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ABSTRACT

Deep-learning-based models have shown significant potential in speech spoof

detection, which is crucial to ensuring the authenticity of speech signals. This work aims to

expand the knowledge about deep learning-based spoof detection by integrating ResNet50

with linear discriminant analysis (LDA) to reduce the dimensionality. Using the logical

access (LA) subset from the ASVspoof 2019 dataset, we generated mel-spectrogram and

gammatone spectrogram representations of the speech signals. ResNet50 was used to extract

deep features from these spectrograms, and subsequently LDA was applied to reduce feature

dimensionality and improve classification accuracy. Our method significantly outperformed

the baseline ResNet50 model by reducing the equal error rate (EER) by 43.55% and

increasing balanced accuracy by 48.59% for duplicated mel-spectrogram tensor, 8.95% and

15.52% for differentiated mel-spectrogram tensor, and 44.14% and 44.77% for differentiated

gammatone spectrogram tensor, respectively. These results demonstrate the effectiveness

of combining ResNet50 with gammatone spectrograms and LDA, providing a more robust

solution for audio spoof detection.

To further investigate our approach, we extended the evaluation by applying

traditional classifiers such as Random Forest (RF), k-Nearest Neighbors (KNN), and
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Naı̈ve Bayes (NB)—on the deep features extracted by ResNet50 and reduced by LDA

or PCA. Among all combinations, the LDA-reduced features paired with Naı̈ve Bayes

classifier achieved the best result, reaching 88.18% balanced accuracy and 2.80% EER.

These findings confirm that our proposed framework not only improves spoof detection

performance under a threshold-based scheme but is also compatible with various machine

learning classifiers, making it a flexible and effective solution for audio spoof detection

tasks.

Keywords: Anti-spoofing, Automatic speaker verification, Linear discriminant analysis,

Principal component analysis (PCA), ResNet50.
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CHAPTER 1
INTRODUCTION

1.1 Background

Biometric identification is a method of verifying an individual using physiological or

behavioral characteristics called biometric information, such as fingerprints, facial features,

iris patterns, and voice. These characteristics are difficult to replicate and unique for each

individual, making biometric systems more secure and convenient for users, which are

widely used in various applications, including mobile devices, security systems, and access

control environments.

In this study, we focus specifically on voice-based biometric authentication, also

known as automatic speaker verification (ASV). ASV systems have been used in security

applications to verify an individual’s identity based on their vocal characteristics (Wu,

Evans, et al., 2015). The system typically receives both the user’s speech signal input and

a corresponding registration ID, and then determines whether to accept or reject the user by

comparing the input with the registered voiceprint, as shown in Fig. 1.1.

However, despite the growth of technology, human voices can still be easily

spoofed by machines or through various types of attacks with the purpose of mimicking or

impersonating legitimate users in order to bypass the security mechanisms of ASV systems

(Sahidullah et al., 2019). Spoof attacks can take multiple forms, including replay attacks,

voice conversion, and voice synthesis (Li et al., 2024). In these cases, an attacker can send

a manipulated speech signal together with a legitimate user’s registration ID to the system,

deceiving it to accept those spoofed inputs, as shown in Figure 1.2. These attacks represent

one of the most critical challenges in the field of ASV and are the primary focus of this

research.

Figure 1.1 Diagram for automatic speaker verification system.
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Figure 1.2 Diagram for automatic speaker verification spoofing.

However, despite the growth of technology, human voices can still be easily

spoofed by machines or through various types of attacks with the purpose of mimicking or

impersonating legitimate users in order to bypass the security mechanisms of ASV systems

(Sahidullah et al., 2019). Spoof attacks can take multiple forms, including replay attacks,

voice conversion, and voice synthesis (Li et al., 2024). In these cases, an attacker can send

a manipulated speech signal together with a legitimate user’s registration ID to the system,

deceiving it to accept those spoofed inputs, as shown in Figure 1.2. These attacks represent

one of the most critical challenges in the field of ASV and are the primary focus of this

research.

Spoofing attacks in ASV systems can be broadly categorized into two main types:

Physical Access (PA) and Logical Access (LA). Physical Access attacks involve the use of

recorded or replayed speech. For example, an attacker might use a device to play back a

genuine recording of a speaker’s voice to gain unauthorized access. These attacks exploit

the physical transmission channel between the speaker and the microphone. Logical Access

attacks, on the other hand, are more advanced and are carried out using artificially generated

speech. This includes voice conversion (VC), where an attacker modifies their voice to sound

like someone else, and text-to-speech (TTS) or speech synthesis, where a machine generates

an entirely fake speech signal using AI-based models trained to imitate a target speaker’s

voice.

In this study, we focus specifically on Logical Access (LA) attacks, which present

greater challenges due to their ability to generate high-quality synthetic voices that are nearly

indistinguishable from human speech. The increasing availability and sophistication of

speech synthesis technologies have made LA attacks more prevalent and difficult to detect,

thus posing a serious threat to ASV systems. The ASVspoof 2019 Logical Access (LA)

dataset, which simulates such attacks using a variety of TTS and VC systems, will be used

to evaluate and validate our proposed spoof detection framework.

In response to these concerns, numerous studies and efforts have been undertaken

Ref. code: 25686622040886LSI
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Figure 1.3 Diagram for automatic speaker verification with spoof detection.

to develop anti-spoofing systems, particularly through initiatives such as the Automatic

Speaker Verification Spoofing and Countermeasures (ASVspoof) challenge, which began

in 2015 (Wu et al., 2017). This biennial challenge aims to advance research and promote

the development of more methods to detect and mitigate spoof attacks, improving the

security and reliability of ASV systems (Wu, Kinnunen, et al., 2015). To support these

goals, the challenge also provides standardized datasets that cover a broad range of spoofing

techniques. These datasets are periodically updated and released under two main tracks,

Physical Access (PA) and Logical Access (LA). The PA dataset typically involves replay

attacks captured through real-world recording and playback devices, while the LA dataset

focuses on synthetic and voice conversion attacks generated using speech synthesis and

modification algorithms. Over time, these datasets have become key benchmarks in the field,

enabling fair comparisons across systems and facilitating the advancement of anti-spoofing

research.

Based on the ASVspoof challenge, various spoofing countermeasure techniques have

been proposed and developed. One of the commonly used methods is a spoof detection

system, which acts as a front-end component between the user and the core ASV system, as

shown in Figure 1.3. The purpose of this system is to detect whether an input speech signal

is spoofed. If the signal is classified as spoofed, it will be immediately rejected; otherwise,

it will be forwarded to the ASV system for further authentication. This additional detection

step significantly enhances the overall security of ASV systems by filtering out suspicious

inputs and reducing the risk of successful spoofing attempts.

Generally, spoof detection consists of two parts: feature extraction and classification

(BT et al., 2019). Current methodologies for feature extraction are categorized into three

groups, which are hand-crafted spectral features, deep-learning features, and other analysis-

oriented approaches (Li et al., 2024). In many works, hand-crafted spectral features

extraction method have been used, such as linear frequency cepstral coefficient (LFCC)

Ref. code: 25686622040886LSI
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(Zhou et al., 2011), mel-frequency cepstral coefficient (MFCC) (Davis & Mermelstein,

1980a), rectangular filter cepstral coefficient (RFCC) (Hasan et al., 2013), and constant-Q

cepstral coefficient (CQCC) (Todisco et al., 2017). These features are particularly effective in

capturing spectral and temporal patterns associated with both bona fide and spoofed speech

signals, and are often used as a baseline model in recent anti-spoofing studies (Liu et al.,

2023).

In contrast, deep learning-based approaches such as deep neural networks (DNN)

(BT et al., 2019), residual networks (ResNet) (Chakravarty & Dua, 2024), and recurrent

neural networks (RNN) (Khan et al., 2023) have also been widely explored for spoof

detection tasks. Compared to hand-crafted spectral features, deep learning models are

capable of automatically learning complex, discriminative features relevant to spoofing,

often leading to superior performance. While the use of deep learning-based methods in this

domain is relatively recent, the number of studies continues to grow as research advances

(Das et al., 2019; Zhiqiang et al., 2022).

In addition to these methods, analysis-oriented approaches have also been

investigated. These include techniques such as analyzing the interaction between vocal folds

and the vocal tract (Blue et al., 2022), exploring the role of silence in speech (Zhang et al.,

2023), and examining energy loss in pauses between words (Deng et al., 2022). These

approaches aim to capture subtle acoustic anomalies that distinguish spoofed speech from

genuine speech. By incorporating insights from speech production and prosodic behavior,

they provide complementary information that can enhance the robustness and accuracy of

spoof detection systems.

As spoofing techniques continue to advance, models based on hand-crafted features,

which rely on fixed spectral patterns, are increasingly vulnerable to being deceived.

Deep learning-based approaches offer the flexibility to automatically learn discriminative

features that adapt to various spoofing scenarios. Therefore, in this study, we focus on a

deep learning-based model for spoof detection. We adopt the residual network (ResNet)

architecture, which is originally proposed for image recognition tasks, due to its strong

performance in extracting hierarchical features and its ability to mitigate the vanishing

gradient problem in deep networks. ResNet has demonstrated success in many speech-

related applications by treating time-frequency representations, such as spectrograms. In

our work, we modified the ResNet50 model and integrated it into the feature extraction

process, comparing the results with those obtained from the original ResNet50 architecture.

This comparison enabled us to assess the effectiveness of our modifications in enhancing the

performance of the spoof detection system.

Ref. code: 25686622040886LSI



5

Figure 1.4 (a) ResNet50 architecture and (b) an example of skip connection.

Residual networks (ResNet) are classic neural network models mostly used in

computer vision tasks, which were first introduced by He et al. (2015). There are many

types of ResNet model based on the number of layers, e.g., ResNet18, ResNet34, ResNet50,

where the number indicates the total number of layers in the network. Each variant of the

model offers a different trade-off between complexity and performance. In our work, we

select the ResNet50 model, which contains 50 layers, because it strikes an effective balance

between depth and computational efficiency (Shin et al., 2021). It is sufficiently deep to

capture complex patterns and extract high-level features from the data, making it optimal for

our experiment.

