objective is to minimize the Total System Cost, which is a composite 

function of operational costs and service penalties, depending on the scenario. 

Minimize Z = 𝑍23456+(2768 +	𝑍945:(;4	34768+< +	𝑍,-	34768+<  + 𝑍!"#	#4768+(4= 

Where: 

1. Operational Cost 

𝑍,3456+(2768	 =N𝑓+(1) ∙ 	𝑦1 +
1∈!

N N 𝑐+(1) ∙ 	𝑑()	 ∙ 	𝑥()1
(,)∈B1∈!

 

The operational cost component represents the tangible financial expenditure 

required for fleet execution, aggregating both the fixed costs associated with activating 

specific vehicle types and the variable costs incurred per unit of distance traveled. This 

baseline cost ensures the model accounts for the fundamental economic resources 

needed to service the logistical network, independent of service quality metrics. 

2. Service Penalty 

𝑍945:(;4#4768+< =NN(𝑃&658< ∙ 	𝐷𝐸𝑉(1& +	𝑃/.-& ∙ 	𝐷𝐸𝑉(1/

(∈C1∈!

 

The service penalty quantifies the degradation in general customer satisfaction 

by penalizing temporal deviations outside the designated soft time windows. This 

function accounts for both premature arrivals, which may necessitate waiting or cause 

inventory inconveniences, and delayed arrivals, which directly negatively impact the 

standard service level agreements. 

3. Overtime Penalty 

𝑍,-#4768+< =N(	𝑃,- ∙ 	𝑂𝑇1)
1∈!
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The overtime penalty captures the additional costs incurred when the total 

duration of a vehicle's route exceeds the standard allowable working hours. This 

component serves to regulate resource utilization by discouraging excessive route 

lengths, thereby ensuring adherence to driver labor constraints and minimizing extra 

workforce expenditures. 

4. VIP Penalty 

𝑍!"#	#4768+(4= = N N	
1∈!

(	𝑃!"# ∙ 	𝐷𝐸𝑉(1/ )
(∈C!"#

 

The VIP penalty introduces a strictly weighted cost associated with service 

delays for high-priority clients, distinct from the standard service penalty. By assigning 

a significantly higher penalty rate to lateness for these specific customers, the model is 

mathematically coerced to prioritize punctuality for key accounts to mitigate potential 

reputational damage or severe contractual violations. 

(Note: In Scenario 1, 𝑍945:(;4#4768+<was set to 0 or ∞. In Scenarios 2 & 3, 𝑍,-#4768+< 

was set to 0, and the "Knobs" 𝑃&658<and 𝑃/6+4 were adjusted. The real financial penalty 

for 𝐶!"# is handled as a business rule in the experimental design, Section 3.4.3, not in 

this solver's objective function.) 

3.2.5 Constraints 
 
Routing Constraints: 
 
Each customer is visited exactly once: 

∑ ∑ 𝑥()1 =(∈B1∈!  1  ∀)∈ 𝐶                                                                           (3.1) 

 

Flow Conservation For each vehicle, the number of arrivals equals the number of 

departures: 

∑ 𝑥()1 −	∑ 𝑥)(1 	(∈B 	(∈B = 0  ∀)∈ 𝑁	, ∀𝑘	 ∈ 𝑉                                                (3.2) 
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Each used vehicle stars and ends at the depot: 

						∑ 𝑥*1 	)∈C  = 𝑦1  and		∑ 𝑥(*1 	(∈C  = 𝑦1  ∀𝑘	 ∈ 𝑉                                                                  (3.3) 

 

The fundamental routing restrictions, including the mandate that every customer 

node is visited exactly once (Equation 3.1) and the flow conservation principle ensuring 

equal arrivals and departures at each node (Equation 3.2), are enforced structurally 

within the Google OR-Tools framework. Specifically, the initialization of 

the pywrapcp.RoutingIndexManager and pywrapcp.RoutingModel classes constructs 

the underlying graph topology. By defining the number of nodes and vehicles, along 

with the specific depot index, the solver implicitly applies these constraints to generate 

valid, continuous closed-loop tours for each active vehicle starting and ending at the 

designated depot as defined in Equation 3.3. 

 

Capacity Constraints: 

To ensure feasibility regarding fleet limitations, the capacity constraints are 

modeled using the AddDimensionWithVehicleCapacity method within the OR-Tools 

routing model. This function integrates a registered demand callback, which retrieves 

the specific load requirement for each location, and cross-references the cumulative 

load against the defined capacity vector for the heterogeneous fleet. The solver tracks 

the accumulated demand variable along the route and strictly invalidates any solution 

where the total load exceeds the maximum capacity of the specific vehicle type assigned 

to that route. 

Time Window and Flow Constraints: 

Departure time from node 𝑖: 

						𝑏(11= max(𝑒( , 𝑠(1) + 𝑠𝑡( ∀(∈ 𝐶	, ∀𝑘 ∈ 𝑉                                                            (3.4) 

 

Arrival ime at node 𝑗 (if 𝑗 follows 𝑖) : 

				𝑠)1 ≥ (𝑏(1 +	𝑡𝑡()) − 𝑀(1 −	𝑥()1) ∀𝑖, 𝑗	 ∈ 𝑁	, ∀𝑘	 ∈ 𝑉  (3.5) 

(where M is a large constant) 

Ref. code: 25686722041131TFW



18 
 
 
  

         The temporal propagation across the network, as mathematically defined in 

Equations 3.4 and 3.5, is implemented through the creation of a dedicated Time 

Dimension using the routing.AddDimension method. This mechanism relies on a 

registered transit callback function that computes the traversal cost of an arc by 

summing the estimated travel time between nodes and the requisite service duration at 

the origin node. This dimension accumulates the time variable cumulatively along the 

route path, effectively modeling the continuity of time and ensuring that the arrival time 

at a subsequent node logically follows the departure time from its predecessor.  

 

Time window definition (for soft penalties): 

				𝐷𝑒𝑣(1& ≥ 𝑒( − 𝑠(1    

				𝐷𝑒𝑣(1& ≥ 0    (3.6) 

				𝐷𝑒𝑣(1/ ≥ 𝑠(1 −	𝑙( 	                                                             

				𝐷𝑒𝑣(1/ ≥ 0                                                             (3.7) 

 

        The implementation of soft time window constraints, which permit temporal 

deviations subject to penalty costs (Equations 3.6 and 3.7), is achieved through 

the SetCumulVarSoftLowerBound and SetCumulVarSoftUpperBoundmethods 

applied to the cumulative time variable of each node. These functions automatically 

compute the linear deviation between the actual arrival time and the pre-defined 

preferred time window boundaries. If the arrival time occurs earlier than the lower 

bound or later than the upper bound, the solver adds a cost to the objective function 

proportional to the magnitude of the violation multiplied by the specified early or late 

penalty coefficients. 

 

3.3 Model Assumptions 

To ensure computational tractability and conceptual clarity, the mathematical 

model is constructed under a set of simplifying assumptions that reflect a controlled 

logistics environment. These assumptions serve as foundational constraints for the 
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initial phase of model development, allowing for focused analysis of routing efficiency 

and fleet utilization. 

It is assumed that all customer demand (𝑞() is fully known and remains constant 

throughout the defined planning horizon. This eliminates the need for real-time demand 

forecasting and enables deterministic route planning. Each customer is served exactly 

once by a single vehicle, thereby excluding scenarios involving multiple visits or 

demand splitting. All vehicles are dispatched from a single central depot and are 

required to return to the same location upon completion of their assigned routes, 

reinforcing a closed-loop delivery structure. 

Travel distances between nodes are considered symmetric and deterministic, 

implying that the cost and distance from point A to point B are identical to those from 

point B to point A. This assumption disregards complex real-world factors such as 

traffic congestion, road conditions, and time-dependent travel variability, which will be 

addressed in future iterations of the model. 

Crucially, Time Window Constraints (VRPTW) are central to the current 

formulation, defining the core challenge. This model utilizes Soft Penalties as the 

primary mechanic, allowing the solver to deviate from the ideal window [𝑒( 	, 𝑙(] by 

incurring a weighted cost (𝑃&.%/0 , 𝑃/.-&). This design is the foundation for the 

sensitivity analysis used to locate the optimal solution. 

By establishing these assumptions, the study creates a structured baseline for 

evaluating heterogeneous fleet performance under controlled conditions. This approach 

facilitates rigorous testing of routing algorithms and provides a scalable foundation for 

future enhancements that reflect the operational intricacies of real-world distribution 

systems. 

 

3.4 Tools and Technologies 

To implement and evaluate the heterogeneous fleet vehicle routing model, this 

study employs a suite of computational tools and technologies that support algorithmic 

development, constraint modeling, and solution visualization. The integration of these 

tools enables a robust experimental framework capable of handling complex logistics 

scenarios and delivering actionable insights. 
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3.4.1 Python Programming Language 

Python serves as the foundational programming language for model 

construction and execution. Its versatility and extensive ecosystem of scientific libraries 

make it particularly well-suited for operations research and optimization tasks. Python 

facilitates the seamless integration of data structures, algorithmic logic, and 

visualization modules, allowing for end-to-end development of the routing model. The 

language’s readability and modular design also support iterative prototyping, enabling 

rapid refinement of model components as new constraints and features are introduced. 

