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ABSTRACT

This thesis develops advanced fuzzy optimization models to strengthen
resilience in Supply Chain Aggregate Production Planning (SCAPP) by addressing
uncertainties inherent in modern supply chains. Utilizing fuzzy logic, the model
integrates uncertain parameters such as fluctuating demand, variable supplier
reliability, and operational disruptions, providing approaches to managing
unpredictability. This innovative framework is designed to tackle multiple conflicting
objectives simultaneously, including cost minimization, resource allocation
optimization, and risk mitigation, thereby enabling decision-makers to achieve
balanced and efficient SCAPP. This advancement marks a departure from conventional
approaches, which frequently focus on static assumptions and single-objective
optimization.

By systematically quantifying uncertainties, the model ensures that supply chain
strategies remain robust against external shocks and internal variabilities. Its ability to
provide adaptive solutions to unexpected scenarios demonstrates its relevance in
industries where supply chains face frequent disruptions due to market volatility, global
uncertainties, and rapid technological changes. The empirical results confirm that the

proposed models enhance operational efficiency, reduce the risk of cost fluctuations,
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and improve resource utilization, making it a valuable tool for businesses aiming to
maintain stability in volatile environments. By bridging the gap between theoretical
advancements and practical applications, this study contributes to both scholarly
discourse and industry practice, emphasizing the importance of adaptable and scalable
solutions in dynamic supply chain environments.

The findings of this thesis go beyond theoretical advancements, offering
practical insights that empower supply chain managers to make more informed and
effective decisions. By addressing real-world complexities, the model demonstrates its
versatility and applicability across various industries, serving as a crucial tool for
organizations aiming to achieve both operational efficiency and long-term
sustainability. Additionally, this research lays a strong foundation for future studies,
encouraging the exploration of more advanced fuzzy optimization models and further

integration of risk mitigation strategies into SCAPP frameworks.
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CHAPTER 1
INTRODUCTION

This chapter provides a thorough exploration of the research context, objectives,
and contributions. It begins with a detailed research background, outlining the
significance of the research within the broader field of production planning and supply
chain management. The problem statement identifies the key challenges addressed by
the research, specifically focusing on the complexities of managing supply chains under
uncertainty. This chapter further highlights the research contributions, emphasizing the
novel methodologies and frameworks proposed to improve the resilience and efficiency
of supply chain operations. Finally, the thesis overview presents a roadmap of the
subsequent chapters, offering a clear structure for the reader to follow as the study
progresses from foundational concepts to advanced optimization techniques and

practical applications.

1.1 Research Background

This research centers on the growing importance of Supply Chain Aggregate
Production Planning (SCAPP) within the context of an increasingly complex and
competitive marketplace. As businesses face increasing pressure from global
competition, rapidly changing market conditions, and unpredictable demand patterns,
SCAPP has become an essential tool for optimizing supply chain operations (Reyes et
al. (2021); Ravindran et al. (2023)). Consequently, effective supply chain management
presents significant challenges, primarily resulting from inherent uncertainties
originating from diverse sources such as supply disruptions, fluctuating demand, and
changing economic conditions.

The complexities of modern supply chains are further compounded by the need
to handle imprecise data that conventional deterministic models often fail to capture.
This influences supply chain decisions, limiting their practical applicability. As such,
there has been a growing interest in incorporating uncertainty into SCAPP through
advanced methodologies that provide more flexible and adaptive solutions. This

research focuses on utilizing fuzzy set theory and optimization techniques to address
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these challenges, offering a robust framework for decision-making in uncertain
environments. Fuzzy set theory, which addresses the representation of uncertain and
vagueness information, has demonstrated its effectiveness as a robust tool for managing
uncertainty in supply chain planning. This has been demonstrated by numerous
researchers over the years, including pioneers such as Lotfi A. Zadeh, who originally
introduced the concept of fuzzy sets in 1965, and later scholars like Tanaka et al. (1974),
who pioneered the application of fuzzy set theory in linear programming, and more
recently such as Tuan et al. (2021) and Mohamed et al. (2023), who have shown its
relevance in modeling and optimizing uncertain parameters in supply chain and
production planning environments. Their work has contributed significantly to
establishing fuzzy set theory as a robust framework for supporting decision-making
under uncertainty. Specifically, fuzzy numbers, such as triangular and intuitionistic
triangular fuzzy numbers, allow for the representation of uncertain parameters, enabling
decision-makers to model supply chain variables more accurately. By integrating fuzzy
logic with optimization models, this research aims to enhance the reliability and
operational efficiency of SCAPP under conditions of uncertainty and conflicting
objectives by developing advanced fuzzy optimization models.

Moreover, this research significantly contributes to the academic understanding
of how advanced mathematical tools can be utilized to address the practical difficulties
faced by modern supply chains. This research also emphasizes the importance of
bridging the gap between theoretical advancements in optimization and their practical
applications. By doing so, it equips supply chain managers with the necessary insights
and tools to sustain operations even under adverse conditions. In essence, this research
offers new pathways for enhancing resilience, adaptability, and sustainability in supply
chain management, providing organizations with the strategies they need to not only
survive but thrive in an increasingly unpredictable global marketplace.

1.2 Problem Statement

This research also emphasizes the importance of bridging the gap between
theoretical advancements in optimization and their practical applications. By doing so,
it equips supply chain managers with the necessary insights and tools to sustain

operations even under adverse conditions. In essence, this research offers new pathways
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for enhancing resilience and adaptability in supply chain management, providing
organizations with the strategies they need to not only survive but thrive in an
increasingly unpredictable global marketplace.

Uncertainty in SCAPP arises from numerous unpredictable factors, including
supplier delays, economic fluctuations, geopolitical tensions, and global crises. These
factors further complicate the already difficult task of aligning production capacities
with demand forecasts, leading to suboptimal resource utilization and increased risk
exposure. Moreover, the presence of conflicting objectives adds a layer of complexity
to the decision-making process. conventional planning methods often lack the
flexibility and adaptability required to balance these competing demands and
uncertainties effectively. These shortcomings significantly obstruct the ability of supply
chain managers to make informed decisions and maintain operational continuity in the
face of unforeseen events. Without the adoption of advanced tools and models that can
better address the complexities of modern supply chains, organizations risk facing
inefficiencies and disruptions that could threaten their long-term sustainability.

To overcome these limitations, innovative approaches are urgently needed that
integrate uncertainty and conflicting objectives into the planning process in a more
comprehensive and effective manner. There is a clear need for methodologies that not
only account for the inherent uncertainties in supply chains but also provide flexible,
adaptive solutions that allow businesses to respond swiftly to dynamic market
conditions. Therefore, this research seeks to fill these critical gaps by developing
advanced fuzzy optimization models tailored for SCAPP. These models aim to enhance
decision-making in environments characterized by uncertainty and conflicting
objectives. By utilizing fuzzy logic, these models will enable supply chain managers to
better quantify and incorporate uncertainties into the planning process, leading to more
reliable, flexible, and adaptive production plans. Through this research, it is anticipated
that organizations will be better equipped to foster resilience and improve

responsiveness in their supply chain operations.
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1.3 Research Contributions
The potential research contributions are identified as follows:

1. Development of Advanced Fuzzy Optimization Models for SCAPP
This research contributes to supply chain management field by
developing advanced fuzzy optimization models tailored specifically for
SCAPP. These models integrate uncertainty and conflicting objectives,
providing supply chain managers with more reliable and adaptive
decision-making tools under dynamic market conditions.

2. Improvement of Supply Chain Resilience and Flexibility
This research enhances resilience of supply chain by providing models
that can quickly adapt to sudden market changes, external crises, and
unforeseen events. By focusing on flexibility, this research empowers
organizations to respond to supply chain volatility and shifting market
conditions more effectively, improving overall operational continuity.

3. Introducing Downside Risk Management to SCAPP
This study introduces Mean-Conditional Value at Risk Gap (MCVaRG)
as a novel downside risk measure to capture and minimize the risk of
uncertainty in decision-making under ambiguity. Unlike existing risk
measures, MCVaRG focuses on the gap between expected outcomes and
extreme losses in the lower tail of the distribution, offering a more
sensitive and targeted assessment of downside risk. This is the first study
to apply MCVaRG within an optimization framework for SCAPP,
providing a unique approach that enhances both the reliability and
robustness of decisions under uncertainty.

4. Bridging the Gap Between Theory and Practice in SCAPP
This research addresses the gap between theoretical advancements in
fuzzy optimization and their practical applications. By developing
models that are both theoretically sound and practically applicable, this
research offers actionable insights and tools that supply chain managers

can directly implement in real-world settings.
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1.4 Thesis Overview
Following this introductory chapter, the remaining chapters of the thesis are
organized as outlined below:
e Chapter 2: Review of Literature
This chapter reviews key literature on supply chain management, uncertainty,
fuzzy set theory, and optimization techniques. It begins with an overview of
supply chain fundamentals and Supply Chain Aggregate Production Planning
(SCAPP) as a strategy for balancing supply and demand. The discussion then
examines uncertainty, its associated risks, and the challenges of conflicting
objectives in decision-making. To address these issues, the chapter introduces
Fuzzy Set Theory, including Fuzzy Numbers and Skewness Degree, as tools for
modeling imprecise data. It also explores Fuzzy Mathematical Models,
Defuzzification Approaches, and Pareto Optimal Solutions for optimizing
trade-offs in multi-objective decision-making. Finally, Risk Measurement
techniques are reviewed for assessing and mitigating potential negative
outcomes. This literature review establishes the theoretical foundation for

managing uncertainty in supply chain optimization.

e Chapter 3: Research Methodologies and Case Studies
This chapter presents the various research methodologies employed to address
optimization problems under uncertainty, particularly focusing on fuzzy
optimization approaches. It begins with an exploration of the conventional
specific fuzzy optimization approach, laying the groundwork for understanding
the foundational techniques used in modeling uncertainty and imprecision. This
chapter then progresses to introduce a five-phase hybrid fuzzy optimization
approach, combining elements of multiple methodologies to enhance decision-
making processes. Following this, a unified fairness and robustness fuzzy
optimization approach is discussed, providing a structured framework for
tackling unfair and sensitive optimization challenges. Then, this chapter
presents a downside risk mitigation approach, providing a way to handle the

risk of uncertainty. Each of these methodologies contributes to the advancement
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of optimization practices, particularly in environments characterized by
uncertainty and vagueness. Finally, this chapter presents an introduction and
outlines the contributions of three case studies, each examining a distinct
methodological approach to Supply Chain Aggregate Production Planning
(SCAPP) under conditions of uncertainty.

Chapter 4: Results

This chapter presents a comprehensive analysis of three case studies that explore
distinct methodological approaches to Supply Chain Aggregate Production
Planning (SCAPP) under uncertainty. Each case study introduces a unique
framework designed to optimize production planning while addressing critical
challenges such as cost efficiency, fairness, robustness, and risk mitigation.
Case 1 introduces a five-phase hybrid fuzzy optimization approach that
integrates multiple optimization techniques to enhance decision-making in
SCAPP. Case 2 proposes a unified fairness and robustness fuzzy optimization
approach, ensuring equitable resource distribution while maintaining resilience
against uncertainties. Case 3 focuses on mitigating downside risk by
incorporating advanced risk measurement techniques to minimize potential
financial losses arising from fluctuations in supply chain operations. The
structure of each case study includes a detailed formulation of the mathematical
model, a description of the problem, an analysis of the results, and a discussion
of key findings. The comparative insights drawn from these cases provide a
holistic understanding of how various optimization strategies can be employed

to improve SCAPP under uncertain circumstances.
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e Chapter 5: Discussion and Conclusions

This chapter provides a comprehensive analysis of the study’s findings, drawing
meaningful conclusions and highlighting their broader implications. The
discussion and conclusion section synthesizes key insights, interpreting the
results in relation to existing literature and the research objectives. The
managerial implications section explores the practical significance of the
findings, offering strategic recommendations for decision-makers in supply
chain management. Finally, the limitations and further study section
acknowledges the study’s constraints and proposes directions for future
research to enhance the robustness and applicability of the proposed
methodologies.

Ref. code: 25686422300019ALF



CHAPTER 2
REVIEW OF LITERATURE

This chapter provides a comprehensive review of the key concepts,
methodologies, and recent advancements that form the foundation of this research. It
begins with an in-depth exploration of SCAPP, emphasizing the importance of aligning

production capacity with resource allocation to optimize operational efficiency.

2.1 Supply Chain

A Supply Chain (SC) is a system of interconnected organizations, resources,
processes, and technologies that collaboratively manage the flow of goods and services
from initial suppliers to end consumers (Stevens (1989)). The primary objective of a
SC is to efficiently satisfy customer demand while minimizing costs, optimizing
resource utilization, and maintaining the flexibility to respond to market changes. An
effectively managed SC can confer a competitive advantage to organizations by
enhancing product availability, shortening lead times, and improving customer
satisfaction.

In addition to the physical flow of goods, modern supply chains also involve
significant information flow (Kumar (2001)). Efficient information sharing and real-
time data access across all stakeholders enable better forecasting, decision-making, and
performance monitoring. Technologies such as Enterprise Resource Planning (ERP)
systems, Internet of Things (10T) sensors (Yesodha et al. (2023)), and blockchain have

become integral to ensuring smooth information flow throughout the SC.
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The structure of a typical supply chain can be visualized in Figure 2.1 (New &
Payne, (1995); Shukla et al. (2011)).

I:> Physical Flow
U Cash Flow

£\ Information Flow

£ N & £ N £ N
3 Az
!ﬁ‘ooo v __ = &!

SUPPLIER MANUFACTURER DISTRIBUTION RETAILER CUSTOMER

L/ U U

Figure 2.1 The structure of a typical supply chain.

The fundamental components of a supply chain are demonstrated as follows:

e Suppliers: Supply raw materials, components, and services essential for
production.

e Manufacturers: Convert raw materials into finished or semi-finished
products.

e Distributors and Wholesalers: Oversee the storage and transportation of
goods to retailers or directly to consumers.

e Retailers: Offer products for sale to the final customers.

e Consumers: Represent the ultimate end-users of the products.

The processes in a SC can be represented as a series of interconnected stages,
starting from raw material sourcing and ending with product delivery to the consumer
(Christopher et al., (1998); Tan (2001)). Simple supply chain processes are typically
explained as follows:

e Procurement: Sourcing and acquisition of raw materials or components.
e Production: Converting raw materials or components into finished products.

e Logistics: Coordinating transportation, storage, and distribution.
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e Demand Forecasting: Predicting customer needs to optimize planning.
e Inventory Management: Balancing stock levels to meet demand without

€XCess.

Modern supply chains face numerous challenges as follows:

e Demand Uncertainty: Fluctuating customer demand can complicate
production and inventory management.

e Supply Chain Disruptions: Incidents such as geopolitical conflicts, natural
catastrophe, and supplier failures can lead to delays or shortages.

e Globalization: Managing complex, multi-tier supply chains that span multiple
countries, with different regulations and cultural expectations.

e Sustainability: Integrating eco-friendly practices to reduce social and

environmental impacts.

2.1.1 Supply Chain Aggregate Production Planning

Supply Chain Aggregate Production Planning (SCAPP) is a comprehensive
framework that integrates production planning with supply chain management to
optimize resources and meet customer demand efficiently (Mendoza et al. (2014)). The
core concept centers on the coordination of supply chain activities such as procurement,
manufacturing, inventory management, and distribution to fulfill organizational
objectives. (Heizer & Render (2004)).

The structure of SCAPP is built around a hierarchical planning process that
encompasses strategic, tactical, and operational levels (Muriel & Simchi-Levi (2003);
Bashiri et al. (2012)):

e Strategic Level: At this level, long-term decisions are made concerning the
overall configuration of the SC, including facility locations, production
capacities, and supplier selection. These decisions set the foundation for tactical
and operational planning and typically span several years.

e Tactical Level: The tactical level focuses on medium-term planning, translating
strategic decisions into actionable plans. This process includes aggregate
production planning, which sets production volumes, inventory targets, and
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labor needs over a planning period typically spanning several months to a year.
Tactical SCAPP also addresses Material Requirement Planning (MRP) and
capacity planning to ensure that resources are optimally allocated.

e Operational Level: At the operational level, short-term plans are developed to
execute tactical plans efficiently. This includes detailed scheduling of
production activities, inventory replenishment, and order fulfillment. Real-time
monitoring and adjustments are often necessary to address unforeseen

disruptions or changes in demand.