According to Figure 1.4 (a), the ResNet50 architecture is composed of the following

components: convolutional layers, residual blocks, and fully connected layer. ResNet50

consists of a series of residual blocks, each consisting of three convolutional layers of

specific sizes, with batch normalization and ReLU activation. These blocks implement skip

connections, where the original input is added to the output of the convolutional blocks

as shown in Figure 1.4 (b), helping mitigate the vanishing gradient problem and improve

training stability (Adnan et al., 2023). After passing through those residual blocks, the

feature maps are processed by a global average pooling, and then fed into the fully connected

layer, which outputs the class predictions. In the default model, the number of classes is

1,000, but this can be adapted for specific use cases, such as binary classification or other

Ref. code: 25686622040886LSI
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multiclass problems, making ResNet50 highly versatile for various tasks.

In order to provide suitable inputs for the ResNet model, two-dimensional time-

frequency features are required. In this work, we employed mel-spectrograms and

gammatone spectrograms extracted from speech signals. The details of both features are

as follows:

Mel-spectrogram is a temporal-frequency representation that maps speech signals

to the mel scale, which approximates human auditory perception by focusing on lower

frequencies (Lambamo et al., 2023). This transformation captures perceptually relevant

features of the signal, making the mel-spectrogram one of the popular choices in speech

and audio processing tasks (Tak et al., 2017).

As shown in Figure 1.5 (a), mel-spectrograms are created by first breaking down an

speech signal into short, overlapping frames. This process is called framing and windowing.

Then, a fast Fourier transform (FFT) is applied to convert each frame from the time domain

to the frequency domain. The magnitude specrum is then mapped to the mel scale by the mel

filterbank, which is better aligned with human hearing perception. The frequency response

of the mel filterbank is shown in Figure 1.5 (b). Finally, the result is converted to a decibel

scale to improve interpretability. An example of a mel-spectrogram, which is in the form of

a two-dimensional image, as shown in Figure 1.5 (c).

Mel-spectrograms were generated using the Librosa library in Python. The

conversion to the mel scale is achieved by applying the mel filterbank Hm( f ) to the

magnitude spectrum of each frame:

S mel(m, t) =
∑

f

|X( f , t)|2 ·Hm( f ), (1.1)

where f is the frequency components of the audio signal in each frame, t is the time indices

corresponding to that frame, S mel(m, t) is the mel-spectrogram, X( f , t) is the magnitude

spectrum, and Hm( f ) is the mel filterbank response for the m-th filter.

Gammatone spectrogram is also a temporal-frequency representation used in

speech processing similar to mel-spectrogram, but it is based on the gammatone filterbank,

which models the auditory filters of the human cochlea more closely than the mel filterbank.

The gammatone spectrogram emphasizes frequency components in a way that mimics

human auditory perception, making it useful for capturing perceptually relevant features

in audio signals.

As shown in Figure 1.6 (a), the speech signal will be windowed in a specific time.

Ref. code: 25686622040886LSI
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Figure 1.5 (a) Block diagram of mel-spectrogram extraction, (b) frequency response of
mel-spectrogram filterbank, and (c) an example of mel-spectrogram.

Then, it will be passed through the fast Fourier transform (FFT) to convert to the frequency

domain. The filter frequency response is shown in Figure 1.6 (b). Then, it will be processed

through a gammatone filterbank. Key parameters, such as the number of channels, window

length, and hop length, are set to control the temporal and frequency resolution of the

analysis. The output is a spectrogram that represents the energy or magnitude of each

frequency band over time, capturing how different parts of the frequency spectrum change.

The spectrogram will be converted to a decibel scale to improve visualization and highlight

subtle variations in the audio signal. An example of a gammatone-based spectrogram shown

in Figure 1.6 (c).

In our work, we utilized the gammatone spectrogram as a feature representation. The

gammatone filter is defined as:

g(t) = atn−1e−2πbt cos(2π fct+ϕ), (1.2)

where a is the amplitude, n is the filter order, b is the bandwidth, fc is the center frequency,

and ϕ is the phase.

Another important component in the spoof detection pipeline is dimensionality

reduction, which is often applied after feature extraction to reduce the complexity of the

input and enhance class separability. In this study, we employed Linear discriminant analysis

(LDA) as the main dimensionality reduction technique. LDA is a statistical technique used

to reduce the number of dimensions in data and improve classification (Sorzano et al., 2014).

Its goal is to project the data onto a lower-dimensional space that enhances the separability
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Figure 1.6 (a) Block diagram of gammatone extraction, (b) frequency response of
gammatone spectrogram filterbank, and (c) an example of gammatone spectrogram.

between different classes. Unlike principal component analysis (PCA), which focuses

on maximizing variance without considering class labels, LDA takes class information

into account, making it particularly effective for classification problems. The resulting

transformation seeks to maximize the ratio of the between-class variance to the within-class

variance, ensuring that the classes are as distinct as possible in the reduced-dimensional

space.

Finally, we used a simple decision-based classifier to determine whether the input

signal is bona fide or spoofed. The output from the dimensionality reduction process will

be compared against a decision threshold, which was optimized using the training data to

minimize classification error. If the projected value exceeded the threshold, the input was

classified as bona fide, otherwise, it was considered spoofed. This threshold-based approach

allows for a lightweight and interpretable classification stage, which is particularly useful

for evaluating the effectiveness of different feature extraction and dimensionality reduction

strategies within the spoof detection pipeline.

1.2 Problem statement

Despite recent advances in automatic speaker verification (ASV) systems, they

remain vulnerable to prevent various types of spoofing attack, such as voice conversion

and speech synthesis. These attacks can deceive ASV systems into accepting faked speech

signals as genuine, posing serious security threats in applications that rely on voice-based

authentication. While traditional countermeasures based on hand-crafted features have

shown some practical result, they often struggle to generalize across advanced spoofing

methods due to their limited adaptability.
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Deep learning-based models, particularly convolutional neural networks such as

ResNet50, offer greater flexibility by automatically learning discriminative features from

time-frequency representations. However, the effectiveness of these models depends

on the choice of input features, preprocessing techniques, and the complexity of the

extracted features. High-dimensional feature spaces can lead to overfitting or poor

generalization. Therefore, an efficient mechanism to reduce dimensionality while preserving

class separability is crucial for enhancing spoof detection performance.

1.3 Objectives

Our objective of this research is to propose a new method to improve the performance

of the spoof detection system and to expand the knowledge of deep-learning-based spoof

detection methodologies using ResNet50 based model, exploring the impact of different

spectrogram-based inputs which are mel-spectrogram and gammatone, and investigated the

role of the dimensionality reduction methods, e.g., linear discriminant analysis (LDA) and

Principal Component Analysis (PCA). Furthermore, we propose and evaluate the effect of

different input tensor types, using padding and resized tensor, along with the duplication and

differentiation along both direction techniques, and determine which configuration offers

better discriminative performance. Through these investigations, we aim to identify an

effective and lightweight approach that enhances the reliability of spoof detection systems.

1.4 Contribution and impact of our research

This research contributes to the field of voice anti-spoofing by proposing a

novel framework that integrates the deep feature extraction capabilities of ResNet50

with the dimensionality reduction strengths of Linear Discriminant Analysis (LDA). This

combination not only enhances class separability but also improves the overall performance

in detecting spoofed speech.

To further investigate the influence of input representation, we conduct a systematic

comparison between two widely used time-frequency representations which are mel-

spectrograms and gammatone spectrograms, as inputs to the ResNet50 model. This

comparative analysis provides empirical insights into the strengths and limitations of each

representation in the context of spoof detection.

In addition, we explore and evaluate multiple tensor preparation strategies, including

duplication and differentiation along the time and frequency axes, as well as resizing and

zero-padding approaches. These preprocessing techniques were shown to significantly

influence model performance and are therefore critical considerations for system design.
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Our proposed approach is rigorously evaluated on the Logical Access (LA) subset

of the ASVspoof 2019 dataset, a widely recognized benchmark in the field. Experimental

results demonstrate substantial improvements over baseline systems, reflected in reduced

equal error rates (EER) and increased balanced accuracy. Furthermore, the use of a

simple threshold-based classifier following the LDA stage allows the system to remain

computationally efficient and lightweight, making it practical for real-time or resource-

constrained environments.

1.5 Thesis Structure

This thesis explains previous work and related studies on topics similar to our

research, including the literature review in Chapter 2. Next, we present the overview

of our work, proposed methodology, a reference model, and the experimental setting in

Chapter 3. Then, we show evaluation result and discussion in Chapter 4. Finally, we

conclude everything we have learned from this research and mention our future work

direction in Chapter 5.
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CHAPTER 2
LITERATURE REVIEW

This section presents a review of recent literature relevant to spoof detection in

automatic speaker verification (ASV) systems, including the ASVspoof countermeasure

competition, which provides benchmarking datasets and evaluation protocols. In addition,

we review various feature extraction techniques, focusing particularly on mel-spectrogram

and gammatone spectrogram representations. Furthermore, we explore the Residual

Network (ResNet50) which is a main model we used in our works, and examine the use

of dimensionality reduction methods such as Linear Discriminant Analysis (LDA), which

are key components in our proposed framework.

2.1 ASVspoof countermeasure competition and dataset

As mentioned in Section 1, ASVspoof countermeasure competition was launched

to address the lack of standardized evaluation protocols in the study of spoofing and

countermeasures for automatic speaker verification (ASV).