 

3.4.2 Google OR-Tools 

            Google OR-Tools functions as the core optimization engine within the modeling 

framework. Designed specifically for combinatorial optimization problems, OR-Tools 

offers powerful capabilities for solving the Vehicle Routing Problem (VRP) under 

heterogeneous fleet conditions. The library supports constraint programming, routing 

index management, and advanced metaheuristic techniques such as Large 

Neighborhood Search (LNS), which are critical for navigating the vast solution space 

of multi-vehicle routing scenarios. OR-Tools allows for precise modeling of vehicle-

specific attributes, including capacity limits, fixed and variable costs, and crucially, 

time window constraints and soft penalties, as defined in the mathematical model. Its 

efficient solver architecture ensures scalability and responsiveness, even when applied 

to real-world datasets with complex delivery requirements. 

            Together, Python and Google OR-Tools provide a synergistic platform for 

developing, executing, and analyzing the HFVRPTW model. This combination enables 

the study to move beyond theoretical formulation and into practical simulation, offering 

a replicable and adaptable framework for future logistics optimization research. 
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3.4.3 Routing Model Components 

            The core implementation of the vehicle routing model leverages key 

components from Google OR-Tools, a specialized optimization library designed for 

solving combinatorial problems. Central to the model architecture is the 

RoutingIndexManager, which serves as the interface for mapping logical node indices 

to physical locations and managing vehicle assignments. This abstraction simplifies the 

handling of depot and customer nodes, especially in scenarios involving multiple 

vehicles and complex routing constraints. 

            The RoutingModel acts as the computational engine that defines the problem 

structure and executes the optimization process. It encapsulates the routing logic, cost 

functions, and constraint definitions, enabling the solver to generate feasible and cost-

effective delivery routes. Critical constraints are implemented using OR-Tools’ 

dimension features, which allow for the accumulation and tracking of quantities across 

routes. These dimensions were utilized as follows: 

1. Capacity Dimension: Enforces vehicle load limits and demand constraints 

(𝑄+(1)). 

2. Time Dimension: This is the core experimental dimension. It tracks cumulative 

time (travel time + service time) and is essential for: 

o Time Window Constraints (VRPTW): Ensuring routes respect the 

customer's preferred arrival windows [𝑒( 	, 𝑙(]. 

o Soft Penalties: Allowing the tracking of service deviation and applying 

the penalty rates (𝑃&.%/0 , 𝑃/.-&) central to the Sweet Spot sensitivity 

analysis. 

o Overtime Penalties: Applying soft penalties for exceeding the 8-hour 

workday limit (Scenario 1). 

By modularizing the routing logic and constraint handling using these advanced 

dimension features, the model achieves both scalability and adaptability. This design 

ensures that the model can accurately test strategic operational policies, such as 

balancing service cost against utilization rates, which is essential for a robust and high-

fidelity simulation. 
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3.4.4 Metaheuristic Optimization 

To enhance solution quality and computational efficiency, the model 

incorporates advanced metaheuristic optimization strategies, with a particular emphasis 

on Large Neighborhood Search (LNS). LNS is a highly robust technique designed 

specifically for solving complex combinatorial problems like the VRP. Unlike 

conventional local search methods that only make small, incremental adjustments, LNS 

operates by strategically removing a large part of the current solution (the Destroy 

phase) and then intelligently rebuilding that section (the Repair phase). This process 

allows the solver to take "big jumps" across the solution space, effectively avoiding 

being trapped in local optima which is critical for identifying the true global optimum. 

In the context of heterogeneous fleet routing (HFVRPTW), LNS proves 

especially effective because its design facilitates global restructuring of routes, adapting 

to the complex interplay between diverse vehicle capacities, fixed costs, and soft 

penalties. This ensures that when the service penalty "knob" is applied (Scenario 3), the 

solver is capable of finding the counter-intuitive "Sweet Spot" solution—where costs 

are lower and service is higher which a simpler algorithm (that gets stuck in local 

optima) would have missed. The integration of LNS within the OR-Tools framework 

positions the model as a practical, high-efficiency decision-support tool. 

 

 

 

Table 3.1 Table comparing different metaheuristics 

Metaheuristic Strengths Weaknesses 
Typical Performance 
in VRP 

 
Guided Local 
Search (GLS) 
  

Escapes local minima by 
penalizing frequent edges 

May take longer to 
diversify 

Very good for medium–
large VRP 

Tabu Search 
(TS) 

Strong diversification, 
avoids cycling 

Can be slower to 
converge 

Good for finding robust 
solutions 

Simulated 
Annealing (SA) 
  

Simple to implement, 
probabilistic escape 

Sensitive to cooling 
schedule 

Works but less efficient 
than GLS/TS 

Large 
Neighborhood 
Search (LNS) 

Removes large parts of 
solution, rebuilds for big 
jumps 

Rebuild step can be 
computationally 
heavy 

Excellent for large-scale 
VRP, often best quality 
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Table 3.1 presents a comparative overview of three prominent metaheuristics 

applied in Vehicle Routing Problems: Guided Local Search (GLS), Tabu Search 

combined with Simulated Annealing (TS-SA), and Large Neighborhood Search (LNS). 

Each method offers distinct strengths and trade-offs. GLS effectively escapes local 

minima but may require longer convergence times. TS-SA is simple to implement and 

robust, though sensitive to parameter tuning. LNS stands out for its ability to restructure 

large portions of the solution space, making it particularly suitable for large-scale VRP 

instances. Given its performance advantages and compatibility with Google OR-Tools, 

LNS is selected as the primary search strategy in this study. 

 

3.4.5 Visualization Tools 

To enhance interpretability and support stakeholder communication, this study 

utilizes Google My Maps as a visualization platform for the optimized vehicle routes 

generated by the routing model. Geographic data including customer locations, depot 

coordinates, and route sequences is first structured in Microsoft Excel. These datasets 

are then imported into My Maps to produce interactive maps that reflect the spatial 

distribution of delivery points and the movement of vehicles across the network. 

This visualization approach serves multiple purposes. It provides a clear and 

intuitive representation of route efficiency, vehicle coverage, and geographic 

clustering, which are critical for evaluating the practical feasibility of the model’s 

output. Moreover, map-based visuals offer an accessible medium for conveying 

complex routing results to non-technical stakeholders, such as logistics managers or 

business decision-makers. By bridging the gap between algorithmic output and 

operational insight, Google My Maps supports both analytical validation and strategic 

planning, reinforcing the model’s applicability in real-world logistics environments. 
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Figure 3.1 Visualization Map from Google my map 

 

Figure 3.1 displays a geographic visualization of selected tire service centers 

across Bangkok, including locations where customer demand originates. This spatial 

representation supports the routing model by illustrating the distribution of delivery 

points and informing distance matrix construction. It also provides a practical reference 

for evaluating route feasibility and vehicle assignment based on location clustering. 

 

3.5 Data Preparation 

The data preparation phase serves as the essential translation layer between the 

physical supply chain and the computational model. The input dataset for the 

heterogeneous fleet vehicle routing model is systematically prepared, involving the 

organizing of operational parameters including raw customer demand profiles, 

geographic coordinates, and the derived inter-location distance matrices. This phase is 

crucial for transforming raw business requirements into normalized computational 

parameters. 

Prior to integration into the optimization engine, meticulous efforts are focused 

on defining fleet heterogeneity within the data. This involves classifying vehicle 

parameters to ensure that the distinct cost structures (e.g., the 17 THB/km vs. 22 

THB/km variable cost) are accurately mapped to the corresponding load capacity. 
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Furthermore, the ideal time windows are precisely structured, as these soft constraints 

define the operational performance boundaries for the entire network. 