2.2 Uncertainty

Uncertainty is a concept with diverse interpretations and applications across a
wide range of disciplines, each offering unique insights and contextual emphases (Klir
(1995)). In the physical sciences and engineering, uncertainty often relates to
measurement inaccuracies and variability in experimental outcomes, reflecting the
inherent limitations of instruments and natural processes. In statistics, it captures the
probabilistic nature of data and the challenges of drawing inferences from incomplete
or imperfect information. Economics and finance approach uncertainty in terms of
market volatility, forecasting challenges, and risk management, emphasizing its
implications for strategic planning and investment. The insurance industry focuses on
uncertainty through risk assessment and actuarial models to quantify and manage
potential losses. Philosophy focuses on the epistemological dimensions of uncertainty,
exploring questions about the limits of human knowledge, the nature of truth, and how
certainty is constructed or perceived. Meanwhile, psychology examines uncertainty
from a behavioral perspective, investigating how individuals perceive, interpret, and

respond to ambiguous or unpredictable situations in their decision-making processes.
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To synthesize these perspectives, uncertainty can be broadly defined and
understood through the following dimensions:

e The state of not being known or clearly determined: This reflects the absence
of definitive knowledge or clarity about a situation or outcome.

e A condition of instability or change: Uncertainty arises in dynamic contexts
where variables are subject to fluctuation and unpredictability.

e A situation where the probability of outcomes is unknown: This denotes
circumstances where it is difficult or impossible to assign precise probabilities
to potential events.

e Vagueness or ambiguity: Uncertainty often derives from imprecise,
incomplete, or conflicting information, leading to multiple interpretations.

e A lack of confidence or sureness: This form of uncertainty is experienced as

doubt or hesitation, whether about a person, process, or forecast.

It is important to distinguish that uncertainty arises from both objective and
subjective sources. In some cases, uncertainty is inherent to physical systems, as in the
randomness of a dice toss or quantum phenomenon, where outcomes are governed by
probabilistic laws independent of human perception. In such instances, uncertainty
exists regardless of whether a human observer is present. However, in many real-world
applications, especially those involving decision-making, planning, or forecasting,
uncertainty is closely tied to human perception, understanding, and limitations of
knowledge. For example, uncertainty may emerge due to incomplete data, cognitive
biases, or linguistic vagueness, which shape how information is interpreted and acted
upon. Thus, while not all uncertainties originate from human cognition, many practical
expressions of uncertainty in fields such as economics, supply chain management, and
risk analysis are influenced by the way humans perceive, process, and evaluate
information. Recognizing this distinction helps avoid overgeneralization and ensures a

more precise interpretation of uncertainty across different contexts.
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In this research, uncertainty is defined as the inherent unpredictability and
variability present in real-world situations. It reflects the limitations of available
information and acknowledges the potential for unforeseen events or outcomes. This
definition emphasizes that uncertainty is not only an abstract concept, but also a
practical challenge influencing decision-making, risk assessment, and strategic
planning.

The phenomenon of uncertainty arises from a confluence of factors, primarily
deriving from a lack of understanding, incomplete knowledge, insufficient data, and the
inherent variability present within natural processes. This state of uncertainty is further
exacerbated by several key sources, as identified by Lawrence & Lorsch (1967) and
Duncan (1972). Firstly, uncertainty arises when crucial information regarding
environmental factors remains inaccessible or unattainable, preventing thorough
evaluations of potential outcomes. Secondly, it surfaces when the anticipated results of
a decision remain ambiguous, limiting the formulation of clear and informed strategies.
Finally, uncertainty becomes more pronounced when assigning a degree of confidence
to a given scenario proves ineffective, causing decision-making processes to be
inherently volatile and precarious.

In the context of business and supply chain operations, uncertainty typically
originates from two primary sources: environmental uncertainty and system uncertainty
(Cha-ume & Chiadamrong, 2012).

e Environmental Uncertainty: This form of uncertainty derives from external

factors that influence the SC and are often beyond the control of the business.
One of the main contributors is the performance of suppliers, which can
fluctuate due to various reasons such as production delays, financial instability,
or logistical challenges. Another influential factor is customer behavior,
particularly in terms of supply and demand dynamics. Shifts in consumer
preferences, market trends, or changes in the economic landscape can lead to
unpredictable demand patterns, making it challenging for businesses to
accurately forecast needs and plan accordingly. Moreover, environmental
uncertainty also encompasses broader geopolitical events, regulatory changes,
and natural disasters, all of which can create sudden and significant disruptions
in supply chain operations.

Ref. code: 25686422300019ALF



14

e System Uncertainty: System uncertainty arises from internal organizational
factors that contribute to unpredictability. This type of uncertainty often derives
from the unreliability and uncontrollability of internal processes. Issues such as
machinery breakdowns, software malfunctions, or human errors can disrupt the
flow of operations, leading to unexpected delays or failures. Furthermore,
inefficiencies within workflows, a lack of coordination between departments,
or insufficient resource management practices can amplify system uncertainty,
making it difficult for an organization to achieve consistent performance. This
type of uncertainty also includes the challenges of aligning organizational
strategies with rapidly changing internal and external conditions, such as
fluctuating workforce availability or changes in production capabilities.

Uncertainty within organizational decision-making and operations can be
categorized into four distinct types: data uncertainty, model uncertainty, parameter
uncertainty, and scenario uncertainty.

e Data Uncertainty: This type of uncertainty arises from limitations or
inaccuracies in the available data, which affects the reliability or validity of the
information on which decisions are based. Whether the data is outdated,
incomplete, or corrupted, data uncertainty limits organizations from making
confident and accurate assessments, ultimately impacting strategic planning and
operational efficiency (Jones et al., 2020).

e Model Uncertainty: Model uncertainty refers to the uncertainty associated
with the mathematical or computational models used to represent real-world
systems. These models, whether mathematical, computational, or statistical, are
simplified representations of complex environments, and their structure may not
fully capture the complexity of the real world. As a result, model uncertainty
reflects the limitations of these representations and their inability to account for
all possible variables or scenarios, which can lead to inaccurate predictions or

conclusions (Brown & Johnson, 2018).
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e Parameter Uncertainty: Parameter uncertainty arises from the uncertainty
surrounding the values or estimates of parameters within a model. These
parameters often involve estimates based on historical data, expert judgment, or
assumptions that may carry inherent variability or imprecision. In many cases,
slight changes in the values of key parameters can lead to significant variations
in the model's output, highlighting the challenge of ensuring precision in
parameter estimation (Chen et al., 2021; Li and Wu (2006)).

e Scenario Uncertainty: Scenario uncertainty pertains to the uncertainty related
to future conditions or scenarios that could affect outcomes. This includes a
broad range of factors such as changes in market conditions, technological
advancements, regulatory shifts, or unforeseen geopolitical events. Since these
factors are often unpredictable and can evolve rapidly, scenario uncertainty
plays a critical role in strategic decision-making, requiring businesses to plan
for a variety of potential futures rather than a single anticipated outcome (Li &
Wang, 2017).

Recognizing and understanding these diverse types of uncertainty is crucial for
organizations operating in complex and dynamic environments. By acknowledging the
different sources and categories of uncertainty, businesses can develop more robust
strategies for managing risks, enhancing decision-making, and improving their ability
to adapt to unforeseen changes. This understanding allows organizations to implement
comprehensive risk management frameworks, which not only account for known
variables but also prepare for the unpredictable factors that can impact performance,
market stability, and long-term growth. In turn, businesses can adopt a proactive
approach to navigating uncertainty, positioning themselves to thrive through volatility

and change.
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2.2.1 Risk of Uncertainty

The concept of risk, as discussed by Rachev et al. (2011), derives from inherent
uncertainty and the likelihood of adverse exposure. The presence of uncertainty often
leads to the perception of risk, which reflects the potential for adverse effects on
individuals or organizations. According to Rachev et al., (2011) risk encompasses both
the element of uncertainty where future events or conditions are unpredictable and the
exposure to potential negative consequences that may result from these uncertain
factors. This perspective highlights that risk cannot be fully understood or managed
without considering the inherent uncertainty in any given situation.

Uncertainty refers to the incomplete knowledge of future outcomes or
conditions, which introduces variability and unpredictability into decision-making
processes. When uncertainty exists, it implies that there are multiple possible outcomes,
each with varying probabilities. Risk, therefore, emerges because of this uncertainty, as
it represents the potential for adverse outcomes resulting from the unknown (Head
(1967)). For instance, in financial investments, uncertainty about market movements
creates the risk of financial loss. Similarly, in project management, uncertainty about
resource availability or project timelines introduces the risk of delays and cost overruns.

The subjective nature of risk underscores that different individuals or
organizations may perceive and respond to risk differently based on their own
experiences, knowledge, and risk tolerance. This subjectivity means that the same level
of uncertainty can be viewed as more or less risky depending on the context and
perspective of the decision-makers (Toma et al. (2012)). For example, a high-risk
investment may be perceived as attractive to a risk-tolerant investor but as too risky for
a more conservative investor.

Effective risk management, therefore, involves not only understanding and
quantifying uncertainty but also addressing how this uncertainty impacts exposure to
potential negative outcomes. Accordingly, various risk measurement methods have
been proposed to assist decision makers gain a comprehensive perception of the risks

they encounter and to formulate effective mitigation or management strategies.
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2.2.2 Risk Measurement

Risk measurement is a critical process in risk management that involves
quantifying the potential impact of uncertainties on an organization or investment. This
process aims to provide a clear and objective assessment of risk exposure by evaluating
the likelihood and severity of adverse outcomes. Risk measurement helps decision-
makers understand the extent of potential losses or damage and aids in developing
strategies to mitigate these risks effectively (McGoun (1995)).

One fundamental approach to risk measurement involves calculating the
probability and impact of different risk events. Probability quantifies the likelihood of
a risk event occurring, whereas impact evaluates the potential severity or consequences
should the risk materialize. Techniques such as risk assessments, simulations, and
statistical analyses are commonly used to evaluate these factors (Fishburn (1984)). For
instance, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are pivotal tools
in risk management and decision analysis, widely used to quantify uncertainty in
environments where financial or operational risks prevail (Jorion, 2007). Value-at-Risk
(VaR) is a statistical metric that estimates the maximum potential loss within a specified
time frame at a predetermined confidence level. (Marshall & Siegel, 1997). It
establishes a threshold beyond which the probability of experiencing larger losses is
relatively low. Although VaR effectively captures the probability of losses, it does not
convey information regarding the magnitude of losses that exceed the VaR threshold.
This limitation is a significant drawback, as it fails to describe the magnitude of extreme
events, a critical consideration, particularly in high-risk situations where large losses
can have catastrophic consequences (Artzner et al., 1999). To better handle this
limitation, CVaR (Expected Shortfall) evaluates the anticipated loss assuming losses
exceed the VaR threshold, thereby offering a more informative risk assessment
(Rockafellar & Uryasev, 2000). CVaR addresses the limitations of VaR by
concentrating on the tail of the loss distribution, thereby offering a more comprehensive
assessment of risks linked to extreme events. By capturing the average of the worst
losses beyond the VaR point, CVaR not only estimates the likelihood of severe losses
but also quantifies their potential magnitude, making it a more robust risk measure,
especially for institutions or systems exposed to extreme risk (Acerbi & Scandolo,

2008). The strength of CVaR lies in its mathematical properties, which ensures that
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diversification of risk leads to a reduction in total risk, a feature that is not guaranteed
by VaR.

An additional critical element of risk measurement involves employing metrics
and indicators to continuously monitor and manage risk over time. These metrics can
include measures such as standard deviation, which gauges the volatility of returns, or
the beta coefficient, which assesses the sensitivity of an asset’s returns to market
movements (Szegd (2005)). By tracking these indicators, organizations can identify
changes in risk levels and make adjustments to their risk management strategies
accordingly. Additionally, scenario analysis and stress testing are valuable tools for
examining how different scenarios or extreme conditions might impact risk, allowing
organizations to prepare for and mitigate potential adverse outcomes.

In summary, risk measurement is a crucial component of risk management that
involves quantifying the probability and impact of potential adverse events. By
employing various techniques and metrics, organizations can assess their risk exposure,
monitor changes over time, and develop strategies to mitigate potential losses.
Integrating quantitative data with qualitative insights provides a more holistic view of
risk, enhancing decision-making and helping to safeguard against uncertainties.

2.3 Fuzzy Set Theory

Fuzzy logic, introduced by Lotfi Zadeh in the 1960s, revolutionized
computational science by providing a mathematical framework for handling
uncertainty. In contrast to conventional set theory, which employs binary logic to
categorize information as either true or false, fuzzy logic accommodates varying
degrees of truth, thereby capturing the ambiguity inherent in real-world situations. This
approach has been extensively utilized across various fields such as data mining,
artificial intelligence, control systems, and decision-making. By enabling machines to
process imprecise or incomplete data, fuzzy logic improves the adaptability and
robustness of intelligent systems, making them more capable of reasoning in uncertain

environments.
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Essentially, fuzzy logic enhances classical binary logic by allowing truth values
to vary continuously between 0 and 1, which supports more subtle and complex
reasoning. Instead of categorizing statements as entirely true or false, fuzzy logic
introduces linguistic variables and fuzzy rules that better capture human reasoning. This
flexibility makes it particularly useful in modeling complex systems where precise
categorization is impractical. Applications of fuzzy logic span diverse domains,
including climate modeling, risk analysis, and customer behavior prediction, where
uncertainty is a fundamental challenge. By simulating human-like decision-making
processes, fuzzy logic provides a more realistic and effective approach to handling
vague or imprecise data.

The introduction of fuzzy logic into optimization methods further expanded its
applicability. In 1974, Tanaka et al. incorporated fuzzy set theory into Linear
Programming (LP), allowing for fuzzy goals and constraints to model uncertainty in
optimization problems. This advancement enabled decision-makers to incorporate
imprecise parameters into optimization models, making them more reflective of real-
world conditions. Building on this, Bellman and Zadeh (1970) developed fuzzy
decision models that linked fuzzy set theory with optimization techniques,
demonstrating its effectiveness in addressing vagueness. The mathematical foundations
of fuzzy logic, including constructs like Triangular Fuzzy Numbers (TFNs) and
Trapezoidal Fuzzy Numbers (TrFNs), provide structured methods for representing
uncertain data. These developments have solidified fuzzy logic as a critical tool in
computational science, influencing fields ranging from industrial control systems to

decision support tools.

2.3.1 Fuzzy Number

Fuzzy number possesses a set of well-defined mathematical properties that
make them suitable for representing imprecise numerical values, where each element is
assigned a membership degree ranging from 0 to 1. Unlike crisp numbers with precise
values, fuzzy numbers accommodate uncertainty and imprecision, making them more
suitable for modeling real-world scenarios where exact values are difficult to determine
(Dubois & Prade, 1993). A fuzzy number is defined by a membership function that

assigns varying degrees of certainty to values within its range. A membership degree
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of 1 indicates full membership, while O represents complete non-membership, with
intermediate values capturing partial truth. This flexibility allows fuzzy numbers to
extend beyond conventional binary logic, incorporating a spectrum of possibilities that
better reflect uncertain circumstances (Heilpern, 1997).

In addition, its special properties include normality, convexity, boundedness,
and upper semi-continuity. Normality ensures that the fuzzy number has at least one
value with full membership (i.e., a membership degree of 1), representing the most
plausible or core value. Convexity implies that all a-cuts of the fuzzy number form
convex sets, which guarantees that the degree of membership does not increase once it
begins to decrease, preserving the intuitive idea of gradual uncertainty around the core.
Boundedness refers to the requirement that the support of the fuzzy number; the set of
all values with non-zero membership, is finite, ensuring that the fuzzy number remains
computationally manageable. Additionally, the membership function of a fuzzy number
must be upper semi-continuous, which prevents abrupt increases in membership grades
and ensures mathematical stability. These foundational properties are essential for
enabling consistent fuzzy arithmetic operations and integration into fuzzy optimization
models (Dubois & Prade, 1978).

Fuzzy numbers play an essential role in fuzzy logic and fuzzy set theory,
providing a structured way to handle vague or incomplete data (Zadeh, 1988). They are
widely applied in supply chain management field, where they model fluctuating
demand and unpredictable lead times, enhancing decision-making in uncertain
environments. Their ability to integrate ambiguity into mathematical models makes
them valuable for optimizing processes that require adaptability and robustness. By
allowing for a more realistic representation of dynamic systems, fuzzy numbers
contribute to improved planning and operational efficiency, particularly in complex and
data-limited scenarios.