2.1.1 ASVspoof 2015: Automatic Speaker Verification Spoofing and

Countermeasures Challenge Evaluation Plan (Wu, Kinnunen, et al.,

2015)

This paper focused on spoofing detection systems and aimed to promote the

development of generalized countermeasures that could detect various spoofing attacks

without relying on prior knowledge of specific attack algorithms. A key objective of the

challenge was to provide a level playing field by releasing a standard dataset, consisting

of both genuine and spoofed speech generated using multiple voice conversion and speech

synthesis techniques, along with a clearly defined evaluation protocol. The evaluation metric

used was the Equal Error Rate (EER), and the challenge included training, development,

and evaluation subsets with increasing diversity, particularly in the spoofing methods

used. ASVspoof 2015 played a critical role in shaping research direction by introducing

a benchmarking framework that continues to influence subsequent works in the field.

The standard dataset provided by this paper is divided into bona fide and spoofed

speech. Bona fide speech is collected from 106 speakers (45 male, 61 female) and with

no significant channel or background noise effects. Spoofed speech is generated from the
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Table 2.1 Number of non-overlapping target speakers and utterances in the training,
development and evaluation sets in ASVspoof2015 dataset.

Subset
Speakers Utterances

Male Female Bona fide Spoofed
Training 10 15 3750 12625
Development 15 20 3497 49875
Evaluation 20 26 9404 184000

genuine data using a number of different spoofing algorithms. The full dataset is partitioned

into three subsets, the first for training, the second for development and the third for

evaluation. The number of speakers in each subset is illustrated in Table 2.1. There is no

speaker overlap across the three subsets regarding target speakers used in voice conversion

or text-to-speech (TTS) adaptation.

2.1.2 ASVspoof 2017: Automatic Speaker Verification Spoofing and

Countermeasures Challenge Evaluation Plan (Kinnunen et al., 2017)

The ASVspoof 2017 challenge was introduced as a follow-up to the 2015 edition,

aiming to address several limitations of the previous dataset. While ASVspoof 2015 focused

solely on synthetic spoofing methods such as text-to-speech (TTS) and voice conversion

(VC), ASVspoof 2017 shifted its focus entirely to replay attacks, which are more accessible

to attackers and realistic in practical scenarios. The 2017 dataset was built upon the RedDots

corpus (Lee et al., 2015) and included both bona fide and replayed utterances recorded across

a wide variety of playback and recording devices. The replay data was collected through a

crowd-sourcing effort to simulate diverse in-the-wild conditions.

The dataset was divided into training, development, and evaluation subsets, with no

overlap in replay configurations between them. Unlike the 2015 edition, which averaged

equal error rates (EER) per spoofing method, ASVspoof2017 used pooled EER across all

trials to encourage the development of generalizable countermeasures. This shift marked an

important step toward more realistic and robust evaluation settings for spoofing detection

systems.

2.1.3 ASVspoof 2019: Future Horizons in Spoofed and Fake Audio Detection

(Consortium, 2019)

The ASVspoof 2019 dataset represents a significant advancement from previous

editions by incorporating all three major spoofing attack types: text-to-speech (TTS), voice

conversion (VC), and replay attacks. It is the first challenge to address both logical access
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Table 2.2 Dataset statistical information in the training, development and evaluation sets in
Logical Access (LA) and Physical Access (PA).

Subset
Speakers Logical Access (LA) Physical Access (PA)

Male Female Bona fide Spoofed Bona fide Spoofed
Training 8 12 2580 22800 5400 48600
Development 4 6 2548 22296 5400 24300
Evaluation 20 26 7355 63882 8000 135000

(LA) and physical access (PA) scenarios within a unified evaluation framework. Unlike

ASVspoof 2015, which focused only on synthetic speech, and ASVspoof 2017, which

emphasized replay attacks in uncontrolled environments, the 2019 edition expanded the

threat model and improved the simulation of acoustic conditions for greater realism and

diversity.

The LA subset includes bona fide speech and spoofed speech generated from 17

different TTS and VC systems. Six systems are used for training and development as

known attacks, while the evaluation set introduces 11 unknown attacks constructed with

cutting-edge neural vocoding and waveform synthesis techniques. The PA subset, on the

other hand, simulates replay attacks in various room and device conditions. It includes 27

different acoustic configurations (e.g., room size, reverberation, talker-to-mic distance) and 9

replay configurations (e.g., loudspeaker quality, attacker-to-talker distance), making it more

controlled and diverse than its 2017 counterpart.

The statistical information of this dataset in both logical access (LA) and physical

access (PA) as shown in Table 2.2. In our work, we used the Logical Access (LA) portion

of the ASVspoof 2019 dataset for training, validation, and evaluation (Liu et al., 2022).

The reason for choosing the LA subset is that it focuses on synthetic spoofing attacks,

such as TTS and VC, which are more relevant to our research objective of evaluating

the effectiveness of deep learning-based models in detecting machine-generated speech.

Furthermore, LA provides a diverse range of attack algorithms, including both known

and unknown systems, making it suitable for assessing the generalization capability of our

proposed model.

2.1.4 ASVspoof 2021: Towards Spoofed and Deepfake Speech Detection in the

Wild (Liu et al., 2023)

Unlike previous versions that relied heavily on clean and controlled data, the 2021

edition focused on channel robustness and real-world distortions, including compression,

telephony transmission, and social media-style deepfakes. In addition to the existing Logical

Ref. code: 25686622040886LSI



14

Table 2.3 Statistics of ASVspoof 2021 dataset across all three tasks: Logical Access (LA),
Physical Access (PA), and Deepfake (DF).

Task Subset Bona fide Spoofed Female Male

Logical Access (LA)
Progress 1,676 14,788 37 30
Evaluation 14,816 133,360 37 30

Physical Access (PA)
Progress 14,472 72,576 37 30
Evaluation 94,068 627,264 37 30

Deepfake (DF)
Progress 5,768 53,557 37 30
Evaluation 14,869 519,059 50 43

Access (LA) and Physical Access (PA) tracks, this edition introduced a new Deepfake (DF)

task, which aims to detect manipulated speech data compressed by various codecs and shared

across online platforms. The DF track also included data from previously unseen corpora

(e.g., VCC 2018 and VCC 2020), making the detection task more complex and domain-

diverse.

According to Table 2.3, the ASVspoof 2021 dataset includes a total of 16 subsets

across three tasks: Logical Access (LA), Physical Access (PA), and Deepfake (DF). The LA

track contains 1,676 bona fide and 14,788 spoofed utterances in the progress set, and 14,816

bona fide and 133,360 spoofed utterances in the evaluation set. The PA track includes 14,472

bona fide and 72,576 spoofed utterances for progress, and 94,068 bona fide and 627,264

spoofed utterances for evaluation. The DF track provides 5,768 bona fide and 53,557 spoofed

utterances in the progress set, and 14,869 bona fide and 519,059 spoofed utterances in the

evaluation set. All subsets are gender-balanced, with 67 speakers (37 female, 30 male) for

LA and PA progress sets, and 93 speakers (50 female, 43 male) for the DF evaluation set.

Despite its realistic conditions and broader scope, we chose to use the ASVspoof

2019 LA dataset in our study. This decision was driven by three primary reasons. First, the

2019 dataset provides clean and controlled conditions suitable for evaluating the core spoof

detection performance of our deep learning-based model. Second, the training protocol of

the 2021 challenge still relied on the 2019 LA subset, with no newly matched training data

provided for its LA or DF tasks, which may result in overfitting or domain mismatch when

evaluated on heavily compressed or unseen sources. Third, the LA dataset in ASVspoof

2019 includes a well-defined set of both known and unknown attacks from various VC and

TTS systems, offering a balanced and interpretable benchmark for evaluating generalization

performance under controlled in varied spoofing scenarios.
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2.2 Feature Extraction for Spoof Detection

According to BT et al. (2019), features that used in spoof detection system were

categorized into three main types: (1) hand-crafted spectral features, (2) deep-learning-based

features, and (3) other analysis-oriented inspired approaches. Each subsection provides an

overview of the corresponding technique and discusses previous works that have applied

these features to the spoof detection task.

2.2.1 Hand-crafted Spectral Features

Hand-crafted spectral features were popular in spoof detection in ASV system. These

methods rely on expert knowledge to design features, often based on spectral characteristics,

that aim to capture distinctions between bona fide and spoofed speech. They are typically

combined with classifiers like Gaussian Mixture Models (GMMs) or some simple neural

networks.

2.2.1.1 Constant Q Cepstral Coefficients: A Robust Descriptor for General Audio

Signals with Applications in Verification and Spoofing (Todisco et al., 2017)

This work introduced Constant Q Cepstral Coefficients (CQCCs) as a powerful

alternative to MFCCs and LFCCs for anti-spoofing. CQCCs utilize a perceptually motivated

Constant Q transform, providing geometrically spaced frequency bins, which proves

effective in capturing artifacts across different spoofing types, especially those generated

by synthesis and conversion algorithms. When combined with a GMM backend, CQCC-

GMM systems demonstrated state-of-the-art performance on the ASVspoof 2015 dataset

and became a strong baseline in subsequent challenges like ASVspoof 2017 and 2019,

highlighting the robustness of well-designed hand-crafted features.

2.2.1.2 Spoofing Detection Goes Noisy: An Analysis of Synthetic Speech Detection in

the Presence of Background Noise (Hanilci et al., 2016)

: This study investigates the impact of noise on spoofing detection using hand-crafted

features like MFCC, LFCC, and CQCC with GMM classifiers. It demonstrated that while

these features perform well in clean conditions, their robustness degrades significantly in

noisy environments. The analysis revealed that CQCCs generally offered better robustness

compared to MFCCs and LFCCs under various noise types and levels, likely due to the

Constant Q transform’s properties. This work highlights the challenges faced by hand-

crafted features in realistic, noisy conditions and the importance of feature robustness.

While hand-crafted spectral features might seem relatively traditional compared to
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deep learning approaches, they continue to prove themselves as solid baselines in spoof

detection research. Techniques like LFCC and CQCC, when paired with simple classifiers

such as GMMs, still competitive and usable in spoof detection.