A rigorous data validation process is conducted to ensure completeness, 

accuracy, and internal consistency. This validation goes beyond simple error checking; 

it confirms the computational feasibility of the initial constraints and verifies that the 

time window data is suitable for the subsequent application of the asymmetric service 

penalties. By establishing a clean and reliable data foundation, the study ensures that 

the optimization process operates on robust inputs, thereby enabling the credible 

identification of the non-intuitive "Sweet Spot" solution in the analysis phase 

 

Table 3.2 Node to Customer Mapping and Time window for Routing Model 

Node Customer Time window Customer status 
1 NV yangyont 08:00 - 09:15 VIP 
2 TR Tyre auto 08:30 - 08:45 VIP 
3 V Auto Tire 09:00 - 09:15 Regular 
4 PWM Power Max 09:15 - 09:30 Regular 
5 Lamlukka Max Shop 09:45 - 10:15 Regular 
6 NumKarnYang Klong 4 10:30 - 10:40 Regular 
7 Klong Chan Auto tire 11:00 - 11:35 Regular 
8 G Max Wheels 11:30 - 11:55 Regular 
9 Nawamin auto tyre 13:00 - 13:15 Regular 

10 Sermmit Tire 13:45 - 14:15 Regular 
11 Sportmag100 14:20 - 14:40 Regular 
12 Max Design 14:45 - 15:20 Regular 
13 LPAutomag 15:30 - 15:40 Regular 
14 Sor KarnYang Rama2 16:00 - 16:30 Regular 
15 71HHH AUTO.TIRE 16:40 - 17:00 Regular 

Depot DC NP TIRE 08:00 - 17:00   
 

Table 3.2 provides the essential node-to-customer mapping and its 

corresponding Time Window constraints for the routing model. Each customer is 

assigned a unique node index to facilitate consistent referencing within the optimization 

logic. This structured mapping ensures data fidelity and is crucial for implementing the 

Heterogeneous Fleet Vehicle Routing Problem with Time Windows (HFVRPTW). 
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Critically, the table specifies the Customer Status (VIP/Regular), allowing the model to 

perform asymmetric risk assessment and calculate service penalties based on the 

priority of the customer, which is central to the analysis in Scenario 3. 

 

 

Table 3.3 Customer Distance Matrix 

Location Depot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Depot 0 17.5 16.6 12.9 23.1 27 26 24 25 21 22 20.7 20 26.1 37 30.5 

1 18.1 0 11.5 15 16.5 19.5 18.5 17.5 18.5 16 16.5 16.5 16 17.6 31.6 26.2 

2 17 11.7 0 13.8 15.5 18.5 17.8 16.8 17.8 15.5 16 17 15.9 15.4 30.5 25.1 

3 13.2 15.5 14.1 0 22.1 25.1 24.3 22.1 23.3 19.7 20.7 18.6 18.1 22.8 33.5 27.3 

4 24 17 15.9 22.1 0 13.8 12.7 13.3 14.4 15.4 16.5 18.1 18.6 15.9 26.2 23 

5 28.2 20.3 19.1 25.1 13.8 0 11.6 12.8 13.8 17 17.6 18.6 19.7 18.1 25.1 21.9 

6 27.3 19.2 18.4 24.3 12.7 11.6 0 11.1 12.2 15.9 17 17.6 18.6 17 24 20.8 

7 25 18.1 17.4 22.1 13.3 12.8 11.1 0 11.7 14.3 15.4 16.5 17 15.9 21.9 19.2 

8 26.1 19.2 18.4 23.3 14.4 13.8 12.2 11.7 0 15.5 16 17.1 17.6 16.5 23 19.7 

9 21.8 16.5 15.9 19.7 15.4 17 15.9 14.3 15.5 0 13.2 14.3 14.8 14.3 20.8 17.6 

10 22.8 17 16.5 20.7 16.5 17.6 17 15.4 16 13.2 0 12.7 13.2 13.8 21.9 18.6 

11 20.7 16.5 17 18.6 18.1 18.6 17.6 16.5 17.1 14.3 12.7 0 12.7 14.3 20.8 18.1 

12 20 16 15.9 18.1 18.6 19.7 18.6 17 17.6 14.8 13.2 12.7 0 14.8 21.9 17.6 

13 26.1 17.6 15.4 22.8 15.9 18.1 17 15.9 16.5 14.3 13.8 14.3 14.8 0 24 20.8 

14 37 31.6 30.5 33.5 26.2 25.1 24 21.9 23 20.8 21.9 20.8 21.9 24 0 19.5 

15 30.5 26.2 25.1 27.3 23 21.9 20.8 19.2 19.7 17.6 18.6 18.1 17.6 20.8 19.5 0 
 

Table 3.3 presents the customer distance matrix used in the routing model. It 

quantifies the pairwise distances between the depot and each customer location, 

forming the basis for route cost calculations and feasibility checks. These values are 

essential for constructing the cost matrix within the optimization engine and directly 

influence route selection, vehicle assignment, and total travel cost estimation. 
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Table 3.4 Customer Nodes and Weekly Demand 

Node Customer Name 
Weekly 
Demand 

DEPOT DC NP TIRE 0 
1 NV yangyont           70 
2 TR Tyre auto 120 
3 V Auto Tire 80 
4 PWM Power Max 30 

5 
Lamlukka Max 

Shop 70 

6 
NumKarnYang 

Yong 110 

7 
Klong Chan auto 

tire 105 
8 G Max Wheels 95 
9 Nawamin auto tyre 110 
10 Sermmit Tire 25 
11 Sportmag100 10 
12 G Max Design 85 
13 LPAutomag 25 

14 
Sor KarnYang 

Rama2 65 

15 
7HIHH 

AUTO.TIRE 10 
 

Table 3.4 outlines the weekly demand associated with each customer node in 

the routing model. This data serves as a critical input for vehicle capacity planning and 

route feasibility analysis. By quantifying demand at the node level, the model ensures 

that vehicle assignments align with load constraints and that delivery routes are 

optimized to meet service requirements efficiently. 

 

Table 3.5 Vehicle Specifications by Type 

 

Vehicle 
Type 

Capacity 
(Units) 

Cost per Kilometer 
(THB) 

Available 
Unit 

Fixed Cost 
(THB) 

Cage Truck 70 10.5 5 600 
Small Lorry 120 19 8 1,000 
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Table 3.5 summarizes the specifications of the two vehicle types used in the 

routing model: Cage Truck and Small Lorry.These parameters are critical for modeling 

fleet heterogeneity and directly influence route feasibility, cost calculations, and vehicle 

assignment decisions within the optimization framework. 

 

 3.6 Implementation Process 

The implementation of the heterogeneous fleet vehicle routing model is carried 

out using Python in conjunction with Google OR-Tools, a specialized optimization 

library designed for solving complex routing problems. The process begins with the 

definition of fundamental model components (sets, parameters, and decision variables) 

which form the mathematical backbone of the model and are structured to reflect the 

operational realities of tire distribution logistics. 

Once the foundational elements are defined, the RoutingModel acts as the 

computational engine. Critical constraints are implemented using OR-Tools’ dimension 

features, which allow for the enforcement of path history and cumulative constraints. 

While the Capacity Dimension enforces volumetric limits, the Time Dimension is the 

core mechanism for policy testing and multiobjective evaluation. This dimension tracks 

cumulative time (travel time + service time), which is essential for implementing the 

soft time window constraints and the soft overtime penalty across all strategic scenarios. 

To enhance solution quality and guarantee convergence to the global optimum, the 

model incorporates Large Neighborhood Search (LNS) metaheuristic optimization. 

LNS is selected because it effectively balances Exploration (discovering new areas of 

the solution space) and Exploitation (refining known good solutions). This strategic 

balance ensures that the solver is not trapped in the local optima observed in Scenario 

2a, but successfully identifies the globally superior Sweet Spot solution. The final stage 

then synthesizes the solver's output with post-processing logic to yield the final real 

cost (Travel + Fixed + VIP Penalty) and the crucial service metrics, completing the 

robust experimental framework. 
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CHAPTER 4 

RESULT 
 

This chapter presents the empirical findings derived from the computational 

optimization model. The analysis is structured as a sequential investigation across three 

distinct strategic policy environments (Scenarios). The objective is to move beyond a 

simple presentation of costs to provide a deep interpretation of the underlying 

operational dynamics. 

 

This chapter will: 

1. Deconstruct the legacy policy (Scenario 1) to quantify its structural 

inefficiencies. 

2. Establish the true minimal expenditure baseline (Scenario 2) by removing 

artificial constraints, thereby identifying a critical "Constraint Trap." 

3. Present the core discovery (Scenario 3) by conducting a sensitivity analysis on 

service penalties, culminating in the identification of a non-linear, globally 

optimal "Sweet Spot" policy that challenges the conventional cost-service trade-

off. 

The analysis is performed by evaluating the interaction between Total Overall Cost 

(THB), Average Customer Satisfaction (%), and Fleet Utilization (Fixed Cost). 

 

4.1 Scenario 1 Analysis: The Legacy Policy Structure 

Objective: To quantify the operational performance and cost ceiling of the 

current operational paradigm, which is defined by a rigid, 8-hour workday constraint 

(simulated via a soft OT penalty). 

 
Table 4.1 Legacy Policy Trade-off (OT-Constrained Model) 
 

Strategy Policy Intent 
Total Overall 
Cost (THB) Avg. Satisfaction 

Vehicles 
Used 

Total OT 
Cost (THB) 

1a Legacy Cost Baseline 20,200.40 69.80%    10         0 
1b Legacy Service Focus 21,047.95 98.50%    11 260.85 
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Table 4.1 presents the results of the baseline analysis (Scenario 1), comparing 

the financial and service outcomes under the rigid operational assumption of the soft 

OT penalty. The data establishes the high structural cost imposed by the legacy 

constraint. 