A fuzzy number is a special type of fuzzy set defined over the real numbers.
Formally, a fuzzy number 4 is a convex and normalized fuzzy set that satisfies specific
conditions. First, there exists at least one real number x, € R such that the membership
function uz(x,) = 1, meaning the degree of membership of x, in the fuzzy set is

maximal. Second, the membership function iz (x,) must be piecewise continuous over
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the real numbers, ensuring the fuzzy number is well-defined and mathematically
tractable. These properties ensure that the fuzzy number represents imprecise but
bounded and meaningful quantities in decision-making and optimization contexts.

e Triangular Fuzzy Number

Triangular Fuzzy Numbers (TFNs) are a widely used type of fuzzy number in
fuzzy set theory, representing uncertainty in a structured way (Shyamal & Pal (2007)).
In the context of minimization, TFNs are defined by three key parameters: a° (the
optimistic value), a™ (the most likely value), and aP (the pessimistic value), where
a’ < a™ < aP Conversely, for maximization problems, the order of these parameters
is reversed. The triangular shape of the membership function for a TFN reflects the
assumption that the most likely value (a™) has the highest degree of membership, while
values closer to the lower and upper bounds (a® and aP) gradually have decreasing
degrees of membership (Anand & Bharatraj (2017); Hierro et al. (2023)) as presented
in Figure 2.2.

Membership

Figure 2.2 Triangular Distribution.
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The three parameters can be described as follows:

1. a?isan optimistic value that represents the best case (for minimization context)
and the worst case (for maximization context). It has a very low likelihood or
possibility degree equal to 0.

2. a™ is the most likely value that represents the normal case. It has a very high
likelihood or possibility degree equal to 1.

3. aP is a pessimistic value that represents the worst case (for minimization
context) and the best case (for maximization context). It has a very low
likelihood or possibility degree equal to 0.

A commonly used representation of fuzzy numbers is the Triangular Fuzzy
Numbers (TFNs). The membership function of a triangular fuzzy number A4 is defined

as:

m_
1—aaox, a®"—a’°<x<a™
palxo) =91 %" gm <y < gm 4 gP (21)
ap ’ e
0, otherwise

Here, a™is the most likely value, while a® and a? represent the left and right
spreads, respectively. These parameters describe the uncertainty range around the
central value. A triangular fuzzy number can be concisely denoted as A = (a®, a™, aP).
The set of all such triangular fuzzy numbers defined on real number R is represented as
F(R).

A fuzzy number A is said to be nonnegative if all values with a degree of
membership greater than zero are nonnegative. Formally, this means that pz(x,) = 0
for allx < 0. For a triangular fuzzy number 4 = (a°, a™, aP), this condition translates
toa™ — a® > 0, ensuring the entire support of the fuzzy number lies in the nonnegative
real domain.

Two triangular fuzzy numbers 4 = (a§,af’,a}) and B = (a$,al, ah) are
equal if and only if their respective modal values and spreads are identical. That is, A =

Bifandonly if a§ = a8, a* = a}t, and a}} = ak.
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A triangular fuzzy number is considered symmetric when the left and right
spreads from the modal value are equal. Formally, a TFN 4 = (a° a™ aP) is
symmetric if a™ —a® =aP —a™. This symmetry implies that the uncertainty
surrounding the modal value is balanced on both sides.

For computational purposes and model formulation, basic arithmetic operations
on triangular fuzzy numbers are defined through their parameters. Let A = (aj{, ay, a};’)
and B = (ag,ag”, ag) be two triangular fuzzy numbers. Then the operations are
defined as follows:

e Addition:
A+ B =(a§ +al al +al, a +ab)
e Subtraction:

A-B =(a§+ak al+al,a +al)

e Multiplication (assuming all values are non-negative):

Ax B~ (a xad,al* x al,a} x ab)

e Scalar Multiplication (for a positive scalar 4 > 0):

Ax A = (2ag, Aa}, 2d})

e Division:

A+ B =(a}+a}l,ai + al,a} + ab,) where al,ad,al #0

These arithmetic operations maintain the triangular shape of fuzzy numbers and

enable their application in fuzzy mathematical programming, thereby facilitating

systematic management of uncertainty in model parameters.

e Triangular Intuitionistic Fuzzy Number

Triangular Intuitionistic Fuzzy Numbers (TIFNs) extend the concept of
Triangular Fuzzy Numbers (TFNs) by incorporating intuitionistic fuzzy sets, first
introduced by Atanassov in 1983. Unlike conventional fuzzy sets, which rely solely on
membership function, intuitionistic fuzzy sets also include a non-membership function,
allowing for a more comprehensive representation of uncertainty. In TIFNs, each

element is identified by both its degree of membership and non-membership,
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effectively capturing hesitation and ambiguity in decision-making scenarios. This dual-
function approach makes TIFNs particularly valuable for modeling complex and
imprecise conditions where uncertainty plays a significant role.

A TIFN is mathematically defined by two functions: the membership function
(u(x)), representing the degree of belonging of an element to the set, and the non-
membership function (v(x)), quantifying the degree of non-belonging. These functions
adhere to the condition 0 < u(x) + v(x) < 1, ensuring a balanced representation of
uncertainty (Dymova & Sevastjanov, 2010; Husain et al., 2012). The triangular
distribution of a TIFN is determined by three key points for both the membership and
non-membership functions, denoted as (b, b™, bP) and (b°, b™, bP), respectively. In
the context of minimization, the peak value (b™) represents the most likely value, while
the lower (b°) and upper (bP) bounds define the range of uncertainty, where h° <
b™ < bP Conversely, for maximization problems, the order of these parameters is
reversed. The non-membership function complements this by quantifying the extent to
which elements do not belong to the fuzzy set, offering deeper insights into the inherent

vagueness of real-world problems (Burillo & Bustince, 1996).

Non-Satisfaction
Satisfaction

" LLLELET Nom-Satisfaction Level

Satesfaction Leve]

Be B° pm B BF

Figure 2.3 Triangular Intuitionistic Distribution.
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The six parameters can be described as follows:

1. b is an optimistic value that represents the best case of membership function
(for minimization context) and the worst case of membership function (for
maximization context). It has a very low likelihood or possibility degree equal
to 0.

2. b™ is a most likely value that represents the normal case of membership
function. It has a very high likelihood or possibility degree equal to 1.

3. bP is a pessimistic value that represents the worst case of membership function
(for minimization context) and the best case of membership function (for
maximization context). It has a very low likelihood or possibility degree equal
to 0.

4. b is an optimistic value that represents the best case of non-membership
function (for minimization context) and the worst case of non-membership
function (for maximization context). It has a very high likelihood or possibility
degree equal to 1.

5. b™ is a most likely value that represents the normal case of non-membership
function. It has a very low likelihood or possibility degree equal to O.

6. bP is a pessimistic value that represents the worst case of non-membership
function (for minimization context) and the best case of non-membership
function (for maximization context). It has a very high likelihood or possibility

degree equal to 1.

TIFNs concept is introduced where its perception is analyzed as an
unconventional approach to specify a fuzzy set. It holds the concept of the triangular
distribution whereas the hesitation allowance is incorporated to provide an acceptable
fuzzy set to decision makers. To provide an acceptable fuzzy set to decision makers,
TIFNSs is applied to (A, R)-cut approach. This approach can be used to generate the
acceptable TIFNs under the controlling percentage of the acceptance level (A) and the
percentage of the rejection level (R) as presented in Figure 2.4. The formulation of (A,

R)-cut approach can be presented as follows:
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Let B = (b°,b™,bP)(b°, b™, bP) where b°, < b° < b™ < bP < bP (2.2)

B° = max{b° + A(b™ — b°),b™ — R(b™ — b°)} (2.3)
__ BY94BP

pm =22 (2.4)

BP = min{b? — A(bP — b™),b™ + R(b? — b™)} (2.5)

where b°, b™, and bP denote the three key points defining the membership function,
corresponding to optimistic, most likely, and pessimistic scenarios. Similarly,
b°,b™, and bP refer to the respective data points in the non-membership function. The
parameters A and R indicate the degrees of possibility for acceptance and rejection,

respectively.

us (%), v5(x)

| . Hp(x)

ye(x)

b° b° A, b™ Ay bP bP

Figure 2.4 (4, R)-Cut Approach.

Mathematically, the degree of membership is a linear function between the
bounds b° and bP, with a peak at b™. The non-membership function captures the
"degree of doubt™" and decreases accordingly as x moves closer to the mode value b™.

The specific formulas are as follows:

. ifb°<x<bm
trien (%) = bl;p__;’:n’ if b < x < bP (2.6)
0, otherwise

where b™ — b° and bP — b™ must more than zero.
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ey (X) = 1 — prppy () (2.7)

The degree of membership and non-membership are constrained so that their
sum is no greater than one: u(x) + v(x) < 1. This reflects the intuitive idea that, for
any given value x, it cannot belong to both the fuzzy set and its complement

simultaneously at full strength.

2.3.2 Skewness Degree

The skewness degree is a statistical metric that quantifies the asymmetry degree
in a probability distribution relative to its mean (Adcock & Shutes (2005); Arnold &
Groeneveld (2012)) as shown in Figure 2.5. It indicates whether the data points in a
dataset are distributed symmetrically or if they lean more heavily toward one side of
the mean. When a distribution has zero skewness, it is perfectly symmetrical, often
taking the shape of a bell curve. A positive skewness means the distribution has an
extended tail on the right (right-skewed), whereas a negative skewness reflects a longer
tail on the left side (left-skewed). The skewness degree provides insights into the shape
of the data, which can be critical for understanding underlying trends, patterns, and

anomalies in various analytical contexts.

Skewness to the left | | No Skewness (symmetry) Skewness to the right

! ! !
] ] | ] ] I | ] |

min mode  max min mode max min  mode max

Figure 2.5 Types of Skewness Degree.

The function of the skewness degree lies in its ability to describe and interpret
the shape and balance of a dataset. It is especially valuable in fields such as finance,
economics, and quality control, where comprehending the characteristics of data
distributions is crucial. For instance, in financial risk analysis, skewness helps identify
the likelihood of extreme losses or gains by analyzing the distribution of returns.
Similarly, in quality control, skewness can signal deviations from expected
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performance metrics, prompting further investigation. By quantifying asymmetry, the
skewness degree complements other statistical metrics like mean and standard
deviation, offering a more comprehensive view of data characteristics and enabling

better decision-making.

2.4 Mathematical Modeling

Modeling refers to the creation of simplified depictions of real systems aimed
at understanding their dynamics and predicting potential results under diverse
conditions. (Blomhgj (2004)). These models, which can be physical, conceptual,
mathematical, or computational, serve as tools to simulate complex systems that may
be difficult to study directly due to factors like scale, uncertainty, or cost (Edmonds
(2017)). Depending on the complexity of the system, available data, and analysis goals,
different types of models are employed. Physical models represent tangible objects,
while conceptual models focus on relationships and structure, mathematical models use
equations, and computational models rely on simulations and algorithms.

In optimization, modeling is essential for defining objectives, constraints, and
controllable variables, enabling decision-makers to find optimal solutions (Sarker &
Newton (2007); Singh (2012)). Models not only support decision-making but also offer
a structured approach to testing theories, making predictions, and evaluating decisions
without real-world consequences. They are invaluable tools for improving efficiency,
minimizing risks, and ensuring systems operate effectively. Additionally, models can
be updated with new data, allowing for continuous improvement and learning, which
helps refine strategies and solutions over time, particularly in dynamic fields like supply

chain management, finance, and resource allocation.

e Fuzzy Linear Programming Model
Fuzzy Linear Programming (FLP) extends conventional linear programming by
incorporating fuzzy logic to address uncertainty and ambiguity in decision-making.
Unlike classical LP, which assumes precise values for parameters, FLP allows for the
representation of parameters as fuzzy sets, providing flexibility in modeling problems
where data is uncertain or imprecise (Negoita (1981)). Rooted in fuzzy set theory, FLP

applies membership functions to the objective function and constraints, describing the
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satisfaction degree or feasibility of solutions within a specified range. This approach
makes FLP especially useful in real-world applications where exact data is difficult to

obtain or subject to variation over time.

An FLP model consists of the following components (Delgado et al. (1989)):

e Fuzzy Objective Function: In FLP, the objective function is a linear expression
that includes fuzzy coefficients, aiming to maximize or minimize the function
while considering the fuzziness of the involved parameters.

e Fuzzy Constraints: FLP incorporates fuzzy constraints, allowing for the
representation of constraints within a range, as opposed to strict equality or
inequality constraints.

e Fuzzy Decision Variables: Decision variables in FLP are represented as fuzzy
numbers, meaning they exist within a range, allowing flexibility and uncertainty
in the solution. These variables may have membership functions that define

their potential values.

Fuzzy Linear Programming (FLP) offers several advantages over conventional
linear programming, particularly its ability to handle uncertainty and vagueness, which
makes it well-suited for real-world problems with imprecise data. By directly modeling
uncertainty, FLP provides more flexible and robust solutions that can response to
changing conditions, making it an effective tool for problems involving subjective
judgments, approximations, or estimates. However, FLP also has limitations, such as
the defuzzification process, potentially leading to a reduction in information accuracy
when converting fuzzy solutions into crisp values. Additionally, the use of fuzzy
numbers requires careful interpretation of membership functions, and varying methods
of fuzzification and defuzzification can lead to different results, introducing
subjectivity. Moreover, solving FLP problems can be more computationally intensive
as a consequence of the added complexity of fuzzy numbers, requiring specialized
algorithms and techniques for optimization (Buckley & Feuring, 2000; Figueroa—
Garcia et al., 2022; Ghanbari et al., 2020).
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e Intuitionistic Fuzzy Linear Programming Model

Intuitionistic Fuzzy Linear Programming (IFLP) is a sophisticated optimization
technique that extends the principles of conventional linear programming to address the
challenges of uncertainty and ambiguity in decision-making processes. Conventional
linear programming assumes precise numerical data and deterministic models, which
are often inadequate for real-world problems where ambiguity and imprecision prevail.
IFLP overcomes these limitations by incorporating the concept of intuitionistic fuzzy
sets, offering a comprehensive framework for modeling uncertainty through the
simultaneous consideration of membership and non-membership (Parvathi (2012);
Parvathi & Malathi (2012)).

The foundation of IFLP lies in intuitionistic fuzzy sets, a concept introduced by
Atanassov in 1986. Unlike conventional fuzzy sets, which only consider the degree of
membership of an element to a set, intuitionistic fuzzy sets introduce additional
parameter: non-membership (the indeterminate portion that reflects the lack of
knowledge). These parameters enable a richer representation of uncertainty,
accommodating the real-world scenarios where precise information is often
unavailable. In IFLP models, constraints and objective functions are expressed using
intuitionistic fuzzy numbers, effectively capturing the vagueness and imprecision
inherent in problem data (Kabiraj et al. (2019)).

IFLP provides a binary perspective in decision-making that flexible for complex
systems with incomplete or ambiguous information. Decision variables, constraints,
and objective functions are no longer rigidly defined but instead exist within a spectrum
of possibilities. This adaptability makes IFLP a powerful tool for addressing problems

in fields such as finance, engineering, and supply chain management.

2.5 Defuzzification Approach

Defuzzification is the process of transforming fuzzy quantities, represented by
fuzzy sets, into precise, actionable outputs, making them suitable for decision-making.
This step is essential in fuzzy logic systems, as it transforms the ambiguous and
imprecise results of fuzzy computations into clear, usable information for real-world
applications. While fuzzification allows for flexible and nuanced analysis by converting

precise inputs into fuzzy sets, defuzzification extracts a single value from the fuzzy set
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that best represents its overall meaning. This process involves selecting a crisp value
from a range of possible values with varying degrees of membership, ensuring that the
fuzzy output can be interpreted and applied effectively in decision-making scenarios
(Rondeau et al., 1997; Roychowdhury & Pedrycz, 2001; Chakraverty et al., 2019;
Leewijck & Kerre, 1999).

e Defuzzification Approach for Objective Function

In the context of fuzzy objective functions, these defuzzification approaches are
applied to convert fuzzy representations into crisp values, enabling effective
optimization and decision-making. By transforming fuzzy objectives into crisp values
through defuzzification, decision-makers can better interpret and utilize the results of
fuzzy optimization models (Ahmed et al. (2017); Karimi et al. (2022)). This process
ensures that the inherent uncertainty in the data is appropriately accounted for, while
also enabling concrete, actionable insights to be drawn from the fuzzy analysis. This
makes defuzzification an essential step in the practical application of fuzzy set theory
in optimization and decision-making processes.

The fuzzy coefficients used in objective function are generally represented as

follows:

Maximize Cx (2.8)

Here, the triangular distribution is used to explain the type of fuzzy numbers ¢ =
(c?,c™, cP). In the context of minimization, c,c™, and cP are the optimistic, the most
likely, and the pessimistic values of ¢, respectively. Conversely, for maximization

problems, the order of these parameters is reversed.
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e Defuzzification Approach for Constraints

In the context of fuzzy constraints, defuzzification techniques are crucial for
converting fuzzy representations into crisp values, allowing for effective optimization
and decision-making. Fuzzy constraints, which contain inherent vagueness and
imprecision, must be transformed into specific, actionable values for practical use.
Defuzzification facilitates this process, ensuring that fuzzy constraints become precise
values that decision-makers can easily interpret and apply (Runkler & Glesner, 1994;
Saletic & Popovic, 2006). By addressing the uncertainty in the data, defuzzification
enables optimization models to reflect real-world conditions more accurately, providing
clearer insights for decision-makers. This capability to translate fuzzy data into
actionable intelligence underscores the importance of defuzzification in the practical
application of fuzzy set theory, enhancing the reliability of decision-making in
uncertain environments (Verstraete et al., 2024).