2.2.2 Deep-learning-based Features

As technology keeps advancing, spoofing techniques are also getting better at

copying not just the surface of human speech, but also deeper patterns like spectral and

temporal details. Because of that, hand-crafted features alone sometimes aren’t enough

to catch these attacks. So, deep learning-based features were introduced to help detect

spoofing more effectively, especially when the attack method is something the system hasn’t

seen before. These methods let the model learn useful features by itself, without needing

to be manually designed. But the trade-off is that they usually require more time and

computational power compared to using hand-crafted features.

Here are some examples of recent works that used deep learning based features to

solve the problem:

2.2.2.1 An Empirical Study on Channel Effects for Synthetic Speech Detection

(Zhang et al., 2021)

This paper explores the impact of channel variability on deep learning-

based spoofing detection, primarily using light convolutional neural network (LCNN)

architectures, which were highly successful in the ASVspoof 2019 challenge. The study

showed that while powerful models like LCNNs achieve excellent performance, they are

sensitive to channel mismatches between training and testing data. Techniques like channel-

robust feature normalization (e.g., cepstral mean and variance normalization) and multi-

condition training were investigated to improve the generalization capability of these deep

learning systems across diverse acoustic channels.

2.2.2.2 RawNeXt: Speaker verification system for variable-duration utterances with

deep layer aggregation and extended dynamic scaling policies (Kim et al.,

2022)

Architectures like RawNet operate directly on raw audio waveforms, bypassing

traditional hand-crafted feature extraction. These deep 1D Convolutional Neural Networks

based on ResNet-like blocks learn relevant filters directly from the waveform. Adapted

for anti-spoofing model, these models have shown competitive performance, potentially

capturing fine-grained phase and artifact information lost during spectral feature extraction.

Ref. code: 25686622040886LSI



17

Their success highlights the power of end-to-end deep learning in discovering discriminative

patterns directly from the signal.

2.2.3 Other Analysis-oriented Features

This category includes methods focusing on aspects beyond standard spectral

envelope features, such as characteristics of the vocal source, phase information, background

noise analysis, or acoustic channel properties that might be altered by spoofing processes.

Here are some examples of work that use this kind of method:

2.2.3.1 Phase-Aware Features Based on Group Delay for Replay Spoofing Detection

This paper explored group delay–based analysis to detect replay attacks by focusing

on high-frequency phase distortions and artifacts caused by recording and replay devices.

The phase-sensitive features outperformed MFCC and CQCC under noisy and reverberant

test conditions in the ASVspoof 2017 and 2019 PA tasks. The results emphasized that phase

cues offer additional robustness, especially when replay conditions vary in the wild.

2.2.3.2 Modified Magnitude-Phase Spectrum Information for Spoofing Detection

(Yang et al., 2021)

This work introduced modified magnitude-phase spectrum (MMPS), a joint spectral

and phase feature derived using the constant-Q transform. MMPS captures phase artifacts

and high-resolution spectral structure that may indicate voice conversion or synthesis.

Despite relying solely on hand-crafted features, their system achieved competitive results

with deep-learning-based models on the ASVspoof 2019 LA dataset, showcasing the

potential of phase information in distinguishing spoofed speech.

2.2.3.3 Glottal Source Processing: from Analysis to Applications (Drugman et al.,

2019)

This study proposed a detection system based on glottal flow parameter estimation

from inverse filtering. The authors extracted glottal source features and combined them with

spectral features like MFCC and CQCC. On the ASVspoof 2019 LA dataset, this fusion of

glottal and spectral achieved an EER of 2.39%, indicating improved discriminative power

over spectral features alone, particularly in neural vocoder scenarios.
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2.3 Temporal-frequency Representation

Temporal-frequency representation is a way to transform a speech signal into a two-

dimensional format that captures both time and frequency information, making it suitable

for input to convolutional neural networks.

In our work, we focus on mel-spectrogram and gammatone spectrogram which are

widely used because they preserve important acoustic characteristics while providing a

visually structured input for deep learning models. Here are some related works that used

those representation for spoof detection task.

This following section provides a brief explanation of two time-frequency

representations used in this study, namely mel-spectrogram and gammatone spectrogram.

2.3.1 Mel-spectrogram

The mel-spectrogram is a time-frequency representation that maps the linear

frequency scale into the mel scale, which is designed to match the nonlinear frequency

sensitivity of human hearing. This concept was first introduced by (Stevens et al., 1937)

through perceptual studies of pitch scaling, and later adopted in practical speech processing

systems by (Davis & Mermelstein, 1980b) through the introduction of the mel filterbank

in the MFCC framework. The mel scale approximates human auditory perception by

emphasizing lower-frequency details, which are more perceptually relevant in speech.

2.3.2 Gammatone spectrogram

The gammatone spectrogram was developed to more closely to the filtering

behavior of the human cochlea by using a filterbank based on gammatone filters, first

proposed by (Patterson et al., 1988). These filters are characterized by impulse responses

shaped like gamma distribution functions modulated by sinusoids, reflecting the auditory

system’s response to incoming sound. Holdsworth et al.(1991) later provided an efficient

implementation of the gammatone filterbank, making it feasible for audio processing

applications.

2.4 Residual Network (ResNet) model

Residual Network (ResNet) is a convolutional neural network architecture that

introduces shortcut connections to help gradients flow through deep layers more effectively.

While it is commonly used in image recognition tasks, its ability to learn complex feature

representations without performance degradation makes it adaptable to other domains as
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Figure 2.1 Diagram of the two-path GMM-ResNet or GMM-SENet.

well. In spoof detection, ResNet can be used in both the feature extraction and classification

stages, depending on the overall system design, which makes it a flexible and effective

backbone for deep learning–based countermeasure systems. Because of these advantages,

ResNet has been chosen for further investigation in this research. The following works are

examples of how ResNet has been applied in ASV spoofing tasks.

2.4.1 Two-path GMM-ResNet and GMM-SeNet for ASV Spoofing detection

(Lei et al., 2022)

This paper proposed a novel spoof detection framework that integrates classical

Gaussian Mixture Models (GMMs) with deep neural architectures, specifically ResNet

and SENet, to overcome the limitations of conventional GMM-based countermeasures. In

traditional systems, GMMs treat each speech frame independently, ignoring the correlation

between adjacent frames and the contribution of individual Gaussian components. To

address this, the authors introduced the GMM-ResNet and GMM-SENet models, where the

input features are log Gaussian probabilities derived from two GMMs trained separately on

bona fide and spoofed speech. These features are then passed through convolutional layers

and six residual blocks (with or without squeeze-excitation units), followed by max pooling

and a fully connected layer for classification. To further enhance robustness, a two-step

training scheme is applied: first training the convolutional layers with softmax outputs, then

freezing them and training the final classifier.

According to Figure 2.1, the two-path architecture separates the input CQCC or

LFCC features into two branches processed by GMMs trained on bona fide and spoofed

speech, respectively. Each GMM outputs log-probability features, which are then passed

through shared convolutional layers and residual blocks in each path. After max pooling

is applied to reduce spatial dimensions, the resulting feature maps from both paths are

concatenated and passed through a fully connected layer to make the final classification

between genuine and spoofed speech. This structure allows the model to learn from both

distributions separately while preserving discriminative cues from each class.
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Experimental evaluations were conducted on the ASVspoof 2019 dataset under both

Logical Access (LA) and Physical Access (PA) scenarios. The results demonstrate that

the proposed systems significantly outperform the baseline GMM and ResNet-only models.

Specifically, the LFCC+GMM-ResNet (2P2S) system achieved an EER of 1.80% in the

LA evaluation set—representing a 76.3% relative improvement over the baseline GMM.

In the PA condition, the LFCC+GMM-SENet (2P2S) model achieved an EER of just

0.59%, outperforming several state-of-the-art single-system baselines. The authors also

performed score fusion across multiple subsystems, achieving competitive performance

close to the top-ranked systems in the ASVspoof 2019 challenge. These findings suggest

that incorporating GMM-derived probability features with deep ResNet-based networks can

offer both interpretable structure and high accuracy in detecting spoofed speech.

2.4.2 A lightweight feature extraction technique for deepfake audio detection

(Chakravarty & Dua, 2024)

This work is one of the main reference that give us an idea to do the further

research about ResNet model for ASV spoof detection. Chakravarty N. et al. proposed

a lightweight audio deepfake detection system that leverages mel-spectrograms as input and

employs a modified ResNet50 architecture for deep feature extraction, alongside with the

Linear Discriminant Analysis (LDA) for dimensionality reduction, reducing each sample to

a one-dimensional discriminative feature, then they used to train several traditional machine

learning classifiers, including Support Vector Machine (SVM), Random Forest (RF), K-

Nearest Neighbors (KNN), and Naive Bayes (NB).

The system is trained on the ASVspoof2019 LA dataset and evaluated using the

deepfake partition of ASVspoof2021, as well as a noisy unseen dataset like deepfake cross-

lingual (DECRO) to assess robustness. Among various configurations, the combination of

ResNet50 and LDA followed by RF classification achieved the best performance, yielding an

Equal Error Rate (EER) of just 0.4% and an accuracy of 99.7%. These results demonstrate

the effectiveness of combining deep CNN-based feature extraction with traditional machine

learning classifiers for detecting audio spoofing attacks, particularly when using compact

and discriminative features optimized through LDA.
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2.4.3 Spoof Detection using Voice Contribution on LFCC features and

ResNet34 (Mon et al., 2023)

This paper proposed a spoof detection method combining Linear Frequency Cepstral

Coefficients (LFCCs) and a ResNet-34 model to identify various spoofing attacks, including

replay, speech synthesis, and voice conversion, within automatic speaker verification

systems. Rather than using full utterances alone, the study explores the impact of extracting

LFCC features from specific portions of speech, such as the initial silence and fixed

percentages from both the beginning (head) and end (tail) of each utterance. This segmented

input aims to highlight distinguishing patterns between genuine and spoofed speech that

are often found in the margins of the signal. These features are passed through a ResNet-

34 architecture, which was selected for its proven effectiveness in extracting hierarchical

representations for classification tasks. The model is trained on the ASVspoof 2019 dataset

and evaluated on both Physical Access (PA) and Logical Access (LA) conditions.