 

4.1.1 Interpretation of Findings Scenario 1 

The analysis of Scenario 1 reveals that the legacy policy framework is 

structurally inefficient and expensive. While the solver could find a 10-vehicle solution 

for the pure cost model (1a), the resulting service level 69.8% was unacceptably low, 

marked by significant, unpenalized service failures. 

More critically, when forced to achieve high service (1b), the model’s cost 

increased by 847.55 THB. This cost was not just from variable overtime; it was 

structurally driven by the necessity to deploy an eleventh vehicle (a Cage Truck, 

increasing fixed cost by 600 THB. This proves that the 8-hour constraint prevented the 

optimal utilization of the 10-vehicle fleet, forcing an expensive and inefficient 

expansion of the asset base. This 21,047.95 THB cost represents the high operational 

ceiling imposed by the legacy policy. 

 

4.2 Scenario 2: Establishing the True Cost Baseline (The Constraint Trap) 
 
Objective: To isolate the system's inherent cost floor by removing the OT 

penalty (P_OT= 0), allowing the solver to optimize purely for asset utilization (Fixed 

Cost) and variable cost (Travel Cost). 

 

Table 4.2 Analysis of Legacy Constraint Impact on Operational Cost 

Policy Intent 
Total 

Overall 
Cost (THB) 

Avg. 
Satisfaction 

Total Fixed 
Cost (THB) Net Change in Cost 

Scenario 1A 20,200.40 69.80% 8,800.00 Benchmark 
 Scenario 2A 17,410.00 82.40% 7,600.00 -2,790.4 THB (-13.8%) 

 

Table 4.2 presents the comparative analysis demonstrating the financial and 

service impact of removing the obsolete OT penalty (moving from Scenario 1A to 
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Scenario 2A). This comparison establishes the minimal expenditure baseline for the 

entire network. 

 

4.2.1 Interpretation of Findings: The Constraint Trap 

The elimination of the OT penalty (moving from S1a to S2a) yielded a profound 

and counter-intuitive result: 13.8% reduction in total cost (2,790.40 THB savings) while 

service simultaneously increased by 12.6%. 

This discovery confirms the existence of a Constraint Trap. The legacy OT rule 

forced the solver into an inferior route structure to avoid the penalty, resulting in a 

higher operational cost. The source of this saving is revealed in the Total Fixed Cost. 

The S1a solution utilized a 10-vehicle mix (3 Cage Trucks, 7 Small Lorries) for a fixed 

cost of 8,800 THB. Freed from the time constraint, the S2a solver found a superior 10-

vehicle mix (6 Cage Trucks, 4 Small Lorries) with a fixed cost of only 7,600 THB. 

This demonstrates that the legacy constraint was a structural cost driver that 

prevented optimal fleet mix allocation. The 17,410.00 THB cost is therefore established 

as the verified minimal expenditure baseline for all subsequent policy calibration. 

 

4.3 Scenario 3: Optimal Policy Discovery & Sensitivity Analysis 

Objective 

  This final scenario details the core research contribution: the calibration of the 

P_Late service penalty (the "Knob") to find the globally optimal solution that truly 

balances cost and service. 

 

4.3.1 The Marginal Cost of Perfection (Policy Extremes) 

First, the analysis quantifies the cost of the two policy extremes in the 

unconstrained model: a pure cost focus (Knob =0) versus a pure service focus (Knob 

=1000). 

 

Table 4.3 Marginal Cost Analysis of Service Level Extremes 

Policy Comparison Total Overall 
Cost (THB) 

Avg. 
Satisfaction 

Net Cost for 17.5% 
Sat Gain 

Cost Floor (S2a, Knob=0) 17,410.00 82.40% Baseline 
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Perfection Ceiling (S3, 
Knob=1000) 17,418.50 99.90% add 8.50 THB 

 

Table 4.3 presents the comparative analysis between the minimal expenditure 

baseline (Cost Floor) and the highest service achieved (Perfection Ceiling). This 

comparison quantifies the marginal financial cost required to achieve maximum 

customer satisfaction in the unconstrained model. 

 

Interpretation: The cost difference between the 82.4% satisfaction baseline 

and the 99.9% ceiling is only 8.50 THB. This negligible marginal cost proves that the 

resources required for a 17.5% service gain were already available within the optimally 

utilized 10-vehicle fleet. The improvement was entirely a function of superior route 

sequencing precision, confirming that high service is "functionally free" when the 

system is properly optimized. 

 

4.3.2 The Global Optimum ("Sweet Spot" Policy) 

This section analyzes the result of the intermediate Knob = 50 test, which 

challenges the assumption that either extreme (0 or 1000) is the optimal choice. 

 

Table 4.4 Sensitivity Analysis and Global Optimum Discovery 

 

penalty_early 
(Fixed) 

penalty_late 
(Knob) 

Avg. 
Satisfaction 

Total Overall 
Cost Notes 

100 0.00 82.40% 17,410.00 THB 
Baseline (High 

lateness) 

100 50.00 97.80% 17,321.60 THB 
Sweet Spot (Win-

Win) 

100 100 99.90% 17,418.50 THB 
Diminishing 

Returns 

100 1,000.00 99.90% 17,418.50 THB 
Stabilized (No 

change) 
 

Table 4.4 presents the results of the sensitivity analysis performed by adjusting 

the penalty_late "Knob" against a fixed early penalty (penalty_early = 100$). This 

analysis was conducted to empirically validate the non-linear relationship between 

service policy and total operational cost. 
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4.3.2.1 Analysis and Conclusion 

The sensitivity analysis conclusively identifies the optimum strategic policy at 

P_Late = 50 . This discovery proves the existence of a globally superior solution that 

defies the conventional linear trade-off. 

• The Win-Win Relationship: The P_Late = 50 penalty served as an Intelligent 

Steering Mechanism for the LNS solver. It forced the algorithm to abandon the 

inferior Local Optimum (Knob = 0) and discover a new solution path that 

resulted in a cost decrease of 88.40 THB while simultaneously achieving a 

15.4% increase in service. 

• Definitive Policy Recommendation: The Sweet Spot Policy is the definitive, 

optimal strategic recommendation for DC NP TIRE. The solution is also robust, 

having achieved 0.00 THB in VIP Penalties (Scenario 3), confirming its safety 

and efficiency. This proves that a modest focus on service is not a cost, but a 

catalyst for achieving true global efficiency. 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 
 

5.1 Discussion of Key Findings 

The results presented in Chapter 4 provide empirical validation of a non-linear 

and counter-intuitive phenomenon in logistics optimization. The analysis moves 

beyond a simple quantification of costs to interpret the strategic implications of 

optimizing policy constraints. The findings are discussed in three distinct thematic 

discoveries. 

5.1.1 The Global Optimum and the Failure of Pure Cost Minimization 
 

The most profound finding of this research is the empirical discovery of the 

Sweet Spot Policy (P_Late = 50), which generated a 15.4% service gain while 

simultaneously achieving a cost reduction of 88.40 THB (Table 4.3). 

This "Win-Win" outcome refutes the conventional linear cost-service trade-off 

assumption. It proves that the pure cost-focused baseline (Knob = 0) was, in fact, a 

Local Optimum. The P_Late = 0 policy, by having an over-simplified objective 

function, trapped the solver in an inefficient solution space, finding only the cheapest 

route given its limited view. 

The moderate P_Late =50 penalty acted as an Intelligent Steering Mechanism. 

It enriched the objective function, providing the LNS metaheuristic with just enough 

new information to justify exploring a different, more "rugged" part of the solution 

space. In doing so, it was forced to discard the local minimum and converge upon the 

true Global Optimum a solution path that was inherently more efficient in both 

sequencing and asset utilization, thus yielding both lower costs and higher service. The 

88.40 THB saving is the quantifiable value of this new strategic information. 
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5.1.2 The Economic Impact of Legacy Constraints 

The comparative analysis of Scenario 1 (OT) and Scenario 2 (No-OT) revealed 

a 13.8% cost leakage. The 2,790.40 THB loss under the legacy policy was not merely 

an operational variance; it was a structural burden imposed by a flawed policy. 

The root cause was not variable cost but sub optimal asset allocation. The rigid 

8-hour constraint forced the solver into an inefficient Fleet Mix (3 Cage Trucks, 7 Small 

Lorries) with a fixed cost of  8,800.00 THB. By removing this artificial constraint 

(Scenario 2a), the solver was free to achieve optimal fleet utilization, selecting a 

superior 10-vehicle mix (6 Cage Trucks, 4 Small Lorries) with a fixed cost of only 

7,600.00 THB. This 1,200.00 THB saving in fixed costs alone provides crucial evidence 

that obsolete operational rules can impose severe, hidden financial penalties on an 

otherwise efficient logistics operation. 

 

5.1.3 The De-coupling of Service Quality from Resource Scarcity 

The analysis of the service ceiling (moving from 82.4% Sat. to 99.9% Sat.) 

confirms that the marginal cost for achieving near-perfect service in the unconstrained 

model is negligible (+8.50 THB). 