The standard structure of fuzzy constraints on the left-hand side of the equations
is presented below:

Subject to: (Ax) < b,and x = 0 (2.9)

Here, the triangular distribution is used to explain the type of fuzzy numbers 4 =
(A°,A™, and AP), where A°, A™, and AP are the optimistic, the most likely, and the
pessimistic values of 4, respectively.

The standard structure of fuzzy constraints on the right-hand side of the
equations is presented below:

Subject to: (Ax) < b,and x = 0 (2.10)

Here, the triangular distribution is used to explain the type of fuzzy numbers b =
(b°,b™, and bP). In the context of minimization, b°, b™, and bP are the optimistic, the
most likely, and the pessimistic values of b, respectively. Conversely, for maximization

problems, the order of these parameters is reversed.
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2.6 Conflicting Objectives

Conflicting objectives arise when two or more goals within a decision-making
or optimization problem cannot be simultaneously achieved. This phenomenon is
common in real-world scenarios where resources, priorities, or outcomes are
constrained, leading to trade-offs between competing objectives (Raiffa & Keeney
(1975)).

In multi-objective optimization, conflicting objectives are formally addressed
through mathematical models that account for the trade-offs between goals. The
presence of conflicting objectives adds complexity to decision-making as it requires
prioritization, negotiation, and sometimes compromise. It also highlights the
importance of stakeholder involvement, as different stakeholders may place varying
levels of importance on each objective. For example, a company’s management might
prioritize profitability, while its customers value sustainability and product quality.
Addressing such conflicts requires clear communication and a shared understanding of
the overarching goals.

Identifying and comprehending conflicting objectives is essential for making
well-informed decisions and efficiently allocating resources. It allows organizations
and decision-makers to anticipate challenges and devise strategies that align with
overarching goals while accommodating trade-offs. By systematically addressing
conflicts, decision-makers can achieve solutions that balance competing priorities,
leading to more sustainable and practical outcomes in various fields, such as logistics,
healthcare, and environmental management (Bell et al. (1977)).

To address conflicting objectives, mathematical frameworks like multi-
objective optimization are employed. Multi-objective optimization models aim to find
solutions that provide the best possible trade-offs among competing goals. These
solutions are represented as a Pareto front, a set of non-dominated solutions where
improving one objective would result in worsening another. Decision-makers can then
select a solution from the Pareto front based on their preferences and the specific

context of the problem (Purshouse & Fleming (2007)).
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2.7 Pareto Optimal Solution

A Pareto optimal solution, also known as a Pareto efficient or Pareto frontier
solution, is a key concept in multi-objective optimization that represents a state where
no objective can be enhanced without compromising at least one other objective.
Widely applied in fields such as economics, engineering, and decision-making, a
solution is assessed Pareto optimal if it is impossible to reallocate resources or adjust
variables to improve one objective without negatively affecting another (Jiménez &
Bilbao, 2009; Kovalenko et al., 2020). In multi-objective optimization, the set of Pareto
optimal solutions, known as the Pareto front or Pareto frontier, offers decision-makers
a range of alternatives that balance competing objectives in various ways. Each solution
on the Pareto front represents a different trade-off, helping to understand the
relationship between objectives. A solution is Pareto optimal if it is not dominated by
any other solution, meaning no other solution is better in all objectives and strictly better
in at least one (Deb & Gupta, 2005; Wang & Rangaiah, 2016).

Symbolically, the formulation of Pareto Optimal Solution is articulated as

follows:

Minimize [ (x), ¥ (x), ..., P, (x)]
subject to: x € X (2.11)

Here, a point X € X is called:

e A dominated solution if there exist x € X such that y;(x) < ;(&) Vi, with at
least one strict inequality holding.

e A weak Pareto Optimal Solution if and only if there does not exist x € X such
that ¥ (x) < ¥;(X) Vi

e A strong Pareto Optimal Solution if and only if there does not exist another

solution x € X such that 1;(x) < v;(%) Vi, with at least one strict inequality.
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One of the key advantages of using Pareto optimal solutions in multi-objective
optimization is the valuable insight they provide into the trade-offs between objectives.
By analyzing the Pareto front, decision-makers can better understand how
improvements in one objective affect others, leading to more informed and balanced
decisions. Additionally, the Pareto optimal concept supports stakeholder negotiations
and consensus-building by presenting a set of optimal trade-off solutions. This allows
stakeholders with differing priorities to identify mutually acceptable compromises,
ensuring that the final decision reflects a balanced consideration of all objectives and
results in more sustainable outcomes. However, the epsilon-constrained approach
sometimes leaves decision-makers unable to clearly select the most appropriate
solution, or without clear preferences for specific objectives. To address this, methods
like the linear normalization max method, introduced by Jafaryeganeh et al. (2020),
have been developed. This method normalizes attribute values relative to the maximum
value for each criterion, enabling comprehensive comparison by summing the

normalized ratios of all objectives (Zargaryan et al., 2020).
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CHAPTER 3
RESEARCH METHODOLOGIES AND CASE STUDIES

This chapter explores various research methodologies used to address
optimization problems under uncertainty, with a particular emphasize on fuzzy
optimization approaches. These methodologies play a significant role in advancing
optimization practices, especially in environments marked by uncertainty and
vagueness. By examining these approaches through the case studies, this chapter
highlights their contributions to improving decision-making and optimizing outcomes

under uncertain.

3.1 A Conventional Specific Fuzzy Optimization Approach

In this study, a conventional specific fuzzy optimization approach is utilized as
a benchmark to appraise the performance of the developed fuzzy optimization
approach. By using the conventional method as a reference, the efficiency of the
proposed approach can be assessed, particularly in its capacity to address the
complexities of uncertainty and conflicting objectives in supply chain planning. The
following section outlines the key steps and processes of the conventional specific
fuzzy optimization approach, which have been historically employed to tackle supply

chain optimization challenges under uncertain circumstances.

| Phase 1: Data Preparation |
i Yes
_ Uncertsin Data Position of Uncertain Data |
riangular Fuzzy Number] I
A Opsive Funetion
Expected Value | [ pight-Hand Side | | Botn sides |
! v

I

I - X

I Mo Weighted Average Fuzzy Ranking
I

Approach Approach
#

1 |
| Phase 3: Membership Function | | catcutate Membership Function |

I
[
I
Phase 2: Defuzzification Process _'

No

— . Zimmermann's Approach
| Phase 4: Optimization Process ‘ (consider maximizing minimum satisfaction level)

Figure 3.1 Methodology of a conventional specific fuzzy optimization approach.
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Phase 1: Data Preparation: Data can typically be classified into two
categories: crisp and imprecise. Crisp data are clearly defined and precisely known,
making them easy to gather, whereas imprecise data are challenging to collect and
manage. To address this, Triangular Fuzzy Numbers (TFNs) are often employed to
represent uncertain parameters in a conventional specific fuzzy linear programming
models. However, this approach does not adequately capture data hesitation.

Phase 2: Defuzzification Process: This process can convert uncertain data into
crisp data. Model fuzziness can be segmented into two primary types based on its

position within the model: fuzziness in objective functions and fuzziness in constraints.

e Defuzzification Approach at the objective functions: Expected Value (EV)
serves as a conventional technique for defuzzifying objective functions by
emphasizing their average performance, as shown in the following (Heilpem
(1992)).

Z0+z™M zM47P
Z%42Z™+ZP

EV(Z)= =———2— =22 (3.1)

where Z°, Z™, and ZP represent the objective function values under optimistic,

most likely, and pessimistic scenarios, respectively.

e Defuzzification Approach at the right-hand side of the constraint: The
Weighted Average (WA) is a mathematical technique used to combine multiple
values into a single representative value, with each component assigned a
weight based on its relative importance or contribution. It is particularly useful
in decision-making and optimization processes, especially when dealing with
uncertain or imprecise data. By assigning different weights to individual values,
the weighted average ensures that more significant factors have a greater
influence on the result. Mathematically, it is calculated by multiplying each
value by its corresponding weight and summing the products, providing a

flexible approach to aggregating information and reflecting the relative
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importance of each component in the overall outcome. However, it is important

to note that the WA approach does not account for managing risk violations.

w°b® + w™mb™ 4+ wPhP (3.2)

wl+wm+wP =1 (3.3)

where b°, b™, and bP represent the available resources under optimistic, most
likely, and pessimistic conditions, respectively, while w°, w™, and w?”

correspond to the weights allocated to each of these scenarios.

Defuzzification Approach at both sides of the constraint: The Fuzzy
Ranking (FR) approach is a sophisticated defuzzification technique used to
handle fuzzy constraints, particularly in scenarios with imprecise values on both
sides of an equation. This method addresses uncertainty by decomposing the
original fuzzy equation into three sub-equations, each representing optimistic,
most likely, and pessimistic cases. These sub-equations align to the lower
bound, central value, and upper bound of the fuzzy sets, respectively. By
analyzing these cases separately, the FR approach enables the transformation of
fuzzy relationships into clear, crisp insights, allowing for a structured evaluation
of potential outcomes. However, it is significant to note that the FR approach

does not address the management of risk violations.

A°x < b° (3.4)

Amx < p™ (3.5)

APx < bP (3.6)
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where A°, A™, and AP, along with b°, b™, and bP, correspond to the values
associated with the optimistic, most probable, and pessimistic scenarios,

respectively.

Phase 3: Membership Function: The procedure normalizes the differing units
of several objective functions onto a standardized range, typically from 0.0 to 1.0,

indicating satisfaction levels, as shown below.

e Membership Function for Minimizing the Objective Function

1, z;=2Z" )
25—z PIS NIS
Hz; = \pamsppsr Zi 0 SZi=Z; 3.7)
On\ %, = 205 )

e Membership Function for Maximizing the Objective Function

i1 Z; =TT
zi-z'"s NIS PIS
= L
Mz, = Agpis—onisr 2 SZi S Z (3.8)
i l
Gz, =7

where ZM'S is the maximum value of the i objective function among the
solutions of individual minimization problems or the minimum value of the it"
objective function among the solutions of individual maximization problems.
ZFP1S is the minimum value of the i objective function among the solutions of
individual minimization problems or the maximum value of the i objective

function among the solutions of individual maximization problems.
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Phase 4: Optimization Process: Zimmermann's approach is a foundational
methodology in fuzzy optimization, designed to tackle multi-objective decision-making
under uncertainty. Developed by Hans-Jirgen Zimmermann in 1978, it combines fuzzy
set theory with optimization techniques to address conflicting objectives and imprecise
data. This approach allows decision-makers to model uncertainty and achieve a balance
between multiple objectives by using fuzzy membership functions, which represent the
satisfaction level for each objective. Unlike a conventional optimization, which
assumes rigid, well-defined functions, Zimmermann's method accommodates
vagueness by expressing objectives as fuzzy goals, where solutions are evaluated based
on their proximity to a satisfactory level. The membership functions are aggregated
using a max-min operator, aiming to maximize the minimum satisfaction level across

all objectives, ensuring a fair balance without extreme trade-offs.
Maximize uy
Subjected to: x € F(x)

Uz < IJ.ZL., i = 1, 2, ...,I (39)

where u indicates the lowest satisfaction level across all objective functions, and i,

refers to the satisfaction level of each specific objective function.
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Numerical example for conventional specific fuzzy optimization

AB manufacturing is the company that makes a line of high qualities Glasses, Bottles,
and Cups. It has three plants; Plantl, Plant2, and Plant3, that are used to produce high
qualities Glasses, Bottles, and Cups. To produce a Glass, the production time is 2
hours/unit at Plant1. The available production capacity of Plantl varies according to a
triangular distribution with a minimum available production capacity of 8 hours, a most
likely available production capacity of 16 hours, and a maximum available production
capacity of 24 hours. To produce a Bottle, the production time at Plant2 varies
according to a triangular distribution with a minimum production time of 1.5 hours/unit,
a most likely production time of 2.5 hours/unit, and a maximum production time of 3.5
hours/unit. The available production capacity of Plant2 varies according to a triangular
distribution with a minimum available production capacity of 12 hours, a most likely
available production capacity of 24 hours, and a maximum available production
capacity of 36 hours. To produce a Cup, the production time is 1.5 hours/unit at Plant3.
The available production capacity of Plant3 is 36 hours. Profits of a Glass, a Bottle and
a Cup are calculated as ($15, $20, $25), ($25, $30, $35), and ($35, $40, $45),
respectively. The AB manufacturing attempts to find out not only how many units of
Glasses, Bottles and Cups that should be produced to maximize total profit but also
minimize total amount of pollution. For simplicity, the amount of pollution follows a
linear function resulting from three decision variables X;, X, and X;.

G e Vi

where X;, X, and X5 denote decision variables representing numbers of produced
Glass, Bottle, and Cup, respectively.

Table 3.1 Parameters relate to production of Glass, Bottle, and Cup.

Available
Glass Bottle Cup Production
Capacity
Production (8 hours,
Time 2 hours/unit - 16 hours,
(Plantl) 24 hours)
Production (1.5 hours/unit, (12 hours,
Time - 2.5 hours/unit, 24 hours,
(Plant2) 3.5 hours/unit) 36 hours)
Production
Time - - 1.5 hours/unit 36 hours
(Plant3)
. . $25/unit, $35/unit,
Profit ($15/;2g/’u$;12i8/umt’ ($30/unit, ($40/unit, -
$35/unit) $45/unit)
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Mathematical Formulation
» Objective Functions

1.Maximize total profits (defuzzify by Expected Value)
(15+(2+20)+25) X1+(25+(2*jo)+35) X2+(35+(2*:0)+45) X

Maximize Z, =
2.Minimize total amount of pollution
Minimize Z, = 2X, + 3X, + 4X,
» Uncertain Constraints
1.Defuzzify by Weighted Average (equally weights assigned (33%))
Subjectto:  2X; < (0.33 x 8) + (0.33 x 16) + (0.33 x 24)
2.Defuzzify by Weighted Average (equally weights assigned (33%))
Subjectto:  1.5X, <12
25X, <24
3.5X, <36
» Crisp Constraint
Subjectto:  1.5X, < 36
» Non-negativity Constraint
Subjectto:  X;,X,, X3 =0
» Membership Functions
1.Membership Function for Maximization of the Objective Function (Maximize
total profits)

_ z-a
Uz, ZPIS_ZNIS

ZPIS can be calculated as follows:

Maxmize Z, = (15+(2*420)+25) X1+(25+(2*:0)+35) X2+(35+(2*:0)+45) X,

Subjectto:  2X; < (0.33 x 8) + (0.33 X 16) + (0.33 x 24)
1.5X, <12
2.5X, <24
3.5X, < 36
1.5X, < 36
X, Xy X3 >0
ZN'S can be calculated as follows:

Minimize Z, = (15+(2*420)+25) X1+(25+(2*430)+35) X2+(35+(2*:0)+45) X,
Subjectto:  2X, < (0.33 x 8) + (0.33 x 16) + (0.33 x 24)
1.5X, <12
2.5X, <24
3.5X, < 36
1.5X, < 36

X;, Xy, X >0
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2.Membership Function for Minimizing the Objective Function (Minimize total

amount of pollution)

o, = A
Z, — ,NIS PIS
2 ZZ _ZZ

Z%1S can be calculated as follows:
Minimize Z, = 2X, + 3X, + 4X,
Subjectto:  2X; < (0.33 x 8) + (0.33 x 16) + (0.33 x 24)
1.5X, < 12
2.5X, < 24
3.5X, < 36
1.5X, < 36
Xy, Xy, X5 >0
ZX1S can be calculated as follows:
Maximize Z, = 2X; + 3X, + 4X,
Subjectto:  2X; < (0.33 x 8) + (0.33 x 16) + (0.33 x 24)
1.5X, < 12
2.5X, < 24
3.5X, < 36
1.5X, < 36
Xy, Xy, X5 >0

Optimization Process by Zimmermann’s Approach
Minimize uy
Subjectto:  2X; < (0.33x8) + (0.33 x 16) + (0.33 x 24)
1.5X, <12
2.5X, <24
3.5X, <36
1.5X, < 36
X1, X5, X320

NIS
Kz < Mz, = e s
— PIS_,NIS
L Zl _Zl

Hy < by = e
Z — MZ, — ,NIS PIS
2 ZZ _ZZ
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3.2 A Five-Phase Hybrid Fuzzy Optimization Approach

The critical problem addressed in this study lies in the limitations of a
conventional specific fuzzy optimization approaches in Supply Chain Aggregate
Production Planning (SCAPP), which often fail to adequately address real-world
complexities. These limitations include issues such as hesitation in decision-making,
insufficient robustness to handle uncertainty, an inability to account for non-satisfaction
levels, and challenges in achieving Pareto optimality. Existing methods are often ill-
equipped to manage the dynamic, multifaceted nature of modern supply chains, where
multiple conflicting objectives and uncertainties must be considered. The proposed
five-phase hybrid fuzzy optimization approach aims to overcome these deficiencies by
systematically improving upon conventional models, offering a more robust and
effective framework for decision-makers. This study underscores the necessity of an
advanced methodology capable of addressing these shortcomings, providing a more
comprehensive solution to the complex challenges faced in SCAPP. A five-phase
hybrid fuzzy optimization approach is proposed to assist decision-makers in addressing
real-world challenges in Supply Chain Production Planning (SCPP) while overcoming
the limitations of the conventional specific fuzzy optimization approach. The proposed
algorithm is structured into five distinct phases, each carefully designed to address
specific shortcomings of the conventional specific fuzzy optimization approach, with

detailed explanations of each phase provided below, as demonstrated in Figure 3.2.
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Figure 3.2 Methodology of a five-phase hybrid fuzzy optimization approach.