The experimental results demonstrate that the proposed method significantly

outperforms traditional LFCC-GMM and CQCC-GMM baselines. For the PA scenario, the

lowest Equal Error Rates (EERs) achieved were 3.11% on the development set and 3.49% on

the evaluation set using 15% of both head and tail segments. For the LA condition, the best

performance was obtained with 40% of the segmented voice, yielding 0.16% EER on the

development set and 6.89% on the evaluation set. These results, along with high accuracy

and F1 scores, suggest that focusing on key voice segments improves model sensitivity

to spoofed patterns. The study also highlights that this segment-based feature extraction

helps optimize computation without sacrificing performance. Overall, the combination of

LFCC and ResNet34, particularly when coupled with voice segment analysis, proves to be a

promising direction for robust and efficient spoof detection.

2.4.4 Replay Attack Detection in Automatic Speaker Verification Using

GTCCs and ResNet-based Model (Chaiwongyen et al., 2022)

This paper propose a replay attack countermeasure for speaker verification using

biologically inspired Gammatone Cepstral Coefficients (GTCCs) as features and a deep

ResNet-based classifier. GTCCs are an auditory filterbank variant of MFCC that allocates

more resolution to lower-frequency bands, so it can capture the subtle spectral artifacts of

replayed speech better.

In their method, the speech signal with no voice activity detection is divided into

short frames and passed through a 60-channel Gammatone filter bank spanning between
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10 Hz and 11 kHz, the log energy of each sub-band is then taken and a Discrete Cosine

Transform (DCT) is applied to yield the cepstral coefficients. This produces a 60 × 128

time-frequency feature map for each utterance, which is fed into a convolutional neural

network. The authors use a ResNet-based architecture, comparing a standard ResNet-34 to

a deeper “Deep ResNet” model that employs multi-branch (grouped) convolutional blocks

(32 groups) to improve accuracy without excessive complexity.

This work evaluated on the ASVspoof2019 Physical Access benchmark, the GTCC +

ResNet approach showed substantially improved performance over the challenge’s baseline

systems. The proposed single-feature system achieved an equal error rate (EER) of about

8.5%, compared to 15% EER for the best baseline (CQCC with GMM) on the same dataset.

It also outperformed the authors’ earlier MFCC/LFCC-based ResNet models and yielded

higher accuracy, balanced accuracy, and F1-score than those counterparts. These results

demonstrate that the GTCC front-end combined with a ResNet-based deep model can more

effectively detect replay attacks in speaker verification, outperforming conventional features

on the benchmark evaluation. Like mentioned earlier, ResNet model was designed

2.5 Dimensionality Reduction

As the complexity and dimensionality of extracted features increase, dimensionality

reduction becomes a useful technique to reduce computational cost and memory usage

without decreasing data quality. Although this technique is not commonly used in ASV

spoofing tasks, it becomes relevant in our case due to the high-dimensional outputs produced

by the ResNet feature extractor.

In our work, we focus on using the dimensionality reduction method called Linear

Discriminant Analysis (LDA). Also, we try to use another technique called Principal

Component Analysis (PCA) to compare the result. This following section is the literature

review of such a paper that introduced and the implementation of those techniques:

2.5.1 Linear Discriminant Analysis (LDA)

LDA was originally introduced by R. A. Fisher in 1936 as a classification method

in statistics, as a statistical classification method that projects high-dimensional data onto

a lower-dimensional space by maximizing the separability between classes. It achieves

this by finding a linear combination of features that best separates two or more classes by

maximizing the between-class variance while minimizing the within-class variance. In the

context of spoof detection, LDA is used after feature extraction to reduce dimensionality

while enhancing the discrimination between bona fide and spoofed speech samples. In our
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Figure 2.2 Block diagram of LDA.

study, LDA was applied to deep features extracted by ResNet50, compressing them into

a single discriminative dimension. This not only reduced computational complexity but

also improved the performance of the downstream classifier, as the projection emphasized

differences relevant to spoof detection rather than speaker identity or channel variation.

As shown in Figure 2.2, applying LDA to the data involves four steps. First, the

mean vectors for each class and the overall mean of the data are calculated. Second, the

within-class scatter matrix and the between-class scatter matrix are computed to show how

data points spread within each class and how class means differ from each other. Third,

the generalized eigenvalue problem for these matrices is solved to find the eigenvectors that

maximize class separability. The data is then projected onto these eigenvectors to create the

reduced feature space. The number of LDA components is limited by the number of classes,

with the maximum number of components being one less than the total number of classes.

The resulting output data consists of transformed features that emphasize the distinctions

between classes, optimizing them for efficient classification.

When applying LDA, we aim to find an optimal projection matrix W that maximizes

the class separability, which is achieved by solving the following optimization equation as

following:

W = argmax
W

|WT SBW|
|WT SWW|

(2.1)

where W is the linear projection matrix that maps the original high-dimensional feature

space to a lower-dimensional subspace. SB denotes the between-class scatter matrix

(equation 2.2), which captures the dispersion between class means, while SW denotes the

within-class scatter matrix (equation 2.3), which reflects the variation of samples within

each class. These matrices are defined as:

SB =

C∑
i=1

Ni(µi−µ)(µi−µ)T (2.2)
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SW =

C∑
i=1

∑
xk∈Xi

(xk −µi)(xk −µi)
T (2.3)

where C is the number of classes, Ni is the number of samples in class i, µi is the mean

vector of class i, and µ is the global mean of all samples.

To apply LDA for dimensionality reduction, the process begins by grouping the

high-dimensional input features according to their class labels, namely bona fide and

spoofed speech in our case. Then, the class-wise mean vectors and global mean vector

are computed in order to construct the between-class scatter matrix (SB) and the within-

class scatter matrix (SW). The objective of LDA is to find a linear transformation matrix

W that maximizes the ratio of the between-class variance to the within-class variance,

as shown in Equation 2.1. This optimization ensures that the projected data in the

lower-dimensional space remains well-separated across classes while preserving as much

discriminatory information as possible. In our implementation, the final output from LDA

is a one-dimensional representation for each input utterance, which serves as a highly

discriminative feature used in the final classification stage.

2.5.2 Principal Component Analysis (PCA)

PCA is a classic technique introduced over a century ago by Karl Pearson (1901) and

later formalized by Harold Hotelling (1933), is an unsupervised dimensionality reduction

technique that identifies orthogonal directions (principal components) in the feature space

along which the data varies the most. Unlike LDA, PCA does not use class label information.

Instead, it projects the data into a lower-dimensional space based on directions that retain

the most variance. In spoof detection tasks, PCA can be used to remove noise and

redundancy from high-dimensional input features, although it may not always retain class-

separating information. In our work, PCA was used as a comparative baseline to evaluate

the effectiveness of LDA. The result showed that LDA outperformed PCA in classification

performance, which is expected given LDA’s supervised nature and its ability to focus on

spoof-related distinctions.

According to Figure 2.3, the eigenvectors of the data’s covariance matrix can be

calculated by giving a centered dataset X ∈ Rn×d, calculated as:

C =
1
n

XT X (2.4)
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Figure 2.3 Block diagram of PCA.

where n is the number of samples, and X is the zero-mean data matrix. The covariance matrix

captures how much each feature varies with respect to the others, serving as a foundation to

identify meaningful patterns of variation in the dataset.

Next, PCA solves the following eigenvalue problem:

Cvi = λivi (2.5)

where vi and λi are the eigenvectors and eigenvalues of the covariance matrix, respectively.

Each eigenvector vi represents a direction in the feature space, and the corresponding

eigenvalue λi quantifies the amount of variance captured in that direction. By sorting the

eigenvectors in descending order of their eigenvalues, PCA identifies the principal directions

(or components) that explain the most variance in the data.

The top k eigenvectors vi corresponding to the largest eigenvalues λi form the

projection matrix. The transformed data is then:

Z = XWk (2.6)

where Z is the reduced-dimensional representation of the data. This transformation retains

the most informative components of the original dataset while reducing its dimensionality,

helping to simplify subsequent processing and reduce computational costs.

In our study, PCA was used as a dimensionality reduction method to compare with

the supervised LDA approach. However, since PCA does not utilize class label information

during the projection process, it may not effectively preserve discriminative information

between bona fide and spoofed speech samples. Therefore, while PCA can reduce noise

and redundancy, it may not always be ideal for classification-oriented tasks such as spoof

detection.
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CHAPTER 3
METHODOLOGY

In this chapter, we explain our proposed method and contribution to improving

the performance of the overall ASV system. As mentioned in the previous section, our

objective is to explore and expand the use of deep learning–based feature extraction. We

focus specifically on using the ResNet model, which is well-known for its ability to extract

deep features in computer vision and has been increasingly applied in speech-based spoof

detection.

In most cases, ResNet is mainly used as a classifier. However, in our approach, we

aim to utilize ResNet50 as a feature extractor, removing its final classification layers and

using the deep embeddings it generates for further dimensionality reduction and decision-

making. To study the effectiveness of this method, we explore different input configurations,

spectrogram types, and tensor arrangements, then evaluate how these variations impact the

spoof detection performance.

According to Figure 3.1, our baseline model will include only ResNet50 feature

extraction with its own fully-connected classification. The input speech signal is first

converted into a temporal-frequency representation. This representation is then passed into a

deep feature extractor based on the ResNet50 architecture, which is responsible for learning

discriminative patterns from the spectrogram. Finally, the extracted features are fed into

the built-in fully connected layer of ResNet50 for binary classification between spoofed and

bona fide speech. This simple yet effective framework serves as our starting point for further

improvement and experimentation.