This minimal expenditure is a critical insight: it proves that the service failures 

in the baseline (82.4% Sat) were not a problem of resource scarcity (i.e., not enough 

trucks or drivers). The resources required for a 17.5% service gain were already 

available within the network's asset base. The failure was one of combinatorial 

sequencing. The cost of high service, therefore, was not for more assets, but for the 

algorithmic precision required to generate a superior sequencing plan, validating the 

power of optimization over manual or simplified heuristic approaches. 
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5.2 Conclusion 

This research successfully developed an empirical framework that moved 

beyond a simplistic cost-minimization exercise to challenge the fundamental logistics 

cost-service assumption. The investigation conclusively answers the main research 

question: Yes, a non-linear, globally optimal "Sweet Spot" solution exists. 

The final recommended policy achieved a 15.4% service gain while 

simultaneously reducing the total operational cost by 88.40 THB. This contribution 

demonstrates that service optimization, when performed using advanced computational 

methods, functions not as a "cost center," but as a "lever" for achieving superior system-

wide efficiency and asset utilization. The research quantified the high cost of legacy 

constraints (2,790.40 THB) and demonstrated that high service is a function of 

algorithmic precision, not just resource allocation. 

 

5.3 Strategic Recommendations 

The findings dictate a clear paradigm shift in operational policy for DC NP TIRE 

Management: 

• Adopt the Global Optimum Policy: The company must formally adopt the Sweet 

Spot Policy (P_Late = 50) and the No-OT Planning Model. This strategy provides 

the best possible trade-off: lowest total cost 17,321.60 THB and highest safe 

service level 97.8%. 

• Shift from Micro-Management to Policy Management: Management should stop 

managing the 8-hour rule (a micro-level constraint) and start managing the 

objective function (a macro-level policy). The funds saved by adopting the Sweet 

Spot policy should be used to cover any necessary driver overtime, as the total 

expenditure will still be 3,629.45 THB cheaper than the legacy policy (S1b). 

• Leverage Algorithmic Robustness: The P_Late = 50$ policy is confirmed to be 

robust. The 0.00 THB VIP Penalty (Scenario 3) proves that no special, expensive 

constraints are needed to protect high-value customers; the "Sweet Spot" policy 

protects them automatically, simplifying the entire operational framework. 
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5.4 Limitations and Future Research 
 

While the model is highly robust, its deterministic nature imposes certain 

academic limitations, which in turn suggest clear avenues for future research. 

• Limitation: Static Data: The model assumes static demand (q_i) and fixed service 

times (st_i). This does not account for real-world demand variability or on-site 

delays. 

o Future Research: Future work should explore Stochastic VRP (S-VRP) 

to model demand variability and service time uncertainty, creating plans 

that are not just optimal, but also resilient to disruption. 

• Limitation: Static Travel Times: The most critical limitation is the model's 

reliance on static, average travel times, which does not reflect the congestion 

patterns of the Bangkok Metropolitan Region. 

o Future Research: The model should be evolved into a Dynamic VRP 

(D-VRP) by integrating with real-time traffic APIs (e.g., Google 

Distance Matrix API). This would transform the model from a static 

strategic planner into a tactical, adaptive routing tool. 
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APPENDIX A 

SOURCE CODE 
 

The following Python source code implements the Heterogeneous Fleet Vehicle 

Routing Problem with Time Windows and Soft Penalties (HFVRPTW-SP). The code 

was executed using Google Colab and the OR-Tools library. It defines all customer 

demands, vehicle types (heterogeneous), distance matrix, and time window constraints. 

The implementation uses Dimensions for capacity and time, and Soft Penalties 

(P_Early = 100, P_Late = 50) to model the 'Sweet Spot' policy. 

 

A.1 Data Setup 

 

from ortools.constraint_solver import pywrapcp, routing_enums_pb2 

import math 

 

weekly_demands = [0, 70, 120, 80, 30, 70, 110, 105, 95, 110, 25, 10, 85, 25, 65, 10] 

 

distance_matrix = [ 

[0.0, 17.5, 16.6, 12.9, 23.1, 27.0, 26.0, 24.0, 25.0, 21.0, 22.0, 20.0, 19.3, 25.0, 35.0, 29.0], 

      [18.1, 0.0, 11.5, 15.0, 16.5, 19.5, 18.5, 17.5, 18.5, 16.0, 16.5, 16.0, 15.5, 17.0, 30.0, 25.0], 

      [17.0, 11.7, 0.0, 13.8, 15.5, 18.5, 17.8, 16.8, 17.8, 15.5, 16.0, 16.5, 15.5, 15.0, 16.5, 29.0], 

      [13.2, 15.5, 14.1, 0.0, 21.5, 24.5, 23.5, 21.5, 22.5, 19.0, 20.0, 18.0, 17.5, 22.0, 32.0, 26.0], 

      [24.0, 17.0, 15.9, 22.1, 0.0, 13.5, 12.5, 13.0, 14.0, 15.0, 16.0, 17.5, 18.0, 15.5, 25.0, 22.0], 

      [28.2, 20.3, 19.1, 25.1, 13.8, 0.0, 11.5, 12.5, 13.5, 16.5, 17.0, 18.0, 19.0, 17.5, 24.0, 21.0], 

      [27.3, 19.2, 18.4, 24.3, 12.7, 11.6, 0.0, 11.0, 12.0, 15.5, 16.5, 17.0, 18.0, 16.5, 23.0, 20.0], 

      [25.0, 18.1, 17.4, 22.1, 13.3, 12.8, 11.1, 0.0, 11.5, 14.0, 15.0, 16.0, 16.5, 15.5, 21.0, 18.5], 

      [26.1, 19.2, 18.4, 23.3, 14.4, 13.8, 12.2, 11.7, 0.0, 15.0, 15.5, 16.5, 17.0, 16.0, 22.0, 19.0], 

      [21.8, 16.5, 15.9, 19.7, 15.4, 17.0, 15.9, 14.3, 15.5, 0.0, 13.0, 14.0, 14.5, 14.0, 20.0, 17.0], 

      [22.8, 17.0, 16.5, 20.7, 16.5, 17.6, 17.0, 15.4, 16.0, 13.2, 0.0, 12.5, 13.0, 13.5, 21.0, 18.0], 

      [20.7, 16.5, 17.0, 18.6, 18.1, 18.6, 17.6, 16.5, 17.1, 14.3, 12.7, 0.0, 12.5, 14.0, 20.0, 17.5], 

      [20.0, 16.0, 15.9, 18.1, 18.6, 19.7, 18.6, 17.0, 17.6, 14.8, 13.2, 12.7, 0.0, 14.5, 21.0, 17.0], 

      [26.1, 17.6, 15.4, 22.8, 15.9, 18.1, 17.0, 15.9, 16.5, 14.3, 13.8, 14.3, 14.8, 0.0, 23.0, 20.0], 

      [37.0, 31.6, 30.5, 33.5, 26.2, 25.1, 24.0, 21.9, 23.0, 20.8, 21.9, 20.8, 21.9, 24.0, 0.0, 19.5], 

Ref. code: 25686722041131TFW



42 
 
 
      [30.5, 26.2, 25.1, 27.3, 23.0, 21.9, 20.8, 19.2, 19.7, 17.6, 18.6, 18.1, 17.6, 20.8, 19.5, 0.0] 

    ] 

 

time_windows_min = [ 

    (480, 1020), (480, 555), (510, 525), (540, 555), 

    (585, 615), (630, 640), (660, 695), (690, 715), 

    (555, 570), (780, 795), (825, 855), (860, 880), 

    (885, 920), (930, 940), (960, 990), (1000, 1020) 

] 

 

service_times_min = [0, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40] 

 

avg_speed_kmh = 30 

time_matrix_min = [] 

for from_node_dist in distance_matrix: 

    row = [] 

    for to_node_dist in from_node_dist: 

        time_hours = to_node_dist / avg_speed_kmh 

        time_minutes = math.ceil(time_hours * 60) 

        row.append(time_minutes) 

    time_matrix_min.append(row) 
 

A.2 Vehicle & Fleet Parameters 

	
vehicle_capacities = [70, 120]  

vehicle_km_costs = [17, 22]  

vehicle_fixed_costs_thb = [600, 1000]  

demands = weekly_demands  

 

num_vehicles_by_type = [ 5, 8  

]  

num_vehicles = sum(num_vehicles_by_type)  
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num_vehicle_types = len(vehicle_capacities) 
 

A.3 Model Setup 

 

depot = 0 num_locations = len(distance_matrix)  

manager = pywrapcp.RoutingIndexManager(num_locations, num_vehicles, depot)  

routing = pywrapcp.RoutingModel(manager)    (3.1 - 3.3) 

 