Phase 1: Data Preparation: Hesitation often arises during the data collection
process, and a triangular fuzzy number alone is insufficient to address this uncertainty.
To overcome this limitation, the triangular intuitionistic fuzzy number is introduced as
an unconventional extension of the fuzzy set concept that can handle data hesitation.
This approach retains the essence of the triangular distribution while incorporating
hesitation to create a more flexible and representative fuzzy set for decision-makers.

To enhance decision-making, the triangular intuitionistic fuzzy number is
applied using the (A4, R)-cut approach. This approach enables the generation of an
acceptable triangular fuzzy number by controlling the percentage of acceptance level

(A) and rejection level (R). The formulation of the (4, R)-cut approach is as follows:

Let B = (b°,b™,bP)(b° b™,bP) where b° < b° < b™ < bP < bP

B° = max{b® + A(b™ — b°),b™ — R(b™ — b°)} (3.10)
Bm = B";B” (3.11)
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BP = min{b? — A(bP? — b™),b™ + R(b? — b™)} (3.12)

where b°, b™, and bP represent three key data points of the membership function for
the optimistic, most likely, and pessimistic situations, respectively and b°, b™, and b?
correspond to the three key data points of the non-membership function for these same
situations. The A and R values represent possibility degrees of the acceptable level and

rejection level, respectively.

Phase 2: Defuzzification Process: At this stage, all fuzzy data are converted

into crisp data, and the risk violations of constraints can also be effectively controlled.

e Defuzzification Approach at the objective functions: The concept of model
robustness in optimization, as introduced by Mulvey et al. (1995), is divided
into two main forms: optimality robustness, which focuses on keeping the
solution close to the best possible outcome under uncertainty, and feasibility
robustness, which ensures that constraints are met despite uncertain factors. To
effectively manage both types of robustness, the Robust Programming (RP)
approach was developed, allowing decision-makers to balance the trade-offs
between optimality and feasibility under uncertainty. Pishvaee et al. (2012)
proposed a comprehensive classification of RP into three distinct
classifications: Hard Worst Robust Programming (HWRP), Soft Worst Robust
Programming (SWRP), and Realistic Robust Programming (RRP). HWRP is
the most conservative approach, designed to minimize the impact of the worst-
case scenario under uncertainty. It guarantees that the solution retains feasibility
and delivers satisfactory performance even in the worst-case scenarios. This
method is especially appropriate for critical situations where failure cannot be
afforded. SWRP introduces flexibility by relaxing the strict robustness of
HWRP. It allows for a controlled level of risk by tolerating some constraint
violations or performance degradation, making it more adaptable to real-world
situations where absolute robustness may be unnecessarily rigid or costly. RRP
aims to strike a practical balance between conservatism and flexibility. It

Ref. code: 25686422300019ALF



47

incorporates more realistic assumptions about nature and the likelihood of
uncertainty, often using probabilistic or scenario-based methods. This approach
seeks to improve solution quality while maintaining a reasonable level of
robustness, thereby enhancing its applicability in practical decision-making
contexts. For this research, RRP is selected as the most suitable approach for
making robustness of the model, as it offers a practical compromise between
optimal performance and feasible solutions, making it ideal for real-world
business decision-making. This approach considers three key aspects: the
average total performance of the objectives, optimality robustness, and

feasibility robustness, as shown below.

Minimize EV(Z) + Optimality Robustness + Feasibility Robustness
. Zo42Zm 4 zP
Minimize 2 + p(Zmax — Zmin)
+((o(d? — (1 —y)d™ —ydP) + 6(yB° + (1 —y)B™ — B?))
Subject to: Gx = (1 —y)d™ + yd?

(yB°+ (1 —-y)B™—B°y > Hx (3.13)

The first term of the objective function targets to minimize the average total
performance of the objectives under consideration. The second term represents the
difference between the two extreme possible values of Z, where Z,,,, and Z,,;,, are

determined as follows:

Zmax = fPy + cPx (3.14)
Zmin = f°y + c°x (3.15)
where fP and c? represent the worst-case values of the objective function coefficients,
while £° and c® represent best-case values. x and y are the decision variables associated

with the constraints and G and H are crisp coefficients within the constraint structure.

In the minimization context, Z°, Z™, and ZP correspond to the optimistic, most likely,
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and pessimistic values of the objective function, respectively. The parameters d and
dP are imprecise right-hand side coefficients of the constraints, representing the most
likely and pessimistic values. Similarly, B® and B™ are imprecise left-hand side
coefficients representing the optimistic and most likely values. The parameter p denotes
the weight assigned to the second term in the objective function, which governs
optimality robustness by minimizing the maximum deviation above and below the
expected optimal value. The third term addresses feasibility robustness by evaluating
the deviation of each constraint, where ¢ and § are penalty values associated with
potential violations. Additionally, y represents the confidence level percentage used to

manage the risk of constraint violations.

e Defuzzification Approach at the constraints: Chance-Constrained
Programming (CCP) was originally introduced by Charnes and Cooper (1959)
as part of the stochastic programming framework, where constraints involving
random variables need to conform to a certain probability level. This approach
is widely used in operations research and mathematical programming to manage
probabilistic uncertainty. However, in recent decades, this concept has been
extended to the fuzzy optimization domain, where the underlying uncertainty is
not stochastic but linguistic, imprecise, or fuzzy in nature. In such contexts,
some researchers (Liu and Iwamura, 1998; Chakraborty, 2002) have employed
the term chance-constrained programming to describe models where fuzzy
constraints must comply with a certain possibility level or necessity level. In
this interpretation, the term “chance” reflects the possibility measure rather than
the probability measure. In this study, the term chance-constrained
programming is used in the latter sense, referring to a fuzzy-based
generalization of the classical CCP model. Specifically, this study models
uncertain parameters as fuzzy numbers and interprets the constraint satisfaction
in terms of possibility theory rather than probability theory.
Chance-Constrained Programming (CCP) is a robust optimization methodology
designed to manage uncertainty by integrating fuzzy measurements, specifically
credibility, into the optimization model. This technique allows for the handling

of fuzzy data while ensuring that constraints are satisfied with a certain level of
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confidence. The credibility metric, represented by a possibility degree (y),
quantifies the likelihood that fuzzy constraints will be met, with higher values
indicating greater confidence. This probabilistic approach provides a more
realistic framework for decision-making compared to a conventional
deterministic method, accounting for real-world variability. By incorporating
credibility into the model, CCP allows decision-makers to adjust the confidence
level (control risk violation) according to the importance and nature of the
constraints, making the solution more reliable but potentially more

conservative.

» For imprecise right-hand side of constraints
Cr{Z}‘:l a;jxj < b} =y if and only if
when (0 <y <0.5):ax < 2y)b™ + (1 — 2y)b?
when (0.5 <y <1):iax < 2y —1)b° + (2 — 2y)b™ (3.16)

where b°, b™, and bP correspond to the resource availability under optimistic,

most probable, and pessimistic conditions, respectively.

» For imprecise left-hand side and right-hand side of constraints
Cr{Z;Ll a,xj < b} =y if and onlyif
when (0 <y <0.5): 2y)a™ + (1 — 2y)aPx < y)b™ + (1 — 2y)b?
when (05 <y <1):2y — Da’°+ (2 —-2y)a™x < 2y — 1)b° + (2 — 2y)b™
(3.17)

where a®, a™, and aP are the coefficients values in optimistic, most likely, and

pessimistic situations, respectively. b°, b™, and bP are values of available

resource in optimistic, most likely, and pessimistic situations, respectively.
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Phase 3: Membership Function and Non-Membership Function: This
process is used to normalize the different units of multiple objective functions to a
common scale (0.0-1.0), referred to as the satisfaction level, as shown in Equations
(3.7) and (3.8). Additionally, the proposed approach enables decision makers to
consider both satisfaction and non-satisfaction levels simultaneously. Consequently,

Equations (3.18) and (3.19) can be applied to calculate the non-membership function.

e Non-Membership Function for Minimizing the Objective Function

1, z;=2z"
zi-z{'" NIS PIS
Tz; = \ ZPI5_;NI5) VA AR A (3.18)
l l
0, Zz;=2z'"

e Non-Membership Function for Maximizing the Objective Function

1, Z,=2z""
_ ) 2"z gPIS < 7. < gZNIS 3.19
Tz; = \ZN5_zPI5) i =4S4 (3.19)
l l
0, Zz;=2z"

where ZNS represents the highest value of the i objective function from
individual maximization problem solutions, or the lowest value from individual
minimization problem solutions. Conversely, Z-'S denotes the lowest value of
the i objective function among maximization solutions, or the highest value

among minimization solutions.

Phase 4: Optimization Process: The Intuitionistic Fuzzy Linear Programming
(IFLP) approach extends conventional linear programming to address decision-making
problems characterized by uncertainty and imprecision. Unlike conventional fuzzy set
theory, which only uses membership functions to represent fuzzy data, IFLP
incorporates both membership and non-membership functions, offering a more

comprehensive modeling of uncertainty. This dual representation allows decision-
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makers to factor in different levels of uncertainty, making IFLP particularly useful in
scenarios where data is imprecise. One of its key advantages is its ability to integrate
both optimism and pessimism in decision-making, offering a more flexible and
powerful tool compared to conventional specific fuzzy linear programming, especially
in capturing a broader range of uncertainty. This is achieved by simultaneously
maximizing the minimum satisfaction level and minimizing the maximum non-

satisfaction level of the multiple objective functions, as shown below.

Maximize u; — t,
Subjected to:x € F(x)
Uz <z, =121
T, 217z, 1=12,..,1 (3.20)

where puz and 7, represent the membership and non-membership functions

corresponding to each objective function, respectively.

Phase 5: Auxiliary Process: The Augmented Epsilon Constrained
(AUGMECON) method is an optimization technique used in multi-objective
programming to convert a problem with conflicting objectives into a series of single-
objective problems. By systematically adjusting constraints on secondary objectives
with specified epsilon (&) values, the method generates a set of Pareto optimal solutions,
offering a spectrum of trade-offs for decision-makers to evaluate. In AUGMECON, one
objective is chosen as the primary goal, while the others are treated as constraints. The
iterative process of varying ¢ values allows for the exploration of different balance
points between competing objectives. This approach simplifies the problem by focusing
on one objective at a time, providing a clearer understanding of how changes in one
objective affect others. Additionally, this approach supports decision-making by
generating diverse solutions, each with its own trade-offs, enabling decision-makers to

identify the solution that most effectively corresponds to their objectives and priorities.
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.. Sz Si
Maximize f;(x) + (eps X <_ + ot _>)
1‘2 T'l

Subject to: f,(x) — S, = &,

where eps € [1076,1073]. S,, ..., S; are surplus variables of respective constraints.
1y, ..., 7; are ranges of each objective function. Parameters ¢,, ..., g; represent the right-
hand side values for a given iteration, selected from the grid points corresponding to
each objective function.

The following steps describe the AUGMECON approach:
Step 1: Determine the range between minimum and maximum values of each objective
function (r;)
Step 2: Divide the range between minimum and maximum values of each objective
function into equal portions (p;) and then, the total grid points (p; + 1) are utilized from
varying the epsilon values of each objective function.

Step 3: Calculate discretization step for the respective objective function as follows:
T
Step; = (p—) (3.22)

Step 4: Compute the epsilon parameters for the relevant constraint during the ht"

iteration within a given objective function as shown below:

e; = w™" + (h x Step;) where h = 0, ..., p; (3.23)

™™ is minimum value of it" objective function.

Step 5: Check a surplus variable value (S;) that corresponds to the innermost objective
function.
Step 6: Bypass the redundant iterations by using the bypass coefficient (bp) that can

be calculated as follows:
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bp = int () (3.24)

epi

where int() is a function that is used to return an integer value of a real number.

Step 7: Iterate Steps 4 through 6 until the final iteration is reached.

Numerical example for conventional specific fuzzy optimization

AB manufacturing is the company that makes a line of high qualities Glasses, Bottles,
and Cups. It has three plants; Plantl, Plant2, and Plant3, that are used to produce high
qualities Glasses, Bottles, and Cups. To produce a Glass, the production time is 2
hours/unit at Plantl. The available production capacity of Plantl are (8, 16, 24)(4, 16,
30) hours that are varied according to an intuitionistic triangular distribution. To
produce a Bottle, the production time at Plant2 are (1.5, 2.5, 3.5)(1, 2.5, 4) hours/unit
that are varied according to an intuitionistic triangular distribution. The available
production capacity of Plant2 are (12, 24, 36)(6, 24, 42) hours that are varied according
to an intuitionistic triangular distribution. To produce a Cup, the production time is 1.5
hours/unit at Plant3. The available production capacity of Plant3 is 36 hours. Profits of
a Glass, a Bottle and a Cup are calculated as ($15, $20, $25)($10, $20, $30), ($25, $30,
$35)($20, $30, $40), and ($35, $40, $45)($30, $40, $50), respectively. The AB
manufacturing attempts to find out not only how many units of Glasses, Bottles and
Cups that should be produced to maximize total profit but also minimize total amount
of pollution. For simplicity, the amount of pollution follows a linear function resulting
from three decision variables X;, X, and X3.

2X, + 3X, + 4X,
where X;, X, and X5 denote decision variables representing numbers of produced
Glass, Bottle, and Cup, respectively.

> Data Preparation

To enhance decision-making, the triangular intuitionistic fuzzy number is
applied using the (4, R)-cut approach. This approach enables the generation of
an acceptable triangular fuzzy number by controlling the percentage of
acceptance level (A) and rejection level (R). Assume that A = 80% and R =
20%.
1.The available production capacity of Plantl
B = (b°,b™,bP)(b°,b™,bP) = (8,16,24)(4,16,30)
B° = max{b® + A(b™ — b°),b™ — R(b™ — b°)}

= max{4 + 0.8(16 — 8),16 — 0.2(16 — 8)}

= max{10.4,14.4} = 14.4
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_ B°+BP _ 14.4+188
2

B? = min{bP — A(b? — b™),b™ + R(b? — b™)}
= min{30 — 0.8(24 — 26),16 + 0.2(30 — 16)}
= min{23.6,18.8} = 18.8
The available production capacity of Plantl is (14.4, 16.6, 18.8).

B™ =16.6

2.The production time at Plant2
B = (b°,b™,bP)(b°,b™ bP) = (1.5,2.5,3.5)(1,2.5,4)
B° = max{b® + A(b™ — b°),b™ — R(b™ — b°)}

= max{1 + 0.8(2.5 — 1.5),2.5 — 0.2(2.5 — 1.5)}

= max{1.8,2.3} = 2.3

__ B°+BP 23427
2 2

B? = min{bP — A(b? — b™),b™ + R(b? — b™)}
= min{4 — 0.8(3.5 — 2.5), 2.5 + 0.2(3.5 — 2.5)}
= min{3.2,2.7} = 2.7

The production time at Plant2 is (2.3, 2.5, 2.7).