Figure 3.1 Baseline framework.
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Figure 3.2 Proposed framework.

3.1 Proposed framework

The proposed method analyzes input speech signals, determines their authenticity,

and classifies them as bona fide or spoofed. It consists of four steps: temporal frequency

representation, deep feature extraction based on ResNet50, linear discriminant analysis

(LDA) and decision, as shown in Figure 3.2.

First, the input speech signal is transformed into a temporal-frequency

representation. In this work, we explored two representations, which are mel-spectrogram

and gammatone spectrogram, as described in the previous section.

Second, the signal representation is fed into a ResNet50 model trained to differentiate

between spoofed and bona fide signals. The conventional ResNet50 model accepts a three-

channel image input, i.e., the input shape is 224× 224× 3. The dense layers of ResNet50

were dropped to retain only the convolutional feature extraction capability, ensuring that

the extracted features remained focused on capturing spatial and temporal patterns in

the spectrogram representation. The model produces a deep feature vector with 2,048

dimensions as output.

The dimensionality of the deep feature is reduced by using linear discriminant

analysis (LDA) in the third step, which is the final stage of the feature extraction process.

Since there are two classes, which are spoofed and bona fide signals, LDA can produce only

one discriminant component.

Finally, the discriminant component of the previous step is used as input for

classification, where a classifier determines whether the signal is spoofed or bona fide. The

classification decision is based on an optimal threshold, which is determined by identifying

the point where the False Acceptance Rate (FAR) and False Rejection Rate (FRR) intersect

from the training dataset. The result of this classification is a prediction that indicates

whether the input signal is spoofed or bona fide.

The detail of each step will be described as follow:
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3.1.1 ResNet50 Configuration

The ResNet50 architecture used in our work consists of 50 layers, including

convolutional, batch normalization, ReLU activation, and skip connections grouped into

residual blocks. The model starts with a 7×7 convolutional layer with 64 filters and a stride

of 2, followed by a 3× 3 max-pooling layer. The core of the architecture comprises four

sequential stages of residual blocks: Stage 1 contains 3 blocks with 64, 64, and 256 filters,

stage 2 contains 4 blocks with 128, 128, and 512 filters, stage 3 contains 6 blocks with 256,

256, and 1024 filters, and stage 4 contains 3 blocks with 512, 512, and 2048 filters.

In the baseline model, the ResNet50 is used end-to-end with its default architecture,

including the final global average pooling layer and the fully connected dense layer for

binary classification. The model takes an input tensor of shape 224×224×3 and outputs the

prediction indicating whether the input is spoofed or bona fide.

In the proposed model, the same ResNet50 architecture is used, but the final fully

connected classification layer is removed. Only the convolutional layers and the global

average pooling layer are retained. The resulting output is a 2048-dimensional feature vector,

which is then passed to a Linear discriminant analysis (LDA) module for dimensionality

reduction and subsequent classification. This modification allows us to decouple feature

extraction from classification, making it possible to analyze the behavior of deep embeddings

more explicitly and flexibly combine them with other classifiers.

3.1.2 Spectrogram Preparation

To prepare the input for the ResNet50 model, the raw speech signal is first segmented

and converted into a time-frequency representation. In our work, we used two different types

of spectrograms: mel-spectrogram and gammatone spectrogram. Each spectrogram was

computed using the Fast Fourier Transform with appropriate window size and hop length to

maintain temporal resolution while capturing spectral characteristics.

For the mel-spectrogram experiment, we set the hop length of 512, window size of

2048 samples, and sampling rate at 22,050 Hz. The mel-spectrogram is generated using a

128-channel mel filterbank, which maps the linear frequency scale into the perceptually

motivated mel scale that better reflects human auditory perception. After applying the

filterbank to the magnitude spectrum, the resulting power spectrogram is then converted

to decibel (dB) scale using logarithmic compression, which improves the visibility of both

strong and weak components in the signal.

For the gammatone experiment, we used the gtgram function to compute the
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Figure 3.3 (a) Duplicated tensors (type-1), (b) Differentiated tensors (type-2).

Figure 3.4 Example of mel-spectrogram for both types of tensors.

gammatone spectrogram, simulating the auditory filterbank responses of the human cochlea.

The speech signal is zero-padded to 88,200 samples to ensure uniform input length. The

spectrogram is then generated using a window size of 25 milliseconds and a hop size of 10

milliseconds, which correspond to 551 and 220 samples respectively at a standard sampling

rate. A 128-channel gammatone filterbank is applied, starting from 20 Hz, to decompose

the signal into critical bands with non-linear spacing that reflects the human ear’s sensitivity

across frequency.

3.1.3 Tensor type-1 and tensor type-2

In addition to a normal transformation from a signal representation to a three-channel

image input, we also proposed two method to form the input tensor. In the first method,

all three channels are duplicates of the representation obtained from the first step. In the

second strategy, three channels consist of the representation obtained in the first step, its

first-order derivative along the horizontal axis, indicated by ∆X, and its first-order derivative

along the vertical axis, denoted by ∆Y , respectively. The inclusion of derivatives aims to

capture additional temporal and frequency dynamics that may enhance the model’s ability

to distinguish between bona fide and spoofed signals.

To compute the first-order derivatives (∆X, ∆Y) of the spectrogram, we use the
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librosa.feature.delta function, which estimates the local derivative using linear

regression over a specified window. The default setting uses width=9, meaning each

derivative at a given frame is computed by fitting a straight line across a 9-frame window

centered at that point. The resulting derivative is calculated using the formula:

∆Xt =

∑4
n=−4 n ·Xt+n∑4

n=−4 n2
(3.1)

∆Yt =

∑4
n=−4 n ·Yt+n∑4

n=−4 n2
(3.2)

where ∆Xt and ∆Yt are the first-order derivatives of the spectrogram at time (or frequency)

index t, computed along the horizontal and vertical axes respectively. Xt+n and Yt+n are the

values of the spectrogram at neighboring frames (for time axis) or neighboring frequency

bins (for frequency axis), relative to position t.

In our case, the variable n ranges from −4 to +4, corresponding to the half-window

size when width = 9. The numerator
∑

n ·Xt+n computes the weighted sum of surrounding

values to approximate the local slope. The denominator
∑

n2 serves as a normalization factor

to stabilize the derivative value.

This operation captures the local slope of spectral energy changes along time (for

∆X) or frequency (for ∆Y) while smoothing out high-frequency noise. Using a wider

window like 9 frames provides a more stable and robust estimation of variation, which may

be helpful in identifying subtle temporal and spectral cues useful for spoof detection. In

our implementation, these derivatives are used to construct a type-2 input tensor where the

three channels represent the original spectrogram, its horizontal derivative, and its vertical

derivative respectively.

3.1.4 Dimensionality with LDA

The dimensionality reduction step is applied only in our proposed experiment after

passing through the ResNet-based feature extraction model. The original ResNet50 model

outputs a 2,048-dimensional feature vector, which may contain redundancy or irrelevant

variations. To address this, we apply linear discriminant analysis (LDA) to reduce the feature

vector to a one-dimensional scalar that emphasizes class separability between bona fide and

spoofed speech.
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Alternatively, we also apply Principal Component Analysis (PCA) with the number

of components set to 10 in order to explore the effectiveness of unsupervised dimensionality

reduction. PCA transforms the original 2,048-dimensional feature vector into a lower-

dimensional space by projecting the data onto directions (principal components) that capture

the maximum variance. Unlike LDA, PCA does not utilize class label information, and

the resulting components are optimized for information preservation rather than class

separability.

3.1.5 Classification Threshold

For the classification method, we use the fully connected layer in the ResNet

baseline model and use the classification threshold decision for the proposed model with

dimensionality reduction.

In the baseline configuration, the final prediction is made directly from the ResNet50

model through its built-in fully connected layer and softmax activation. The output provides

a confidence score for each class (bona fide or spoofed), and the highest-scoring class is

selected as the prediction.

For our proposed model, where features are reduced to a single scalar value using

LDA or PCA, a simple thresholding approach is applied for classification. Specifically,

we determine a decision threshold from the training set by identifying the point at which

the False Acceptance Rate (FAR) and False Rejection Rate (FRR) intersect, this point is

commonly referred to as the Equal Error Rate (EER) threshold. If the scalar feature value is

greater than or equal to this threshold, the signal is classified as bona fide. Otherwise, it is

classified as spoofed.

3.2 Dataset

For the experiment, we used the Logical Access (LA) subset of the ASVspoof

2019 dataset for training, validation, and evaluation (Liu et al., 2022). This dataset was

specifically designed to address the problem of detecting spoofed speech generated by

advanced synthesis techniques, such as text-to-speech (TTS) and voice conversion (VC). The

LA subset contains both bona fide and spoofed utterances, where the latter were generated

using a total of 17 different algorithms. Among these, 6 systems were made available in the

training and development sets (known attacks), while 11 additional systems were reserved

exclusively for the unknown attack in the evaluation set, making the task more challenging

and suitable for evaluating generalization capability.

The dataset is widely adopted in the spoof detection community due to its realistic
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scenarios, balanced class distribution, and availability of evaluation protocols. In our study,

we used the training set for model training, the development set for parameter tuning and

threshold optimization, and the evaluation set for final performance testing. The statistical

information of the dataset used is given in Table 2.2.

3.3 Experiment setup

In this study, we set up experiments and aim to answer two questions. First, inspired

by the work of Chakravarty and Dua (2024), can the concept of extraction deep features

by ResNet50 be applicable and improved when the temporal-frequency representations are

changed? To answer this question, we implemented and compared two models: one with

mel-spectrograms and another with gammatone spectrogram. Second, how does different

input tensor formation affect the performance of the model? To answer the second question,

we also compared two input tensor types: (1) all three channels are the same (i.e., they are

duplicated), and (2) three channels are the temporal-frequency representation, its ∆X, and

its ∆Y , respectively.