A.4 Capacity and Distance Constraints 

 

def create_distance_callback(distance_matrix, vehicle_costs_per_km, vehicle_type): 

def distance_callback(from_index, to_index): from_node = 

manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) 

return int(distance_matrix[from_node][to_node] * 

vehicle_costs_per_km[vehicle_type] * 100) return distance_callback for vehicle_id in 

range(num_vehicles): vehicle_type_id = vehicle_id % num_vehicle_types 

transit_callback_index = routing.RegisterTransitCallback( 

create_distance_callback(distance_matrix, vehicle_km_costs, vehicle_type_id)) 

routing.SetArcCostEvaluatorOfVehicle(transit_callback_index, vehicle_id) 

scaled_fixed_costs = [cost * 100 for cost in vehicle_fixed_costs_thb] 

vehicle_index_counter = 0 for type_id, num_v in enumerate(num_vehicles_by_type): 

for _ in range(num_v): routing.SetFixedCostOfVehicle(scaled_fixed_costs[type_id], 

vehicle_index_counter) vehicle_index_counter += 1 

 

A.5 Capacity Constraint 

 

def demand_callback(from_index): from_node = manager.IndexToNode(from_index) 

return demands[from_node] demand_callback_index = 

routing.RegisterUnaryTransitCallback(demand_callback) capacities_list = [cap for 

cap, num in zip(vehicle_capacities, num_vehicles_by_type) for _ in range(num)] 
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routing.AddDimensionWithVehicleCapacity( demand_callback_index, 0,   

capacities_list, True, 'Capacity')      (3.4 – 3.5) 

 

A.6 Time Constraints & Soft Penalties 

 

def create_time_callback(time_matrix, service_times): 

    def time_callback(from_index, to_index): 

        from_node = manager.IndexToNode(from_index) 

        to_node = manager.IndexToNode(to_index) 

        travel_time = time_matrix[from_node][to_node] 

        service_time = service_times[from_node] 

        return int(travel_time + service_time) 

    return time_callback 

 

time_callback_index = routing.RegisterTransitCallback( 

    create_time_callback(time_matrix_min, service_times_min) 

) 

 

time_dimension_name = 'Time' 

horizon_minutes = 24 * 60 

routing.AddDimension( 

    time_callback_index, horizon_minutes, horizon_minutes, False, 

time_dimension_name 

) 

time_dimension = routing.GetDimensionOrDie(time_dimension_name) 

 

# --- Sweet Spot Policy Settings (P_Late = 50) --- 

penalty_early = 100 

penalty_late = 50 

# ------------------------------------------------- 

 

depot_open_time = time_windows_min[depot][0] 
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depot_close_time = time_windows_min[depot][1] 

 

for i in range(num_locations): 

    index = manager.NodeToIndex(i) 

    window_start = time_windows_min[i][0] 

    window_end = time_windows_min[i][1] 

 

    if i == depot: 

        time_dimension.CumulVar(index).SetRange(window_start, window_end) 

    else: 

        time_dimension.SetCumulVarSoftLowerBound(index, window_start, 

penalty_early)         (3.6) 

        time_dimension.SetCumulVarSoftUpperBound(index, window_end, 

penalty_late)         (3.7) 

 

for vehicle_id in range(num_vehicles): 

    start_index = routing.Start(vehicle_id) 

    time_dimension.CumulVar(start_index).SetRange(depot_open_time, 

depot_close_time) 

 

A.7 Search Parameters & Execution 

 

search_params = pywrapcp.DefaultRoutingSearchParameters() 

search_params.first_solution_strategy = ( 

    routing_enums_pb2.FirstSolutionStrategy.AUTOMATIC) 

search_params.time_limit.seconds = 120 

 

solution = routing.SolveWithParameters(search_params) 

 
 
 
A.8 Solution Printing & Post-Analysis 
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def format_time(minutes): 
    hours = int(minutes // 60) 
    mins = int(minutes % 60) 
    return f"{hours:02d}:{mins:02d}" 
 
def print_solution(manager, routing, solution, distance_matrix, demands, 
                   vehicle_capacities, vehicle_km_costs, 
                   vehicle_fixed_costs_thb, 
                   time_dimension, time_windows, service_times, 
                   penalty_early_val, penalty_late_val, 
                   vip_nodes, vip_late_penalty_thb): 
     
    vehicle_type_names = ["cage truck", "small lorry"] 
    node_names = { 
        0: "DC NP TIRE", 1: "NV yangyont", 2: "TR Tyre auto", 3: "V Auto Tire", 
        4: "PWM Power Max", 5: "Lamlukka Max Shop", 6: "NumKarnYang Klong 4", 
        7: "Klong Chan Auto tire", 8: "G Max Wheels", 9: "Nawamin auto tyre", 
        10: "Sermmit Tire", 11: "Sportmag100", 12: "Max Design", 13: "LPAutomag", 
        14: "Sor KarnYang Rama2", 15: "71HHH AUTO.TIRE" 
    } 
 
    if solution: 
        print(f"Objective (Travel + Fixed + Solver Penalties): 
{solution.ObjectiveValue() / 100:.2f} THB") 
        total_distance = 0 
        total_travel_cost = 0 
 
        total_solver_early_penalty = 0 
        total_solver_late_penalty = 0 
        total_real_vip_penalty = 0 
        vip_violation_details = [] 
 
        used_vehicles_with_load = [] 
        node_arrival_times = {} 
 
        for vehicle_id in range(manager.GetNumberOfVehicles()): 
            index = routing.Start(vehicle_id) 
            route_load = 0 
            temp_index = index 
            while not routing.IsEnd(temp_index): 
                node_index = manager.IndexToNode(temp_index) 
                route_load += demands[node_index] 
                temp_index = solution.Value(routing.NextVar(temp_index)) 
            if solution.Value(routing.NextVar(index)) != index and route_load > 0: 
                used_vehicles_with_load.append(vehicle_id) 
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        print(f"\n--- VIP Customer Policy ---") 
        vip_names = [node_names[i] for i in vip_nodes if i in node_names] 
        print(f"VIP Customers (Must not be late): {', '.join(vip_names)}") 
        print(f"VIP Late Penalty (Real Cost): {vip_late_penalty_thb:.2f} THB per 
incident") 
 
        print("\n--- Routes for Used Vehicles with Load > 0 ---") 
        for count, vehicle_id in enumerate(used_vehicles_with_load): 
            index = routing.Start(vehicle_id) 
            route_distance = 0 
            route_load = 0 
            vehicle_type_id = vehicle_id % len(vehicle_capacities) 
            vehicle_type_name = vehicle_type_names[vehicle_type_id] 
 
            plan_output = f"Route for Vehicle {count + 1} (Virtual ID: {vehicle_id + 1}, 
Type: {vehicle_type_name}, Cap: {vehicle_capacities[vehicle_type_id]}, Cost/km: 
{vehicle_km_costs[vehicle_type_id]}):\n" 
 
            time_var = time_dimension.CumulVar(index) 
            arrival_time_min = solution.Value(time_var) 
 
            node_index = manager.IndexToNode(index) 
            plan_output += f" -> {node_names[node_index]} (D: 
{demands[node_index]})" 
            plan_output += f" [Start Time: {format_time(arrival_time_min)}]\n" 
 
            previous_index = index 
            index = solution.Value(routing.NextVar(index)) 
 
            while not routing.IsEnd(index): 
                time_var = time_dimension.CumulVar(index) 
                arrival_time_min = solution.Value(time_var) 
 
                node_index = manager.IndexToNode(index) 
                node_arrival_times[node_index] = arrival_time_min 
                route_load += demands[node_index] 
 
                tw_start = time_windows[node_index][0] 
                tw_end = time_windows[node_index][1] 
 
                early_diff = max(0, tw_start - arrival_time_min) 
                late_diff = max(0, arrival_time_min - tw_end) 
 
                status_str = "" 
                if node_index in vip_nodes and late_diff > 0: 
                    total_real_vip_penalty += vip_late_penalty_thb 
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                    vip_violation_details.append(f"{node_names[node_index]} (Late 
{late_diff} min)") 
                    status_str = f" (!!! VIP LATE {late_diff} min !!!)" 
 