B™ 2.5

3.The available production capacity of Plant2
B = (b°,b™,bP)(b°,b™,bP) = (12,24,36)(6,24,42)
B° = max{b® + A(b™ — b°),b™ — R(b™ — b°)}

= max{6 + 0.8(24 — 12),24 — 0.2(24 — 12)}

= max{15.6,21.6} = 21.6

__ B°+BP  21.6+264 _
2 2

B™ 24
B? = min{bP — A(b? — b™),b™ + R(b? — b™)}
= min{42 — 0.8(36 — 24), 24 + 0.2(36 — 24)}
= min{32.4,26.4} = 26.4
The available production capacity of Plant2 is (21.6, 24, 26.4).
4. Profits of a Glass
B = (b°,b™,bP)(b°,b™,bP) = ($15,$20,$25)($10,$20,$30)
B° = max{b° + A(b™ — b°),b™ — R(b™ — b°)}
= max{10 + 0.8(20 — 15),20 — 0.2(20 — 15)}
= max{14,19} = 19
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_ B9+BP _ 19421 _
2 2

B? = min{bP — A(b? — b™),b™ + R(b? — b™)}
= min{30 — 0.8(25 — 20), 20 + 0.2(25 — 20)}
= min{26,21} = 21
Profits of a Glass is (19, 20, 21).
5. Profits of a Bottle
B = (b°,b™,bP)(b°,b™, bP) = ($25,$30,$35)($20, $30,$40)
B° = max{b® + A(b™ — b°),b™ — R(b™ — b°)}
= max{20 + 0.8(30 — 25),30 — 0.2(30 — 25)}
= max{24,29} = 29

__ B9+BP _ 29+31 _
2 2

B™ 20

B™ 30

B? = min{bP — A(b? — b™),b™ + R(b? — b™)}
= min{40 — 0.8(35 — 30),30 + 0.2(35 — 30)}
= min{36,31} = 31

Profits of a Bottle is (29, 30, 31).

6. Profits of a Cup
B = (b°,b™,bP)(b°,b™,bP) = ($35,$40,$45)($30,$40, $50)
B° = max{b® + A(b™ — b°),b™ — R(b™ — b°)}

= max{30 + 0.8(40 — 35),40 — 0.2(40 — 35)}

= max{34,39} = 39

_ B9+BP _ 41+21 _
2 2

B™ 20

B? = min{bP — A(b? — b™),b™ + R(b? — b™)}
= min{50 — 0.8(45 — 40), 40 + 0.2(45 — 40)}
= min{46,41} = 41

Profits of a Cup is (39, 40, 41).
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Table 3.2 Data preparation for production of Glass, Bottle, and Cup.

Available
Glass Bottle Cup Production
Capacity
Production (14.4 hours,
Time 2 hours/unit - 16.6 hours,
(Plantl) 18.8 hours)
Production (2.3 hours/unit, (21.6 hours,
Time - 2.5 hours/unit, 24 hours, 26.4
(Plant2) 2.7 hours/unit). hours).
Production
Time - - 1.5 hours/unit 36 hours
(Plant3)
. . $29/unit, $39/unit,
Profit ($19g;£§hii2t§)/un't’ ($30/unit, ($40/unit, -
) $31/unit) $41/unit)

Mathematical Formulation

» Objective Functions
1.Maximize total profits (defuzzify by Realistic Robust Programming)
Maximize Z, = EV(Z) + Optimality Robustness + Feasibility Robustness
= Firstterm
Z°+27™ + 7P
4

EV(Z) =
1.Z° can be calculated as follows:
Maxmize Z; = 19X,+29X,+39X,
Subjectto:  2X; < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)

(2(0.8) = 1)(2.3) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
X1, X5, X5 >0
2.Z™ can be calculated as follows:
Maxmize Z; = 20X,+30X,+40X,
Subjectto:  2X; < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) —1)(2.3) + (2 —2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
X1, X5, X3=>0
3.ZP can be calculated as follows:
Maxmize Z; = 21X,+31X,+41X;
Subjectto:  2X; < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) —1)(2.3) + (2 —2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
X1, X5, X5 >0
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= Second term
Optimality Robustness = p(Zmax — Zmin)

where p is assumed to be 50%.

1.Z,,4x Can be calculated as follows:
Maxmize Zqr = fPy + cPx = 21X,+31X,+41X;
Subjectto:  2X; < (2(0.8) —1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) = 1)(2.3) + (2 —2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
X1, X5, X3=>0
2.Zmin Can be calculated as follows:
Maxmize Zin = f°y + c°x = 19X,+29X,+39X;
Subjectto:  2X; < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) = 1)(2.3) + (2 —2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
X1, X5, X5 >0
= Third term

Feasibility Robustnes = ¢(d? — (1 —y)d™ — yd?) + §(yB° + (1 — y)B™ — B°)
where ¢ and § are assumed to be 50% and y is assumed to be 80%.

1.The first term a(dP — (1 — y)d™ — ydP) can be applied to uncertain right-
hand side constraints
o(dP — (1 —y)d™ —ydP) = 0.5(18.8 — (1 — 0.8)16.6 — (0.8)(18.8))
o(dP — (1 —y)d™ —ydP) = 0.5(21.6 — (1 — 0.8)24 — (0.8)(21.6))
2.The second term §(yB° + (1 — y)B™ — B°) can be applied to uncertain left-
hand side constraints
8(yB° 4+ (1 —y)B™ — B°) = 0.5((0.8)(2.3) + (1 — 0.8)(2.5) — 2.3)

2.Minimize total amount of pollution

» Uncertain Constraints
1.Defuzzify by Chance-Constrained Programming (y = 80%)
Subjectto:  2X; < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) —1)(2.3) + (2 —2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
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» Crisp Constraint
Subjectto:  1.5X, < 36
» Non-negativity Constraint
Subjectto: X, X,, X3 =0
» Membership Functions
1.Membership Function for Maximizing the Objective Function (Maximize
total profits)

_ zy;-zZNIS
Hz, = ZPIS_ZNIS

ZPIS can be calculated as follows:
Maxmize Z; = EV(Z) + Optimality Robustness + Feasibility Robustness
Subjectto:  2X; < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) — 1)(2.3) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
Xy, Xy X5 20
ZN'5 can be calculated as follows:
Minimize Z, = EV(Z) + Optimality Robustness + Feasibility Robustness
Subjectto:  2X; < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) — 1)(2.3) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
Xy, Xy X5 20

2.Membership Function for Minimizing the Objective Function (Minimize total

amount of pollution)

Ly, = z)15-z,
Zo, — NIS PIS
S A

Z¥%'5 can be calculated as follows:
Minimize Z, = 2X, + 3X, + 4X,
Subjectto:  2X; < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) — 1)(2.3) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
X, Xy X3 >0
ZY'S can be calculated as follows:
Maximize Z, = 2X, + 3X, + 4X,
Subjectto:  2X, < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) — 1)(2.3) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
X, Xy X5 =0
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» Non-membership Functions
1.Non-membership Function for Maximizing the Objective Function

(Maximize total profits)

_ s,
Tz, = ZNIS_ZPIS

ZP1S can be calculated as follows:
Minimize Z, = EV(Z) + Optimality Robustness + Feasibility Robustness
Subjectto:  2X, < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) — 1)(2.3) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
Xy, Xy, X3 =0
ZN'5 can be calculated as follows:
Maximize Z, = EV(Z) + Optimality Robustness + Feasibility Robustness
Subjectto:  2X, < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) — 1)(2.3) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
Xy, Xy, X3 =0

2.Non-membership Function for Minimizing the Objective Function (Minimize

total amount of pollution)

e
Tz, = ZPTS_ZNIS

Z¥%'5 can be calculated as follows:
Maxmize Z, = 2X, + 3X, + 4X,
Subjectto:  2X; < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) — 1)(2.3) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
X, Xy X5 >0
ZN'S can be calculated as follows:
Minimize Z, = 2X, + 3X, + 4X,
Subjectto:  2X; < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) — 1)(2.3) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
X, Xy X3 >0
» Optimization Process by Intuitionistic Fuzzy Linear Programming
Minimize u, — 7,
Subjectto:  2X, < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) — 1)(2.3) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
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X, X;, X5 =0

NI
/J'Z < ‘u_Z — Zl_—le
= PIS _,NIS

a4 Zl _Zl

NIS
Zy =23

Uz < Uz, = —RNis P15
2 ZZ _Z2

> i ZJI.VIS_ZI
Tz =27z, = ZNIS_ZPIS

. _ Z,-z1S
Tz 2Tz, = ZPIS_zINIS

» Auxiliary Process by Augmented Epsilon Constrained (AUGMECON)
Approach

Maximize Z;(x) + (eps X i—z)

Subject to: Z,(x) — S, = &,
2X; < (2(0.8) — 1)(14.4) + (2 — 2(0.8))(16.6)
2(0.8) —1)(2.3) + (2 —2(0.8))(2.5)x < (2(0.8) — 1)(21.6) + (2 — 2(0.8))(24)
1.5X, < 36
X1, X5, X3 =0
where eps € [107°,1073]. S, is surplus variable of 2" objective function. r, is

range of each objective function. €, is parameter for the right-hand side for a

specific iteration drawn from the grid points of each objective function.

The following steps describe the AUGMECON approach:
Step 1: Determine the range between minimum and maximum values of each
objective function (r;)
r, = Maimum value of total profits — Minimum value of total profits

r, = Maimum value of total amount of pollutions

—Minimum value of total amount of pollutions
Step 2: Divide the range between minimum value and maximum value of each
objective function into equal portions (p;) and then, the total grid points (p; +
1) are utilized from varying the epsilon values of each objective function.

p; =10

p; can be assumed based on decision makers’ experiences or circumstances.
Step 3: Calculate discretization step for the respective objective function as

follows:

Step; = (;—t)
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Step 4: Calculate the epsilon values of the respective constraint in the ht"
iteration in a particular objective function as follows:

e; = w™" + (h X Step;) where h = 0, ..., p;
™™ is minimum value of it objective function.
Step 5: Check a surplus variable value (S;) that corresponds to the innermost
objective function.
Step 6: Bypass the redundant iterations by using the bypass coefficient (bp) that
can be calculated as follows:

0 Si
bp Sl (Stepi)
where int() is a function that is used to return an integer value of a real number.

» Step 7: Repeat Steps 4 through 6 until the final iteration is reached.

3.3 A Unified Fairness and Robustness Fuzzy Optimization Approach

The critical problem addressed in this study arises from the limitations of a
conventional specific fuzzy optimization approaches, which often fail to effectively
manage critical challenges in multi-objective decision-making, such as ensuring
Proportional Fairness (PF) among competing objectives and maintaining robustness
under uncertainty. Without the integration of fairness, conventional optimization
models tend to produce inequitable outcomes, where some objectives are prioritized at
the expense of others, leading to suboptimal and biased decision-making. Furthermore,
the lack of robustness, particularly in uncertain and ambiguous environments,
compromises the reliability and effectiveness of the resulting plans. To resolve these
issues, this study proposes a unified optimization model that combines Proportional
Fairness (PF) with Robust Chance-Constrained Programming (RCCP) as shown in
Figure 3.3, offering a more balanced and resilient decision-making framework. This
approach ensures that both fairness and robustness are adequately addressed, ultimately

leading to more reliable and equitable solutions in complex decision-making scenarios.
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Phase 1: Data Preparation
Unecertain Data . X
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Figure 3.3 Methodology of a unified fairness and robustness fuzzy optimization

approach.

Phase 1: Data Preparation: In preparing the data, parameters are grouped into
crisp and uncertain categories. Crisp parameters have exact, known values, while
uncertain parameters involve ambiguity or imprecision. These uncertainties are
modeled using Triangular Fuzzy Numbers (TFNSs).

Phase 2: Defuzzification Process: This process converts imprecise data into
crisp data. The fuzziness in the model can be classified into two primary types, based
on its location: fuzziness in the objective functions and fuzziness in the constraints.

e Defuzzification Approach at the objective functions: The Realistic Robust
Programming (RRP) approach is utilized here because it is well-adapted to
business and profit-centered problems, offering a reasonable trade-off between
optimality and feasibility robustness. Accordingly, fairness and the optimality
and feasibility elements of RRP are embedded into the EV method to improve

the model’s robustness and fairness, as outlined in Equations (3.25) — (3.26).

For minimization objectives:

EV(Z) + Fairness + Optimality Robustness + Feasibility Robustness
Z%427™M+7ZP
= T 4 (20— 20) + pZmax = Zmin) + (0(df — (1 = p)d[* —yd)))
(3.25)
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For maximization objectives:

EV(Z) + Fairness + Optimality Robustness + Feasibility Robustness

_ Z%42Z™+ZP

” + (ZiPIS —Z;) + p(Zmax - Zmin) + (O-(d]p -(1- ]/)d]m - dep))

(3.26)

where Z°, Z™, and ZP represent the objective function values under optimistic,
most probable, and pessimistic scenarios, respectively. Z; and ZP'S correspond
to the value of each individual objective function and its positive ideal solution.
Theterms Z,,,4, and Z,,,;,, indicate the highest and lowest values of the objective

function. For constraint j, d7, d;", and d}’ denote the optimistic, most likely,

and pessimistic estimates of the fuzzy parameters, respectively. The parameter
p stands for the weighting factor, while o refers to the penalty imposed for
possible constraint violations, both are assigned a value of 50% to maintain
fairness. Finally, y represents the confidence level, which is fixed at 80% in this

study.

o Defuzzification Approach at the constraints: Similar to the previous
approach, the Chance-Constrained Programming (CCP) method is utilized to
handle defuzzification of fuzzy constraints, as presented in Equations (3.16) -
(3.17).

Phase 3: Membership Function: Similar to the previous approach, the
membership function can be computed using Equations (3.7) — (3.8).
Phase 4: Optimization Process: Similar to the previous approach,

Zimmermann's method is applied, as demonstrated in Equation (3.9).
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Numerical example for conventional specific fuzzy optimization

AB manufacturing is the company that makes a line of high qualities Glasses, Bottles,
and Cups. It has three plants; Plantl, Plant2, and Plant3, that are used to produce high
qualities Glasses, Bottles, and Cups. To produce a Glass, the production time is 2
hours/unit at Plantl. The available production capacity of Plantl varies according to a
triangular distribution with a minimum available production capacity of 8 hours, a most
likely available production capacity of 16 hours, and a maximum available production
capacity of 24 hours. To produce a Bottle, the production time at Plant2 varies
according to a triangular distribution with a minimum production time of 1.5 hours/unit,
a most likely production time of 2.5 hours/unit, and a maximum production time of 3.5
hours/unit. The available production capacity of Plant2 varies according to a triangular
distribution with a minimum available production capacity of 12 hours, a most likely
available production capacity of 24 hours, and a maximum available production
capacity of 36 hours. To produce a Cup, the production time is 1.5 hours/unit at Plant3.
The available production capacity of Plant3 is 36 hours. Profits of a Glass, a Bottle and
a Cup are calculated as ($15, $20, $25), ($25, $30, $35), and ($35, $40, $45),
respectively. The AB manufacturing attempts to find out not only how many units of
Glasses, Bottles and Cups that should be produced to maximize total profit but also
minimize total amount of pollution. For simplicity, the amount of pollution follows a

linear function resulting from three decision variables X;, X, and X;.

2X, + 3X, + 4X,
where X;, X, and X5 denote decision variables representing numbers of produced

Glass, Bottle, and Cup, respectively.
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Table 3.1 Parameters relate to production of Glass, Bottle, and Cup.

Available
Glass Bottle Cup Production
Capacity
Production (8 hours,
Time 2 hours/unit - 16 hours,
(Plant1) 24 hours)
Production (1.5 hours/unit, (12 hours,
Time - 2.5 hours/unit, 24 hours,
(Plant2) 3.5 hours/unit) 36 hours)
Production
Time - - 1.5 hours/unit 36 hours
(Plant3)
. . $25/unit, $35/unit,
Profit ($15/;2ét/ui?8/ Tk ($30/unit, ($40/unit, i
$35/unit) $45/unit)

Mathematical Formulation

> Objective Functions
1.Maximize total profits (defuzzify by Realistic Robust Programming and

Fairness)
Maximize Z; = EV(Z) + Optimality Robustness + Feasibility Robustness
+Fairness
= Firstterm
27 7
EV(Z) = 7

1.Z° can be calculated as follows:
Maxmize Z, = 15X,+25X,+35X;
Subjectto:  2X; < (2(0.8) —1)(8) + (2 — 2(0.8))(16)
(2(0.8) = 1)(1.5) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(12) + (2 — 2(0.8))(24)
1.5X, < 36
X, X5, X3>0
2.Z™ can be calculated as follows:
Maxmize Z; = 20X,+30X,+40X,
Subjectto:  2X; < (2(0.8) — 1)(8) + (2 — 2(0.8))(16)
(2(0.8) — 1)(1.5) + (2 —2(0.8))(2.5)x < (2(0.8) — 1)(12) + (2 — 2(0.8))(24)
1.5X, < 36
X1, X5, X3 >0
3.ZP can be calculated as follows:
Maxmize Z, = 25X,+35X,+45X,
Subjectto:  2X; < (2(0.8) —1)(8) + (2 —2(0.8))(16)
(2(0.8) — 1)(1.5) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(12) + (2 — 2(0.8))(24)
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1.5X, < 36
X;, Xy, X =0
= Second term
Optimality Robustness = p(Zmax — Zmin)

where p is assumed to be 50%.