To set up the experiment, the model with mel-spectrogram is denoted by ‘mel’ and

that with gammatone spectrogram is denoted by ‘gt.’ The model, of which its ResNet takes

an input tensor forming by replication of the temporal-frequency representation, is marked

with ‘type-1 tensor,’ and the model, where the tensor with its ∆X and ∆Y , is marked with

‘type-2 tensor.’

This setup results in a total of six experiments, namely: (1) ResNet50/mel/type-

1, which is the baseline ResNet50 model using mel-spectrogram representation with

duplicated tensor; (2) ResNet50/mel/type-2, which is the same baseline model but using

a tensor consisting of the original spectrogram along with ∆X and ∆Y channels; (3)

Proposed/mel/type-1, which applies LDA on features extracted by ResNet50 from mel-

spectrograms with duplicated tensor format; (4) Proposed/mel/type-2, which also applies

LDA but uses the mel-spectrogram tensor with ∆X and ∆Y; (5) ResNet50/gt/type-2,

the baseline ResNet50 model using gammatone spectrogram with original, ∆X, and ∆Y

channels; and (6) Proposed/gt/type-2, which is the proposed LDA-enhanced framework

using gammatone spectrogram and tensor type-2.

3.4 Further Experiment

In addition to the primary experiments described in the previous sections, we

conducted several supplementary experiments to explore how different preprocessing steps

and modeling variations affect the performance of the spoof detection system.
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Figure 3.5 Padding spectrogram tensor.

Figure 3.6 Resized spectrogram tensor.

In further experiment, we used mel-spectrogram in every model with some additional

changes as following:

3.4.1 Padding and Resizing the Spectrogram Tensor

The spectrograms generated from raw speech signals in the ASVspoof2019 Logical

Access dataset have a fixed shape of 128 × 173, corresponding to 128 mel or gammatone

filter channels and 173 time frames. However, the ResNet50 model expects a 224× 224 input

tensor with three channels. Therefore, before applying the duplication or differentiation

strategy mentioned in Section 3.1.3, we need to resize each spectrogram into the appropriate

shape.

As illustrated in Figure 3.5 and Figure 3.6, we explore two methods to achieve this

transformation. The first method is zero-padding, where zeros are symmetrically added

around the edges of the spectrogram to increase its size to the target dimension. This method

preserves the original data values but introduces empty regions around the input. The second

method is resizing, where the spectrogram is interpolated and rescaled using image resizing

techniques to fit into a 224 × 224 matrix, treating the spectrogram as a standard grayscale
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image. This approach maintains the full tensor size and density but may smooth or distort

fine-grained features.

These two preprocessing strategies were compared in the extended experiment to

evaluate their impact on the performance of the spoof detection model.

3.4.2 Dimensionality with PCA

Apart from using LDA for dimensionality reduction, we also used principal

component analysis (PCA) as an alternative technique. PCA is an unsupervised method

that transforms high-dimensional data into a lower-dimensional space by identifying the

directions (principal components) along which the data varies the most. This approach

is particularly useful for reducing redundancy and compressing the feature space while

retaining as much information as possible.

In our experiment, we applied PCA to the 2,048-dimensional deep feature vectors

extracted from the ResNet50 model. These features, although rich in information,

contain some degree of correlation and noise that may not contribute meaningfully to the

classification task. By computing the covariance matrix of the feature set and solving

its eigenvalue decomposition, we identified the principal components ranked by their

corresponding eigenvalues. The top 10 eigenvectors (k = 10 associated with the largest

eigenvalues were selected to form the projection matrix, and these values will be used to

classify whether the speech are bona fide or spoofed in the classification part.

3.4.3 Classifier

After applying dimensionality reduction techniques, particularly PCA in our

extended experiments, the resulting lower-dimensional features were further evaluated using

several standard classification algorithms. Specifically, we employed three widely used

classifiers: Random Forest (RF), k-Nearest Neighbors (KNN), and Naı̈ve Bayes (NB), each

selected for their distinct advantages in handling different data characteristics.

The KNN algorithm classifies each input by majority vote among its k closest

neighbors in the feature space. In most cases, KNN can perform well in such settings without

suffering from the curse of dimensionality. In our work, we have only 2 classes of data, so

the number of k is equal to 2.

Random Forest is an ensemble learning method that builds multiple decision trees

and merges their outputs to improve overall accuracy and reduce the risk of overfitting. It is

well-suited for handling noisy or imbalanced data and provides robust decision boundaries,

making it a strong candidate for classifying spoofed versus bona fide speech features.
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Lastly, Naı̈ve Bayes, a probabilistic classifier based on Bayes’ theorem,

assumes conditional independence among features. Despite this simplification, NB is

computationally efficient and performs reasonably well on small datasets or when feature

distributions are sufficiently separable.

In conclusion, our extended experiments can be grouped by classifier type and

configuration as follows: (1) Random Forest (RF): A total of 12 experiments were

conducted. These cover all combinations of 4 tensor configurations: Resized + type-

1, Resized + type-2, Padding + type-1, Padding + type-2, and 3 model types: Baseline

ResNet50, Proposed with LDA, and Proposed with PCA. (2) K-Nearest Neighbors (KNN)

and (3) Naı̈ve Bayes (NB): Each classifier was tested in 6 experiments, using Resized tensors

only: both type-1 and type-2 and 3 model types as above (ResNet50, LDA, PCA).
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CHAPTER 4
RESULT AND DISCUSSION

4.1 Simulation and Evaluation

For evaluating our proposed model, a testing dataset consisting of 7,355 bona fide

and 63,882 spoof signals was used. We preprocessed the data in the same manner as the

training set and predicted whether each speech sample was spoofed or bona fide, and then

calculated the accuracy, F1-score, recall, precision, balanced accuracy (Bal), and equal error

rate (EER) from each experiment. The comparison of model evaluation is shown in Table

4.1.

As a result, our proposed method demonstrates substantial improvements over the

ResNet50 baseline in both EER and balanced accuracy. For the type-1 tensor configuration,

the proposed method shows a 43.55% reduction in EER and a 48.59% increase in

balanced accuracy compared to ResNet50 alone. For the type-2 tensor configuration, the

improvements include an 8.95% reduction in EER and a 15.52% increase in balanced

accuracy for the mel-spectrogram experiment, and a 44.14% reduction in EER and a 44.77%

increase in balanced accuracy for the gammatone experiment. These results underscore

the effectiveness of our enhancements in improving detection performance across different

tensor types and spectrogram representations.

The second comparison focuses on the type-1 and type-2 tensor configurations. For

the ResNet50 model, the type-2 configuration achieves a 36.85% reduction in EER and a

31.17% increase in balanced accuracy over type-1. In our proposed model, type-2 achieves

a slightly lower EER of 1.55% compared to type-1, while the balanced accuracy is lower

by 1.90%. These results suggest that the type-2 configuration improves precision, but may

slightly reduce recall, which could be advantageous in tasks where a higher confidence in

Table 4.1 Performance comparison among different models.
Model Accuracy F1 Precision Recall Bal EER (%)

ResNet50/mel/type-1 0.8586 0.9238 0.8931 0.9567 0.4544 51.86
ResNet50/mel/type-2 0.9137 0.9508 0.9722 0.9303 0.7661 15.01
Proposed/mel/type-1 0.9741 0.9856 0.9822 0.9890 0.9403 8.31
Proposed/mel/type-2 0.9736 0.9852 0.9880 0.9824 0.9213 6.06
ResNet50/gt/type-2 0.8967 0.9455 0.8968 1.0000 0.4484 50.00
Proposed/gt/type-2 0.9674 0.9817 0.9893 0.9743 0.8961 5.86
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Table 4.2 Additional experiment with Random Forest (RF) classifier.
Model Accuracy F1 Precision Recall Bal EER(%)

ResNet50/resized/type-1 0.8958 0.8960 0.8964 0.8958 0.7215 10.42
Proposed(PCA)/resized/type-1 0.8753 0.8530 0.8382 0.8753 0.5393 12.47
Proposed(LDA)/resized/type-1 0.9593 0.9551 0.9601 0.9593 0.8087 4.07

ResNet50/resized/type-2 0.8983 0.8965 0.8949 0.8983 0.7086 10.17
Proposed(PCA)/resized/type-2 0.8294 0.8134 0.7981 0.8293 0.4637 17.06
Proposed(LDA)/resized/type-2 0.9633 0.9602 0.9635 0.9633 0.8318 3.67

ResNet50/padding/type-1 0.8944 0.8989 0.9047 0.8943 0.7628 10.56
Proposed(PCA)/padding/type-1 0.8845 0.8543 0.8387 0.8845 0.5287 11.55
Proposed(LDA)/padding/type-1 0.9610 0.9577 0.9610 0.9610 0.8241 3.90

ResNet50/padding/type-2 0.8979 0.8995 0.9012 0.8979 0.7406 10.21
Proposed(PCA)/padding/type-2 0.8358 0.8527 0.8773 0.8358 0.6999 16.42
Proposed(LDA)/padding/type-2 0.9614 0.9582 0.9613 0.9614 0.8260 3.86

Table 4.3 Additional experiment with k-Nearest Neighbors (KNN) classifier.
Model Accuracy F1 Precision Recall Bal EER(%)

ResNet50/resized/type-1 0.8705 0.8815 0.8982 0.8705 0.7606 12.95
Proposed(PCA)/resized/type-1 0.8676 0.8631 0.8590 0.8676 0.6111 13.24
Proposed(LDA)/resized/type-1 0.9566 0.9517 0.9578 0.9567 0.7946 4.34

ResNet50/resized/type-2 0.8694 0.8787 0.8918 0.8694 0.7359 13.06
Proposed(PCA)/resized/type-2 0.8625 0.8321 0.8047 0.8625 0.4855 13.75
Proposed(LDA)/resized/type-2 0.9627 0.9593 0.9631 0.9627 0.8266 3.73

positive detections is critical, although it may be less optimal in scenarios where balanced

detection across all classes is necessary.