                elif late_diff > 0: 
                    total_solver_late_penalty += late_diff * penalty_late_val 
                    status_str = f" (LATE {late_diff} min)" 
                elif early_diff > 0: 
                    total_solver_early_penalty += early_diff * penalty_early_val 
                    status_str = f" (Early {early_diff} min)" 
                else: 
                    status_str = f" (On-Time)" 
 
                plan_output += f" -> {node_names[node_index]} (D: 
{demands[node_index]})" 
                plan_output += f"\n    [Window: {format_time(tw_start)}-
{format_time(tw_end)}]" 
                plan_output += f" [Arrive: {format_time(arrival_time_min)}]" 
                plan_output += status_str 
                plan_output += f"\n" 
 
                route_distance += 
distance_matrix[manager.IndexToNode(previous_index)][manager.IndexToNode(ind
ex)] 
                previous_index = index 
                index = solution.Value(routing.NextVar(index)) 
 
            time_var = time_dimension.CumulVar(index) 
            arrival_time_min = solution.Value(time_var) 
            node_index = manager.IndexToNode(index) 
            plan_output += f" -> {node_names[node_index]}" 
            plan_output += f" [Arrive back: {format_time(arrival_time_min)}]\n" 
 
            route_distance += 
distance_matrix[manager.IndexToNode(previous_index)][manager.IndexToNode(ind
ex)] 
 
            route_travel_cost = route_distance * vehicle_km_costs[vehicle_type_id] 
            plan_output += f"Total load on route: {route_load} | Distance: 
{route_distance:.2f} km | Travel Cost: {route_travel_cost:.2f} THB\n" 
            print(plan_output) 
 
            total_distance += route_distance 
            total_travel_cost += route_travel_cost 
 
        print(f"\n--- Summary ---") 
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        print(f"Total number of vehicles used with load > 0: 
{len(used_vehicles_with_load)}") 
        type1_count = sum(1 for v_id in used_vehicles_with_load if v_id % 
len(vehicle_capacities) == 0) 
        type2_count = sum(1 for v_id in used_vehicles_with_load if v_id % 
len(vehicle_capacities) == 1) 
        print(f"  - {vehicle_type_names[0]} (Cap {vehicle_capacities[0]}, Cost 
{vehicle_fixed_costs_thb[0]}): {type1_count}") 
        print(f"  - {vehicle_type_names[1]} (Cap {vehicle_capacities[1]}, Cost 
{vehicle_fixed_costs_thb[1]}): {type2_count}") 
 
        print(f"Total distance of all routes with load > 0: {total_distance:.2f} km") 
        print(f"Total load served (across all routes): {sum(demands[1:])}") 
 
        print(f"\n--- Customer Satisfaction Summary ---") 
        print(f"{'Node':<20} | {'Ideal Time':<13} | {'Actual Arrival':<14} | 
{'Deviation':<20} | {'Satisfaction':>12}") 
        print("-" * 87) 
 
        SAT_PENALTY_LATE_PER_MIN = 1 
        SAT_PENALTY_EARLY_PER_MIN = 0.1 
 
        all_satisfaction_scores = [] 
        total_demand_nodes = range(1, manager.GetNumberOfNodes()) 
 
        served_nodes = set(node_arrival_times.keys()) 
        for node_index in vip_nodes: 
            if node_index != depot and node_index not in served_nodes: 
                total_real_vip_penalty += vip_late_penalty_thb 
                vip_violation_details.append(f"{node_names[node_index]} (Not Served)") 
 
        for node_index in total_demand_nodes: 
            node_name = node_names[node_index] 
            tw_start = time_windows[node_index][0] 
            tw_end = time_windows[node_index][1] 
            ideal_time_str = f"{format_time(tw_start)}-{format_time(tw_end)}" 
 
            if node_index in node_arrival_times: 
                arrival_time_min = node_arrival_times[node_index] 
                arrival_str = format_time(arrival_time_min) 
 
                early_diff = max(0, tw_start - arrival_time_min) 
                late_diff = max(0, arrival_time_min - tw_end) 
 
                satisfaction = 100.0 
                dev_str = "" 
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                if node_index in vip_nodes and late_diff > 0: 
                    dev_str = f"!!! VIP LATE {late_diff} min !!!" 
                    sat_penalty = late_diff * SAT_PENALTY_LATE_PER_MIN * 10 
                    satisfaction = max(0, 100 - sat_penalty) 
 
                elif early_diff > 0: 
                    if early_diff >= 60: dev_str = f"Early {early_diff / 60:.1f} hr" 
                    else: dev_str = f"Early {early_diff} min" 
                    sat_penalty = early_diff * SAT_PENALTY_EARLY_PER_MIN 
                    satisfaction = max(0, 100 - sat_penalty) 
 
                elif late_diff > 0: 
                    if late_diff >= 60: dev_str = f"Late {late_diff / 60:.1f} hr" 
                    else: dev_str = f"Late {late_diff} min" 
                    sat_penalty = late_diff * SAT_PENALTY_LATE_PER_MIN 
                    satisfaction = max(0, 100 - sat_penalty) 
 
                else: 
                    dev_str = "On Time" 
                    satisfaction = 100.0 
 
                all_satisfaction_scores.append(satisfaction) 
                sat_str = f"{satisfaction:.0f}%" 
 
            else: 
                arrival_str = "---" 
                dev_str = "Not Served" 
                sat_str = "0%" 
                all_satisfaction_scores.append(0.0) 
 
            print(f"{node_name:<20} | {ideal_time_str:<13} | {arrival_str:<14} | 
{dev_str:<20} | {sat_str:>12}") 
 
        if all_satisfaction_scores: 
            avg_sat = sum(all_satisfaction_scores) / len(all_satisfaction_scores) 
            print("-" * 87) 
            print(f"{'Average Customer Satisfaction:':<69} {avg_sat:>11.1f}%") 
        else: 
            print("No customer nodes found to average.") 
 
        print(f"\n--- Cost Breakdown ---") 
        print(f"Total travel cost: {total_travel_cost:.2f} THB") 
 
        total_fixed_cost = 0 
        for v_id in used_vehicles_with_load: 
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            vehicle_type_id = v_id % len(vehicle_capacities) 
            total_fixed_cost += vehicle_fixed_costs_thb[vehicle_type_id] 
 
        print(f"Total fixed vehicle cost: {total_fixed_cost:.2f} THB") 
 
        print(f"Total VIP Customer Penalty (Real Cost): {total_real_vip_penalty:.2f} 
THB") 
        if vip_violation_details: 
            print(f"  (Violations: {', '.join(sorted(list(set(vip_violation_details))))})") 
 
        print(f"Total Early Penalty (Solver Guide): {total_solver_early_penalty / 
100:.2f} THB") 
        print(f"Total Late Penalty (Non-VIP, Solver Guide): {total_solver_late_penalty / 
100:.2f} THB") 
 
        total_overall_cost = total_travel_cost + total_fixed_cost + total_real_vip_penalty 
        print(f"Total overall cost (Travel + Fixed + VIP Penalty): 
{total_overall_cost:.2f} THB") 
 
        print(f"(Solver Objective Value (Travel + Fixed + *Solver* Penalties): 
{solution.ObjectiveValue() / 100:.2f} THB)") 
 
 
    else: 
        print("No solution found.") 
        print("\nPossible reasons for no solution:") 
        print("- Total demand exceeds total vehicle capacity.") 
        print("- Time windows are too tight / infeasible (e.g., travel time > window).") 
        print("- Solver could not find a solution within search limits/time.") 
 
        try: 
            total_demands_sum = sum(demands[1:]) 
            num_vehicles_potential = manager.GetNumberOfVehicles() if manager else 
num_vehicles 
            total_potential_capacity_sum = sum([vehicle_capacities[i % 
len(vehicle_capacities)] for i in range(num_vehicles_potential)]) 
            print(f"\nTotal demand to serve (excluding depot): {total_demands_sum}") 
            print(f"Total potential capacity across all virtual vehicles: 
{total_potential_capacity_sum}") 
            if total_demands_sum > total_potential_capacity_sum: 
                print("Diagnosis: Total demand is greater than total potential capacity.") 
            else: 
                 print("Diagnosis: Total demand is less than or equal to total potential 
capacity. Infeasibility is likely due to TIME CONSTRAINTS.") 
        except Exception as e: 
             print(f"Diagnosis: Could not perform detailed capacity check. Error: {e}") 
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A.9 Main Execution 
 
VIP_NODES = {1, 2} 
VIP_LATE_PENALTY_THB = 5000.00 
 
if solution: 
    print_solution(manager, routing, solution, distance_matrix, demands, 
                   vehicle_capacities, vehicle_km_costs, 
                   vehicle_fixed_costs_thb, 
                   time_dimension, time_windows_min, service_times_min, 
                   penalty_early, penalty_late, 
                   VIP_NODES, VIP_LATE_PENALTY_THB) 
else: 
    print_solution(manager, routing, None, distance_matrix, demands, 
                   vehicle_capacities, vehicle_km_costs, 
                   vehicle_fixed_costs_thb, 
                   None, time_windows_min, service_times_min, 
                   penalty_early, penalty_late, 
                   VIP_NODES, VIP_LATE_PENALTY_THB) 
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APPENDIX B 

SOLVER OUTPUT 
 

 
Objective (Travel + Fixed + Solver Penalties): 18938.09 THB 
 
--- VIP Customer Policy --- 
VIP Customers (Must not be late): NV yangyont, TR Tyre auto 
VIP Late Penalty (Real Cost): 5000.00 THB per incident 
 