1.Z,,4x Can be calculated as follows:
Maxmize Zqr = fPy + cPx = 25X,+35X,+45X;
Subjectto:  2X; < (2(0.8) —1)(8) + (2 — 2(0.8))(16)
(2(0.8) = 1)(1.5) + (2 —2(0.8))(2.5)x < (2(0.8) — 1)(12) + (2 — 2(0.8))(24)
1.5X, < 36
X1, X5, X3>0

2.Zyin Can be calculated as follows:
Maxmize Zin = f°y + c®x = 15X,+25X,+35X;
Subjectto:  2X; < (2(0.8) —1)(8) + (2 — 2(0.8))(16)
(2(0.8) —1)(1.5) + (2 —2(0.8))(2.5)x < (2(0.8) —1)(12) + (2 — 2(0.8))(24)
1.5X, < 36
X1, X5, X5 >0
= Third term

Feasibility Robustnes = ¢(d? — (1 —y)d™ — yd?) + §(yB° + (1 — y)B™ — B°)
where ¢ and § are assumed to be 50% and y is assumed to be 80%.

1.The first term o(d? — (1 — y)d™ — ydP) can be applied to uncertain right-
hand side constraints
o(dP — (1 —y)d™ —ydP) = 0.5(24 — (1 — 0.8)16 — (0.8)(24))
o(d? — (1 —y)d™ —ydP) = 0.5(36 — (1 — 0.8)24 — (0.8)(36))
2.The second term §(yB° + (1 — y)B™ — B°) can be applied to uncertain left-
hand side constraints
8(yB° 4+ (1 —y)B™ — B°) = 0.5((0.8)(1.5) + (1 — 0.8)(2.5) — 1.5)

2.Minimize total amount of pollution
Minimize Z, = 2X; + 3X, + 4X,
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= Fourth term
Fairness = (Zfls )

1.For Maximization of the Objective Function (Maximize total profits)

ZP1S can be calculated as follows:

Maxmize Z; = EV(Z) + Optimality Robustness + Feasibility Robustness
+Fairness

Subjectto:  2X, < (2(0.8) — 1)(8) + (2 — 2(0.8))(16)

(2(0.8) — 1)(1.5) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(12) + (2 — 2(0.8))(24)

1.5X, < 36
O e

2.For Minimization of the Objective Function (Minimize total amount of
pollution)
ZPIS can be calculated as follows:
Minimize Z, = 2X, + 3X, + 4X,
Subjectto:  2X; < (2(0.8) — 1)(8) + (2 — 2(0.8))(16)
(2(0.8) —1)(1.5) + (2 —2(0.8))(2.5)x < (2(0.8) —1)(12) + (2 — 2(0.8))(24)
1.5X, < 36
X1, X5, X3=>0
» Uncertain Constraints
1.Defuzzify by Chance-Constrained Programming (y = 80%)
Subjectto:  2X; < (2(0.8) —1)(8) + (2 — 2(0.8))(16)
(2(0.8) = 1)(1.5) + (2 —2(0.8))(2.5)x < (2(0.8) —1)(12) + (2 — 2(0.8))(24)
» Crisp Constraint
Subjectto:  1.5X, < 36
» Non-negativity Constraint
Subjectto:  X;,X,, X3 =0
» Membership Functions
1.Membership Function for Maximizing the Objective Function (Maximize
total profits)

_ zi-a
Uz, ZPIS_ZNIS

ZPIS can be calculated as follows:
Maxmize Z; = EV(Z) + Optimality Robustness + Feasibility Robustness
+Fairness
Subjectto:  2X, < (2(0.8) — 1)(8) + (2 — 2(0.8))(16)
(2(0.8) — 1)(1.5) + (2 — 2(0.8))(2.5)x < (2(0.8) — 1)(12) + (2 — 2(0.8))(24)
1.5X, <36
Xy, Xy, X5 =0
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ZN1S can be calculated as follows:
Minimize Z, = EV(Z) + Optimality Robustness + Feasibility Robustness
+Fairness
Subjectto:  2X; < (2(0.8) — 1)(8) + (2 — 2(0.8))(16)
(2(0.8) — 1)(1.5) + (2 —2(0.8))(2.5)x < (2(0.8) — 1)(12) + (2 — 2(0.8))(24)
1.5X, < 36
X{, Xy, X5 =0

2.Membership Function for Minimizing the Objective Function (Minimize total

amount of pollution)

Ly, = z)15-z,
Zo, — NIS PIS
N

ZPIS can be calculated as follows:
Minimize Z, = 2X; + 3X, + 4X,
Subjectto:  2X; < (2(0.8) —1)(8) + (2 —2(0.8))(16)
(2(0.8) = 1)(1.5) + (2 —2(0.8))(2.5)x < (2(0.8) — 1)(12) + (2 — 2(0.8))(24)
1.5X, < 36
X1, X5, X320
» Optimization Process by Zimmermann’s Approach
Minimize uy,
Subjectto:  2X; < (2(0.8) —1)(8) + (2 —2(0.8))(16)
(2(0.8) = 1)(1.5) + (2 —2(0.8))(2.5)x < (2(0.8) — 1)(12) + (2 — 2(0.8))(24)
1.5X, < 36
X1, X5, X320

NIS
Bz < Mz, = SR
— PIS_,NIS
L Zl _Zl

NI
Hy < iz, = 2o
zZ — MZ, — ,NIS PIS
2 ZZ _ZZ

3.4 A Downside Risk Mitigation Approach
This study addresses another critical problem of uncertainty within supply chain
operations, which are often plagued by imprecise, incomplete, inaccurate, or ambiguous
information. These uncertainties pose significant risks to supply chain performance,
leading to suboptimal decision-making if not effectively managed Rachev et al. (2011).
Conventional fuzzy linear programming approaches typically represent uncertain data
using triangular fuzzy numbers (Zhang et al., 2014), assuming symmetrical deviations

around a central value. However, this assumption fails to capture the asymmetrical
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nature of real-world uncertainties, where risks and deviations can differ in magnitude
between positive and negative directions. To overcome this limitation, this study
introduces the utilization of asymmetrical triangular fuzzy numbers, which better
reflect the skewness of real-world data. Additionally, the risk of uncertainty,
particularly the downside risk arising from pessimistic and most likely scenarios, is
quantified using the Mean Conditional Value at Risk Gap (MCVaRG) (Chiadamrong
and Suthamanondh (2024)). This approach, grounded in Conditional Value-at-Risk
(CVaR) theory, emphasizes the assessment of the tail end of the outcome distribution
beyond a specified threshold, providing a precise evaluation of downside risks. By
integrating these advanced risk measures, this study aims to strengthen decision-
making in supply chain management under uncertainty, providing a more robust
framework for addressing the challenges posed by risk and imprecision.

To minimize the MCVaRG of total supply chain operating costs, the

formulation used in this study is presented as follows:

_ ot [@-2?%6: | (1-2y?)5; Gt .
MCVaR = F |5 200 4 2 4 (H)] x, if0<y<05  (3.27)
McVaR = ¥I'(1 - y)a, + vy6:]x, if05<y<1 (3.28)

Minimize MCVaRG =MCVaR - Total Supply Chain Operation Costs  (3.29)

where d;, a;, and G, represent the optimistic, most likely, and pessimistic supply chain
operation cost values, respectively, for each period t, t = 1,2, ...,T. The variable x;
denotes the decision variables associated with each corresponding period t.
Additionally, y represents the credibility level used to manage uncertainty within the

model.
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Membership Function

A
1 MCVaRG
Amount of risk of
uncertainty
= $928 - $864= $64
0 I : » $value
640 800 8564 928 960
Defuzzified MCVaR
value value

Figure 3.4 Demonstration of MCVaRG calculation.

The process of computing the MCVaRG value is illustrated in Figure 3.4. For
instance, the defuzzified value of a fuzzy supply chain operation cost is $864, derived
from a Triangular Fuzzy Number with parameters $640 (minimum), $800 (most likely),
and $960 (maximum), which represent the range of possible values for the supply chain
operation cost.

The defuzzification process is performed employing CCP at a confidence level
of 0.8, as specified in Equation (3.16).

Cr{Z}‘:l a;jxj < b} =y if and only if
when (0.5 <y <1)iax < 2y —1)b™ + (2 — 2y)bP
(2(0.8) — 1)(800) + (2 — 2(0.8))(960) = 864

Subsequently, the MCVaR is computed using Equation (3.28) with a confidence
level of y = 0.8, yielding a value of $928.

MCVaR =YI[(1 —y)a, + y6:]x,, if05<y<1
MCVaR = (1 — 0.8)(800) + (0.8)(960) = 928

The quantified risk associated with supply chain operating costs, represented by
MCVaRG of $64, demonstrates the impact of cost uncertainty and the necessity to
mitigate this risk factor.

MCVaRG = MCVaR — Total Supply Chain Operation Costs = 928 — 864 = 64
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3.5 Introduction of Case Studies

The proposed research methodologies are demonstrated through the application
of three distinct case studies, each addressing a unique set of challenges. These case
studies are designed to showcase the effectiveness of each methodology in tackling
specific issues relevant to the research objectives. Each case study presents a different
context, supporting an in-depth examination of the approaches and their ability to
handle various complexities. The three distinct case studies are presented separately to
clearly highlight the advantages and effectiveness of each proposed methodology. This
separation ensures that the unique features and contributions of each approach can be
thoroughly examined without introducing unnecessary complexity that could obscure
the significance of their individual strengths. By isolating the cases, the study maintains
analytical clarity, allowing decision-makers to achieve a deeper perception of the
specific benefits and applicability of each methodology within the context of supply
chain aggregate production planning. This structured presentation also facilitates a
more focused evaluation and comparison, enhancing the overall interpretability and
practical relevance of the proposed solutions.

The following outlines the key issues and challenges addressed in each case
study:

e Case 1: A Five-Phase Hybrid Fuzzy Optimization Approach for Supply Chain
Aggregate Production Planning

In the face of increasing competitive market pressures, firms must adopt
strategies that allow them to improve performance by addressing multiple objectives
simultaneously to secure a competitive advantage. Consequently, there is a need for a
practical approach capable of overcoming two major obstacles: conflicting objectives
and the uncertainty inherent in supply chain management. This necessitates an effective
decision-making framework to assist Decision Makers (DMs) in planning an efficient
Supply Chain Aggregate Production Plan (SCAPP). This case study purposes to
minimize total supply chain costs, minimize total product shortages, and maximize total
purchasing values, all while dealing with imprecise factors such as operating costs,
customer demand, defective rates, and service levels. Beyond proposing a solution to
these challenges, the study also addresses the weaknesses of conventional specific
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fuzzy optimization approaches, which often fail to consider hesitation, robustness, non-
satisfaction levels, and the generation of Pareto-optimal solutions. To overcome these
limitations, a novel five-phase hybrid fuzzy optimization approach is developed,
integrating Intuitionistic Fuzzy Linear Programming (IFLP), Realistic Robust
Programming (RRP), Chance-Constrained Programming (CCP), and the Augmented
Epsilon Constraint (AUGMECON) method. This comprehensive approach enables
DMs to obtain the most robust and concrete compromise solution, reflecting their
intentions more accurately and ultimately improving the efficiency and effectiveness of
SCAPP under uncertain and competitive conditions.

e Contributions and Highlights of Case 1

A key highlight of this case study is the development of a five-phase hybrid
fuzzy optimization approach designed to overcome the limitations of a conventional
specific fuzzy optimization approach. The proposed methodology integrates several
advanced techniques, including Intuitionistic Fuzzy Linear Programming (IFLP),
Realistic Robust Programming (RRP), Chance-Constrained Programming (CCP), and
Augmented Epsilon Constraint (AUGMECON). These methods address hesitation,
enhance robustness, and incorporate both satisfaction and non-satisfaction levels,
ultimately producing Pareto-optimal solutions. This integrated approach represents a
significant advancement over existing methods and provides a more comprehensive
strategy for decision-making in supply chain management, allowing DMs to create
more resilient and effective supply chain strategies.

To the best of the authors’ understanding, this is the first study to utilize the
combined techniques of IFLP, RRP, CCP, and AUGMECON to solve multi-objective
SCPP problems in an uncertain environment. This novel integration offers a
comprehensive framework to tackle the complex challenges of modern supply chain
management, presenting a fresh perspective for managing uncertain data and

conflicting objectives.
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The feasibility and practicality of the proposed approach are validated through
a case study. The outcomes from the case study demonstrate that the methodology
effectively minimizes total costs, minimizes total shortages, and maximizes total
purchasing value while managing uncertainty and balancing conflicting objectives.
These outcomes highlight the practical relevance and applicability of the approach in
real-world scenarios, establishing a new benchmark for multi-objective SCAPP under

uncertainty.

e Case 2: A Unified Fairness and Robustness Fuzzy Optimization Approach for

Supply Chain Aggregate Production Planning

In supply chain management, two critical factors; fairness and robustness, are
often overlooked in the context of SCAPP. Failure to account for fairness among
multiple objectives can lead to inequitable outcomes due to conflicting priorities across
stakeholders. Additionally, neglecting robustness can result in unreliable and non-
resilient planning, especially when dealing with uncertain and imprecise data. To
address these challenges, this study proposes a unified fairness and robustness fuzzy
optimization approach that integrates the principles of Proportional Fairness (PF) and
Robust Chance-Constrained Programming (RCCP). By combining these
methodologies, the approach aims to achieve a balanced and resilient SCAPP that
minimizes total supply chain costs, minimizes total fluctuations in workforce levels,
and maximizes total purchasing values under uncertain circumstances. The
effectiveness of this approach is demonstrated through a case study, which highlights
its ability to improve the fairness and robustness of SCAPP outcomes. Ultimately, the
integration of fairness and robustness into SCAPP strengthens the resilience of supply
chain operations, ensuring better adaptability in the face of disruptions. It also
strengthen corporate reputation through signaling dedication to responsible, reliable,
and equitable business practices, thereby promoting long-term sustainability and

operational efficiency.
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e Contributions and Highlights of Case 2

This case study fills a notable gap in existing literature by introducing the
combined principles of proportional fairness and robustness in Aggregate Production
Planning (APP) optimization. A conventional specific fuzzy optimization approach
often overlooks fairness, leading to the unequal prioritization of objectives, while
neglecting robustness can result in vulnerabilities when unexpected disruptions occur.
By combining these two principles, the study offers a more comprehensive solution that
ensures equitable treatment of all stakeholders within the supply chain while
maintaining operational continuity amidst uncertainty. This integration significantly
enhances both the efficiency and sustainability of supply chain management practices.

Incorporating fairness into the optimization process ensures that the system
prevents bias, fostering positive relationships among diverse stakeholders in the SC.
Meanwhile, robustness equips the system to withstand unforeseen challenges and
disruptions, ensuring continued operations even in the face of uncertainty. The synergy
between fairness and robustness contributes to greater operational stability and bolsters
corporate image through the promotion of responsible and dependable practices. This
approach positions companies for long-term success while building trust and stability
across their supply chain networks.

Furthermore, the proposed approach outperforms conventional specific fuzzy
optimization approaches, particularly under conditions with pronounced differences in
objective satisfaction levels. In scenarios where one objective’s satisfaction level is
disproportionately low, or below the preferences of DMs, a conventional specific fuzzy
optimization approach may lead to unfair outcomes. Conversely, when one objective’s
satisfaction is excessively high, it can lead to inequitable treatment of other objectives.
The proposed approach addresses these imbalances, ensuring a fairer and more
balanced optimization process. This feature enhances the model's practical
applicability, ensuring that DMs can make more reliable and equitable decisions in

multi-objective APP.
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e Case 3: A Downside Risk Mitigation Approach for Supply Chain Aggregate

Production Planning

As modern business environments become more complex and uncertain, there
is a growing need for strong SCAPP strategies that can skillfully navigate
interdependencies and ensure seamless coordination across the supply chain hierarchy.
Conventional supply chain strategies often overlook critical uncertainties and risks,
contributing to inefficiencies and higher operational expenditures. This study addresses
these challenges by proposing a business model that integrates open innovation to
enhance both resilience and cost performance. Specifically, the study proposes a
downside risk mitigation approach aimed at minimizing the probability of adverse
outcomes or financial losses caused by fluctuations, unpredictability, and unforeseen
events that frequently increase supply chain costs. Through a case study centered on
cost and risk minimization, the model employs asymmetrical triangular fuzzy numbers
to capture various uncertain factors, including fluctuating costs, demands, and
machinery runtime. The results demonstrate the effectiveness in delivering decision
makers a comprehensive and optimized SCAPP that enhances operational efficiency,
improves reliability, and substantially reduces costs. Furthermore, the model’s
capability to mitigate the skewness of risks stemming from operational uncertainties
provides a strategic advantage in enhancing overall supply chain resilience and ensuring

long-term sustainability.

e Contributions and Highlights of Case 3

This case study presents an innovative multi-objective fuzzy linear
programming model aimed at optimizing the SCAPP problem. The model
simultaneously addresses two key goals: reducing costs and minimizing downside risk,
with special emphasis on the Mean-Conditional Value at Risk Gap (MCVaRG). By
addressing these dual objectives, the proposed framework offers a strategic SCAPP
plan that not only ensures economically viable decisions but also enhances resilience

against potential risks. This contribution fills a significant gap in existing literature by
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providing a comprehensive approach that moves beyond conventional cost-centric
models, acknowledging the complexity inherent in modern supply chain management.