By comparing all six experiments, the model using our proposed method with mel-

spectrogram features and the type-1 configuration achieves the highest balanced accuracy

at 94.03%, while the model with our proposed method using gammatone spectrogram and

the type-2 configuration achieves the lowest EER at 5.86%. These results highlight that,

depending on the priority metric, either mel-spectrogram with type-1 for balanced accuracy

or a gammatone spectrogram with type-2 for EER could be optimal configurations.

4.2 Further Experiment Result

In this section, we showed the result of the further experiment that are conducted

from various tensor formats, dimensionality reduction techniques, and classifier types.

We recorded the result in a different table separated by its classifier, which are Random

Forest (RF), K-Nearest Neighbors (KNN), and Naı̈ve Bayes (NB) classifiers. In each table,

the models were trained on deep features extracted from the ResNet50-based model with

a different types of tensors and processed with either LDA or PCA for dimensionality

reduction with a specific classifier.
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Table 4.4 Additional experiment with Naı̈ve Bayes (NB) classifier.
Model Accuracy F1 Precision Recall Bal EER(%)

ResNet50/resized/type-1 0.7336 0.7851 0.9170 0.7336 0.8274 26.64
Proposed(PCA)/resized/type-1 0.8923 0.8563 0.8467 0.8924 0.5247 10.77
Proposed(LDA)/resized/type-1 0.9667 0.9642 0.9667 0.9667 0.8493 3.33

ResNet50/resized/type-2 0.6671 0.7321 0.9105 0.6671 0.7872 33.29
Proposed(PCA)/resized/type-2 0.8875 0.8433 0.8035 0.8874 0.4949 11.25
Proposed(LDA)/resized/type-2 0.9720 0.9707 0.9716 0.9720 0.8818 2.80

In Table 4.2, the Random Forest (RF) classifier has been applied. We conducted the

experiment for every type of tensor to see which one can perform the highest performace in

term of balance accuracy (Bal) and equal error rate (EER). As a result, the highest balanced

accuracy and the lowest equal error rate was achieved by the proposed method using LDA

and resized type-2 tensor, reaching 83.18% and an equal error rate (EER) of 3.67%, which

is an appropriate result.

However, we can see from the table that every result from the PCA will give us a

worse ERR than the baseline ResNet50. Since we fixed the value of k equal to 10 in this

experiment, we can conduct the further experiment with the PCA with different k in the

future, the result of PCA would be different.

Similarly to the result while we used k-Nearest Neighbors (KNN) that shown in

Table 4.3 and Naı̈ve Bayes (NB) classifier that shown in Table 4.4, the best performance

was still achieved by the proposed method using LDA with resized type-2 tensor, showing

consistent superiority in both Bal and EER across all three classifiers. The KNN model

achieved a balanced accuracy of 82.66% with an EER of 3.73%, while the NB classifier

achieved 88.18% balanced accuracy and an EER of 2.80% under the same configuration.

4.3 Discussion

Despite these results, it is evident that our proposed method outperforms the

ResNet50 baseline model for spoof detection, showing substantial improvements across key

metrics such as EER and balanced accuracy. However, this work still has several limitations

and there are numerous avenues to explore to improve deep learning-based feature

extraction. One potential direction is to experiment with different types of spectrograms,

which provide two-dimensional features, to identify which features are most effective for

this model. Additionally, investigating hybrid techniques that combine both time-domain

and frequency-domain features could offer a more comprehensive representation of the

audio signal. Exploring alternative dimension reduction methods beyond LDA may further

enhance performance by preserving key information while reducing redundancy. Moreover,
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advanced neural network architectures, such as attention mechanisms or transformer-based

models, could improve the model’s ability to capture relevant temporal or spectral patterns

in spoof detection. Future research should also consider larger and more diverse datasets to

better generalize the findings across various types of audio spoofing techniques.

According to the further experiment result, applying some kind of classifier may give

us a higher result comparing with using the decision threshold. The overall performance

of the NB classifier was higher compared to RF and KNN due to its strong assumptions

about feature independence. These observations indicate that both the input tensor structure

and the choice of dimensionality reduction technique play crucial roles in optimizing

downstream classifier performance. In particular, the combination of LDA and type-2 tensor

constructed from resized spectrograms appears to provide a strong generalization ability

across different classification strategies.

However, the results from this PCA-based setup were significantly worse compared

to those obtained using LDA. The primary reason appears to be the unsupervised nature

of PCA, which ignores class label information when computing its projection matrix. As

a result, the reduced features may retain high variance but not necessarily the dimensions

most useful for distinguishing bona fide and spoofed speech. This limitation was particularly

evident in our binary classification task, where class separation is essential. Consequently,

the PCA approach was deemed ineffective in our context, and we decided to proceed with

LDA as the main dimensionality reduction method in our proposed framework.
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CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1 Conclusion

This work aimed to expand the exploration of deep learning-based feature extraction

models. ResNet50 was used to extract deep features from temporal-frequency, e.g., mel-

spectrogram and gammatone spectrogram, representation of a speech signal. Then, LDA was

applied to reduce the feature dimensionality, and a decision is mode by setting a separation

plan in the reduced-dimensional space. The experimental results show that the proposed

method outperforms the model based on ResNet50 alone. Compared to ResNet50, our

proposed method can reduce the EER by 43.55% and improve the balanced accuracy by

48.59% for type-1 tensor, and reduce the EER by 8.95% and improve the balanced accuracy

by 15.52% for the type-2 tensor mel spectrogram and reduce the EER by 44.14% and

improve the balanced accuracy by 44.77% for the type-2 tensor gammatone spectrogram.

In addition, the experimental results show that when the input tensor of ResNet50 is

formed by the gammatone spectrogram with its derivatives, the performance of the model

can also be improved.

To further validate the flexibility of the proposed feature extraction method,

we extended our study to include traditional classification methods. Specifically, we

investigated how deep features extracted from the ResNet50 model (and reduced by

LDA or PCA) would perform under classifiers such as Random Forest (RF), k-Nearest

Neighbors (KNN), and Naı̈ve Bayes (NB). From the results, it was evident that LDA-based

dimensionality reduction yielded the best performance across all classifiers, particularly

when used with a resized type-2 tensor. Notably, the NB classifier achieved the highest

balanced accuracy of 88.18% and the lowest EER of 2.80% under this configuration. These

findings indicate that, beyond threshold-based classification, traditional classifiers can also

effectively leverage deep features—especially when paired with supervised dimensionality

reduction techniques.

On the contrary, the use of PCA as an unsupervised dimensionality reduction

technique did not improve performance and, in most cases, performed worse than even

the baseline ResNet50 model. This supports the hypothesis that supervised dimensionality

reduction methods, such as LDA, which consider class separability, are more appropriate
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for this binary classification task. This insight could guide future work in choosing feature

projection methods for similar problems.

5.2 Future work

In the future, we plan to extend our model by experimenting with other types of

time-frequency representations apart from mel-spectrogram and gammatone spectrogram,

e.g. chroma spectrograms, constant-Q transform, or even wavelet-based representations,

which may provide different perspectives for capturing spoofing cues. The baseline model

we used, ResNet50, can also be replaced or compared with other vision-based architectures

like DenseNet, or MobileNet to see whether lighter or deeper models offer any performance

advantage.

In terms of dimensionality reduction, techniques such as Principal Component

Analysis (PCA) have been used but in the fixed value of k, we can do the further experiment

by focusing only on this method but with different k in order to find the optimal result. Or

even learned methods like autoencoders could be applied in place of or alongside LDA to

investigate how the structure of the feature space affects classification. Another possible

direction is to explore end-to-end learning approaches where the feature extractor and

classifier are trained jointly.

Finally, further testing with other datasets in different languages or recording

conditions, such as ASVspoof 2021 or multilingual corpora, could provide a different

result. Comparing performance across datasets and attack scenarios would help evaluate

how effectiveness of the proposed method is in real-world applications.
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APPENDIX A

IMPLEMENTATION OF RESNET50

In this appendix, we provide the implementation details of the ResNet50 architecture.

The code follows the canonical structure of residual networks and is divided into several

modular components, namely the convolutional block, the identity block, and the projection

block. Each of these components plays a crucial role in enabling residual learning and

alleviating the vanishing gradient problem commonly found in very deep neural networks.

The convolutional block serves as the basic feature extraction unit of the network.

It performs a sequence of operations consisting of a two-dimensional convolution, batch

normalization, and the ReLU activation function. By adjusting the filter size, kernel size,

stride, and padding, the block is capable of capturing local spatial features at different scales

and resolutions.

The identity block introduces the core concept of residual learning by incorporating

a skip connection that directly adds the input tensor to the output of a series of convolutional

layers. This addition allows the model to learn a residual mapping, F(x)+ x, rather than a

direct mapping H(x), which significantly eases the training of deeper networks. Importantly,

in the identity block, the input and output dimensions remain the same, making it possible

to combine the two paths without any transformation.

The projection block, in contrast, is employed when the input and output dimensions

are not aligned. In this case, a 1×1 convolution is applied in the shortcut pathway to match

the dimensionality, followed by a 3× 3 convolution consistent with the pattern used in the

ResNet architecture. This block plays a critical role in transitioning between different stages

of the network, where the number of filters increases, thereby ensuring that the residual

connection remains valid and effective throughout the architecture.

Finally, all the components described above are integrated to manually construct

a ResNet50 model, as illustrated in Figure A.4. This modular design allows flexibility,

enabling modifications at any layer as required for specific experimental purposes.

Figure A.1 Convolution block function
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Figure A.2 Identity block function

Figure A.3 Projection block function

Figure A.4 Training model of ResNet50 with the convolution block, identity block and
projection block
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