--- Routes for Used Vehicles with Load > 0 --- 
Route for Vehicle 1 (Virtual ID: 1, Type: cage truck, Cap: 70, Cost/km: 17): 
 -> DC NP TIRE (D: 0) [Start Time: 08:00] 
 -> Lamlukka Max Shop (D: 70) 
    [Window: 10:30-10:40] [Arrive: 10:30] (On-Time) 
 -> DC NP TIRE [Arrive back: 12:07] 
Total load on route: 70 | Distance: 55.20 km | Travel Cost: 938.40 THB 
 
Route for Vehicle 2 (Virtual ID: 5, Type: cage truck, Cap: 70, Cost/km: 17): 
 -> DC NP TIRE (D: 0) [Start Time: 08:00] 
 -> NV yangyont (D: 70) 
    [Window: 08:00-09:15] [Arrive: 09:15] (On-Time) 
 -> DC NP TIRE [Arrive back: 10:32] 
Total load on route: 70 | Distance: 35.60 km | Travel Cost: 605.20 THB 
 
Route for Vehicle 3 (Virtual ID: 6, Type: small lorry, Cap: 120, Cost/km: 22): 
 -> DC NP TIRE (D: 0) [Start Time: 08:00] 
 -> Nawamin auto tyre (D: 110) 
    [Window: 13:00-13:15] [Arrive: 13:00] (On-Time) 
 -> DC NP TIRE [Arrive back: 14:24] 
Total load on route: 110 | Distance: 42.80 km | Travel Cost: 941.60 THB 
 
Route for Vehicle 4 (Virtual ID: 7, Type: cage truck, Cap: 70, Cost/km: 17): 
 -> DC NP TIRE (D: 0) [Start Time: 08:00] 
 -> G Max Wheels (D: 95) 
    [Window: 09:15-09:30] [Arrive: 09:15] (On-Time) 
 -> Sermmit Tire (D: 25) 
    [Window: 13:45-14:15] [Arrive: 13:45] (On-Time) 
 -> DC NP TIRE [Arrive back: 15:11] 
Total load on route: 120 | Distance: 63.30 km | Travel Cost: 1076.10 THB 
 
Route for Vehicle 5 (Virtual ID: 8, Type: small lorry, Cap: 120, Cost/km: 22): 
 -> DC NP TIRE (D: 0) [Start Time: 08:00] 
 -> Klong Chan Auto tire (D: 105) 
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    [Window: 11:30-11:55] [Arrive: 11:30] (On-Time) 
 -> DC NP TIRE [Arrive back: 13:00] 
Total load on route: 105 | Distance: 49.00 km | Travel Cost: 1078.00 THB 
 
Route for Vehicle 6 (Virtual ID: 9, Type: cage truck, Cap: 70, Cost/km: 17): 
 -> DC NP TIRE (D: 0) [Start Time: 08:00] 
 -> NumKarnYang Klong 4 (D: 110) 
    [Window: 11:00-11:35] [Arrive: 11:00] (On-Time) 
 -> Sportmag100 (D: 10) 
    [Window: 14:20-14:40] [Arrive: 14:20] (On-Time) 
 -> DC NP TIRE [Arrive back: 15:42] 
Total load on route: 120 | Distance: 63.70 km | Travel Cost: 1082.90 THB 
 
Route for Vehicle 7 (Virtual ID: 10, Type: small lorry, Cap: 120, Cost/km: 22): 
 -> DC NP TIRE (D: 0) [Start Time: 08:00] 
 -> V Auto Tire (D: 80) 
    [Window: 09:00-09:15] [Arrive: 09:00] (On-Time) 
 -> DC NP TIRE [Arrive back: 10:07] 
Total load on route: 80 | Distance: 26.10 km | Travel Cost: 574.20 THB 
 
Route for Vehicle 8 (Virtual ID: 11, Type: cage truck, Cap: 70, Cost/km: 17): 
 -> DC NP TIRE (D: 0) [Start Time: 08:00] 
 -> Max Design (D: 85) 
    [Window: 14:45-15:20] [Arrive: 14:45] (On-Time) 
 -> LPAutomag (D: 25) 
    [Window: 15:30-15:40] [Arrive: 15:54] (LATE 14 min) 
 -> DC NP TIRE [Arrive back: 17:27] 
Total load on route: 110 | Distance: 59.90 km | Travel Cost: 1018.30 THB 
 
Route for Vehicle 9 (Virtual ID: 12, Type: small lorry, Cap: 120, Cost/km: 22): 
 -> DC NP TIRE (D: 0) [Start Time: 08:00] 
 -> TR Tyre auto (D: 120) 
    [Window: 08:30-08:45] [Arrive: 08:34] (On-Time) 
 -> DC NP TIRE [Arrive back: 09:48] 
Total load on route: 120 | Distance: 33.60 km | Travel Cost: 739.20 THB 
 
Route for Vehicle 10 (Virtual ID: 13, Type: cage truck, Cap: 70, Cost/km: 17): 
 -> DC NP TIRE (D: 0) [Start Time: 08:00] 
 -> PWM Power Max (D: 30) 
    [Window: 09:45-10:15] [Arrive: 10:15] (On-Time) 
 -> Sor KarnYang Rama2 (D: 65) 
    [Window: 16:00-16:30] [Arrive: 16:00] (On-Time) 
 -> 71HHH AUTO.TIRE (D: 10) 
    [Window: 16:40-17:00] [Arrive: 17:19] (LATE 19 min) 
 -> DC NP TIRE [Arrive back: 19:00] 
Total load on route: 105 | Distance: 98.10 km | Travel Cost: 1667.70 THB 
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--- Summary --- 
Total number of vehicles used with load > 0: 10 
  - cage truck (Cap 70, Cost 600): 6 
  - small lorry (Cap 120, Cost 1000): 4 
Total distance of all routes with load > 0: 527.30 km 
Total load served (across all routes): 1010 
 
--- Customer Satisfaction Summary --- 
Node                 | Ideal Time    | Actual Arrival | Deviation            | Satisfaction 
--------------------------------------------------------------------------------------- 
NV yangyont          | 08:00-09:15   | 09:15          | On Time              |         100% 
TR Tyre auto         | 08:30-08:45   | 08:34          | On Time              |         100% 
V Auto Tire          | 09:00-09:15   | 09:00          | On Time              |         100% 
PWM Power Max        | 09:45-10:15   | 10:15          | On Time              |         100% 
Lamlukka Max Shop    | 10:30-10:40   | 10:30          | On Time              |         100% 
NumKarnYang Klong 4  | 11:00-11:35   | 11:00          | On Time              |         100% 
Klong Chan Auto tire | 11:30-11:55   | 11:30          | On Time              |         100% 
G Max Wheels         | 09:15-09:30   | 09:15          | On Time              |         100% 
Nawamin auto tyre    | 13:00-13:15   | 13:00          | On Time              |         100% 
Sermmit Tire         | 13:45-14:15   | 13:45          | On Time              |         100% 
Sportmag100          | 14:20-14:40   | 14:20          | On Time              |         100% 
Max Design           | 14:45-15:20   | 14:45          | On Time              |         100% 
LPAutomag            | 15:30-15:40   | 15:54          | Late 14 min          |          86% 
Sor KarnYang Rama2   | 16:00-16:30   | 16:00          | On Time              |         100% 
71HHH AUTO.TIRE      | 16:40-17:00   | 17:19          | Late 19 min          |          81% 
--------------------------------------------------------------------------------------- 
Average Customer Satisfaction:                                               97.8% 
 
--- Cost Breakdown --- 
Total travel cost: 9721.60 THB 
Total fixed vehicle cost: 7600.00 THB 
Total VIP Customer Penalty (Real Cost): 0.00 THB 
Total Early Penalty (Solver Guide): 0.00 THB 
Total Late Penalty (Non-VIP, Solver Guide): 16.50 THB 
Total overall cost (Travel + Fixed + VIP Penalty): 17321.60 THB 
(Solver Objective Value (Travel + Fixed + *Solver* Penalties): 18938.09 THB) 
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APPENDIX C 

SOLVER SETTINGS AND CONFIGURATION 

 
The heterogeneous fleet VRP model was implemented in Python using Google 

Colab and solved with the OR-Tools routing library. Solver settings and platform 

details are summarized below. 

 
Table C.1 Solver configuration and platform details 
 

Component Configuration Details 

Platform Google Colab (Python 3 environment) 

Solver OR-Tools Constraint Solver (Routing Library) 

Engine Constraint Programming (CP) with LNS/GLS Metaheuristics 

Model Type Heterogeneous Fleet VRP with Time Windows (HFVRPTW) 
Constraints: Capacity, Time Windows, Soft Penalties 

Time Limit 120 seconds per run (stopping condition for search) 

Metaheuristic Large Neighborhood Search (LNS) / Guided Local Search (GLS) 

Search 
Strategy AUTOMATIC (Combines first solution heuristics + local search) 

Fixed Costs Applied per vehicle type (Cage Truck = 600 THB, Small Lorry = 1,000 
THB) 

Output Route assignments, vehicle usage, total cost (Fixed + Travel + VIP), 
satisfaction 

Validation Feasibility checked via Capacity and Time Window dimensions 
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