The study’s innovative approach emphasizes the importance of a framework
that balances cost efficiency with risk mitigation. While many conventional SCAPP
models primarily focus on minimizing costs, this research broadens the perspective to
include risk management as a critical component of supply chain optimization. By
simultaneously considering both objectives, the model enables decision-makers to
develop plans that are not only economically viable but also resilient to uncertainties,
contributing to the long-term sustainability and stability of the SC.

A key highlight of this case study is the introduction of a groundbreaking
methodology for addressing the asymmetrical skewness often present in real-world
data. Unlike conventional models that assume symmetrical distributions of fuzzy
numbers, the study recognizes that data frequently exhibits asymmetry. The inclusion
of skewness in triangular fuzzy numbers allows the model to more precisely capture
uncertainty and fluctuations in the data. This refined understanding enhances decision-
making by providing clearer insight into the potential outcome range and associated
probabilities, contributing to stronger risk and cost management.

Incorporating these sophisticated ideas into the model greatly refines strategic
planning efforts and enhances the consistency of decisions under challenging
conditions. The ability to account for skewed fuzzy numbers enhances the model's
precision in managing both risk and cost, making it particularly valuable in uncertain
and dynamic environments. Overall, this study advances the field of supply chain
management by providing a robust tool for optimizing APP under uncertainty,
enhancing both the efficiency and resilience of decision-making in real-world supply

chain scenarios.
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CHAPTER 4
RESULTS

This chapter concentrates on the practical applications of proposed
methodologies and concepts in real-world settings, bridging the gap between theoretical
research and industrial practices. It explores how the integration of innovative
techniques of fuzzy optimization can enhance decision-making processes in supply
chain management. By presenting case studies, this chapter demonstrates how these
methodologies address challenges like uncertainty, resource constraints, and conflicting
objectives. The goal is to provide actionable insights and frameworks that enable
practitioners to optimize operations, reduce risks, and improve overall system
performance, making complex theoretical approaches accessible and relevant to
industry professionals. This chapter serves as a guide for implementing these tools
effectively, highlighting their potential to drive efficiency, cost-effectiveness, and

resilience in dynamic and uncertain environments.

4.1 Case 1: A Five-Phase Hybrid Fuzzy Optimization Approach
for Supply Chain Aggregate Production Planning

Supply Chain Aggregate Production Planning (SCAPP) plays a crucial role in
operational management, directly impacting an organization's performance and
competitiveness in the marketplace. In highly competitive environments, firms face the
challenge of achieving multiple, often conflicting objectives, all while navigating the
uncertainties of supply chain management. Conventional Specific Fuzzy Linear
Programming (FLP) approach, often struggle to address these complexities, particularly
when dealing with conflicting objectives and imprecise data. To tackle these challenges,
this study introduces a five-phase hybrid fuzzy optimization approach that integrates
advanced methodologies such as Intuitionistic Fuzzy Linear Programming (IFLP),
Realistic Robust Programming (RRP), Chance-Constrained Programming (CCP), and
the Augmented Epsilon Constraint (AUGMECON) method. This approach aims to
provide a more robust, flexible solution to SCAPP problems. A detailed case study
demonstrates how the proposed approach effectively minimizes total supply chain
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costs, minimizes total product shortages, and maximizes total purchase values under
uncertain circumstances, including imprecise operating costs, customer demands,
defective rates, and service levels. The results also show that the integrated approach
outperforms conventional specific FLP approach, offering enhanced hesitation
allowance, robust modeling, and a more comprehensive consideration of satisfaction
and non-satisfaction levels. Additionally, it generates a set of strong Pareto-optimal
solutions, enabling decision makers to make more informed and effective choices
aligned with strategic goals. This study thus provides a valuable tool for enhancing the
efficiency and effectiveness of SCAPP in uncertain and competitive environments.

4.1.1 Mathematical Notations and Model

The notations for indexes, parameters, and decision variables are presented in

Tables 4.1 to 4.4. Notably, all fuzzy parameters are denoted with a tilde (~) placed

above the corresponding symbols to indicate their fuzzy nature.

Table 4.1 Indexes of SCAPP problem (Case 1).

Indexes Meaning
r Raw materials index (r =1, ..., R)
s Suppliersindex (s = 1, ..., 5)
n Products index (n=1, ..., N)
t Planning periods index (t=1, ..., T)
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Table 4.2 Crisp parameters of SCAPP problem (Case 1).

Crisp .
Parameters Meaning
NIL, Initial labor force in period O (persons)
PL Productivity of labors (0 < PL < 1)
AFV Acceptable fraction of labor variation (%)
SCRM, Production site storage limit for raw material r (units)
Total evaluation score of supplier s with respect to raw material
TSS, :
quality (%)
SCE, Production site storage limit for final product n (units)
PT, Manufacturing time per unit of product n (min)
ART; Regular working time available in period t (hours)
AOT; Overtime working available in period t (hours)
Volume of raw material r consumed for each unit of product n
NRM,,, )
(units)
MaxSQ,, I(\L/leﬁg r)num allowable subcontracted quantity of product n in period t
MaxMC,, Maxm_wum machine usage allocated to product n in period t
(machine-hours)
Machine utilization per unit of product n in period t (machine-
MHU,, :
hours/unit)
MaxCRM,,, Max!mum quantity of raw material r supplied by supplier s in period
t (units)
ST Total shortages of products (units)
TVP Total values of purchasing (units)
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Table 4.3 Uncertain parameters of SCAPP problem (Case 1).

Uncertain Meaning
Parameters
BT Production cost during regular hours under fuzzy conditions in period
t t ($/minute)
oTC Production cost during overtime under fuzziness in period t
t ($/minute)
e Production cost of subcontracting under fuzziness in period t
t ($/minute)
SW, Labor wage under fuzziness in period t ($/person)
HC, Labor hiring cost under fuzziness in period t ($/person)
FC, Labor dismissal cost under fuzziness in period t ($/person)
ACSL, Production plant service level threshold with fuzziness in period t (%)
— Inventory holding cost of raw material r under fuzziness in period t
IRMC,, ;
($/unit)
TRIMC Logistics cost.under fuzziness for raw material r from supplier s in
st | period t ($/unit)
AVSL,, | Average fuzzy service quality level of supplier s in period t (%)
T Logistics cost under fuzziness for product n shipped from plant to
nt | customers in period t ($/unit)
FC Inventory holding cost of product n under fuzziness in period t
nt | ($/unit)
D,, Customer demand under fuzziness for product n in period t (units)
PSC,,, Penalty cost under fuzziness for product n shortage in period t ($/unit)
ACERM Accepta}ble fuzzy_ failure percentage for raw material r in the
STt | production plant in period t (%)
AVFRM Avera}ge fl_Jzzy fgilure percentage of raw material r supplied by
STt | supplier s in period t (%)
Be Unit acquisition cost under fuzziness for raw material r supplied by
srt supplier s in period t ($/unit)
TSC Total supply chain operational costs ($)
PuC Total purchasing costs ($)
pPrC Total production costs ($)
WLC Total costs of worker (3$)
vC Total inventory costs ($)
SPC Total shipping costs ($)
STC Total shortage costs ($)
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Table 4.4 Decision variables of SCAPP problem (Case 1).

Decision
Variables
NHW, Total labor force employed in period t (persons)
NFW, Total labor force terminated in period t (persons)
IRM,., Ending inventory of raw material r in period t (units)
Production quantity of product n within regular working hours in

Meaning

RT Qe period t (units)
0TQ Pro_duction quantity of product n within overtime hours in period t
"t | (units)
SQ Units of product n manufactured through subcontracting in period t
nt (units)
FQ,; Amount of product n delivered to customers in period t (units)
IF,; Ending inventory of product n in period t (units)

SFO,,; Quantity of product n shortage for customers in period t (units)
RMOQ Amount of raw material r delivered by supplier s during period t
STt | (units)

Obijective Functions

1. Minimization of Total Supply Chain Costs: This is typically a primary goal when
developing an effective supply chain production plan. Total supply chain costs
generally include purchasing costs, production costs, labor costs, inventory costs,
shipping costs, and shortage costs over a specific period. These costs may be uncertain
due to incomplete or unavailable information. The uncertain values of these costs can
be represented as triangular fuzzy numbers or triangular intuitionistic fuzzy numbers.

The objective function can be expressed as follows:

Minimize TSC = PuC + PrC + WLC + IVC + SPC + STC

=Y 2R Y1 PCsre X RMQgye + XN -1 X1-1 RTC, X PT,, X RTQye

+ YN 2t=1 0TC, X PT,, X OTQye + XN_1 X1-1 SC, X PT, X SQpy

+3T_ SW, X NW, + ¥T_, HC, x NHW, + ¥I_, FC, x NFW,

+ X8 T IRMCyy X IRMy + XNy Xioy [FCp X IFye

+ X5 2R YT TRMCye X RMQgre + Yoy Yomcy Dte1 TFCine X FQuuny

+ 31 Y1 Yte1 PSCome X SFOppe (4.1)

Equation (4.1) represents the minimization of total supply chain costs as an
economic objective. This includes the total purchasing cost, total production cost, total
labor cost, total inventory cost, total shipping cost, and total shortage cost. The total
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purchasing cost is incurred from acquiring the necessary raw materials from each
supplier. The total production cost is the sum of costs for producing products during
regular hours, overtime, and subcontracting. The total labor cost includes salary
expenses as well as the expenses related to recruitment and termination of labors. The
total inventory cost arises from storing raw materials and products. The total shipping
cost encompasses the transportation of raw materials from suppliers to manufacturers
and the delivery of products from manufacturers to customers. Lastly, the total shortage

cost represents the penalty incurred due to product shortages.

2. Minimization of Total Product Shortages: Product shortages occur when volatile
customer demand and limited warehouse capacity result in insufficient inventory to
meet customer needs. To address this, minimizing total product shortages becomes a
critical consideration, helping firms fulfill customer requirements more effectively.

This objective is formally expressed by the following mathematical formulation:

Minimize ST = g=1 Z%:l ZZ=1 SFOumt (4.2)

3. Maximization of Total Purchasing Value: Maximizing the total value of
purchasing is another essential objective. This goal ensures that an organization
procures not only the highest quantity of raw materials but also the highest quality
materials, evaluated based on factors such as price, quality, and timely delivery. This

objective can be expressed by the following mathematical equation:

Maximize TVP = Y5_, TSS; X RMQqt (4.3)

Note: Suppliers can be evaluated and scored based on their performance using
the decision-makers' expertise. The Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS) is a ranking and scoring method that can be employed for
supplier evaluation. It provides decision-makers with a comprehensive weighted score

for each supplier, aiding in informed decision-making.
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Constraints
1. Quality of Raw Materials: The quality of raw materials can be assessed for each

supplier during each period. This involves ensuring that the overall average failure rate
of the raw materials provided does not exceed the specified acceptable failure rate for

each material.

YS_1AVFRM,, X RMQgy < ACFRM, X ¥3_ RMQg,¢ VreRLtET (4.4)

2. Suppliers' Capacity: This reflects the greatest volume of raw materials that a

supplier can offer within a designated timeframe.

RMQg+ < MaxCRMg,, VseSreRteT (4.5)

3. Service Level: This measures the performance of each supplier in terms of on-time
delivery during each period. Specifically, the overall average service level of suppliers

must meet or exceed the specified acceptable service level threshold.

11’2:1 Z§=1AVSLS X RMert = ACSL X 2713:1 2:99:1 RMert VteT (4-6)

4. Available Resource of Raw Materials: This constraint ensures that the aggregate
raw material demand for the two products, including usage during regular hours,
overtime, and subcontracted production, remains within the total raw material supply

available from all suppliers in each period.

n=1 NRMy7 X (RTQpt + OTQny + SQpt) < Xi=1 RM Qg VreRteT (47)

5. Product Shortages: This represents the quantity of products that cannot be supplied
when customer demand exceeds available inventory. Any product shortages will incur
a penalty cost or shortage cost.

SFOumnt = SFOumt—1y + Dume — FQume VneE NmeM,teT (4.8)
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6. Available Production Time: This refers to the constraint on production time,
encompassing both regular working hours and overtime, which is determined by the

available workforce capacity.

NW, x PL x (ART, + AOT,) = ¥N_,(RTQ,; + OTQy,) X PT, Vte T (4.9)

7. Subcontracting Quantity Limitation: This constraint sets the maximum allowable
production volume for products in the designated subcontracting period.

SQn: < MaxSQ,; VneN,teT (4.10)

8. Inventory of Raw Materials: This indicates the residual amount of raw materials

available after production for every period.

IRMye = IRM ¢y + 5-1 RMQsre — ((SNoy RTQue + OT Qe + SQuc) X NRM,.,)

VreRteT
(4.11)

9. Inventory of Products: This denotes the residual quantity of products remaining

after customer demand has been met for each period.

IFTLt S IFTl(t—l) + RTQTLt + OTQTLt + SQTLt - %=1 Fant Vne N, t e T (412)

10. Storage Capacity of Raw Materials: This sets the maximum storage capacity for

raw materials at the manufacturing facility.

YR_ | IRM,, < SCRM, VteT (4.13)

11. Product storage capacity: This refers to the maximum inventory level of products
that can be stored at the manufacturer’s facility.

N_[F, <SCE, Vt>1 (4.14)

Ref. code: 25686422300019ALF



85

12. Setting the initial worker level: This refers to determining the number of workers

assigned during the initial period.

13. Adjusting workforce levels: This refers to optimizing the workforce allocation in

each period to maintain operational balance.

14. Workforce variation proportion: This allows decision-makers to control the
extent of workforce variation in each period by specifying the acceptable percentage of

workforce fluctuations.

NHW, + NFW, < AFV X NW;_;)  Vt€T (4.17)

15. Machine capacity: This refers to the maximum capacity of machines available for

manufacturing products during both regular hours and overtime in each period.

YN_ MHUp X (RTQpp + OTQy) < MaxMC,,  VtET (4.18)

16. Non-Negativity: All decision variables are constrained to be non-negative by
(4.19)—(4.23), with certain variables mandated as integers.

NW;, NHW;, NFW, = 0 and integer VteT (4.19)
RTQ,t, OTQpt, SQue, [Fye = 0 and integer VneN,teT (4.20)
IRM,;, >0  VreRteT (4.21)
SFOpmt» FQume = 0 VneENmeM,teT (4.22)

RMQg+ =0 VseS,reRteET (4.23)
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4.1.2 Problem Description of Case 1

A numerical case study on a supply chain production problem is performed to
illustrate and validate the effectiveness of the proposed five-phase hybrid approach.
The case study involves a supply chain network comprising four qualified suppliers
supplying three essential raw materials, one manufacturer responsible for producing
two types of products, and customers with product demands over a six-month planning
horizon, as depicted in Figure 4.1. The analysis focuses on three key objectives:
minimizing total supply chain costs, minimizing product shortages, and maximizing
total purchasing value. These objectives are addressed within an uncertain environment
characterized by variability in failure rates of product, levels of service, customer
demand, and costs. The uncertainties are represented using triangular fuzzy numbers in
the conventional specific fuzzy linear programming approach and triangular
intuitionistic fuzzy numbers in the proposed hybrid approach, highlighting the latter’s

enhanced capability to handle uncertainty and achieve more robust results.

Suppliers Manufacturer Customer
0.44 R
0.20 p\ t=’@ ;)\
T ‘uuun
0.14 R
0.22 R

Figure 4.1 The structure of SCAPP.
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The assumptions for the SCAPP plan are as follows:

e A list of qualified suppliers is identified, evaluated, and scored according to
price, raw material quality, and level of service, as detailed in Table 4.5.
Fluctuations in raw material failure rates derives from defects, while variations
in the manufacturer’s service level are influenced by the timeliness of deliveries.

e Customers are assigned dynamic demand for each product throughout the six-
month planning horizon. Demand for each product may be satisfied in full or
result in a shortage, with any shortages incurring associated penalty costs.

e All costs related to the supply chain are considered uncertain throughout the
planning horizon.

e Delivery lead time is assumed to have no significant impact.

e The initial inventory quantities and worker levels are predefined at the start of
the planning horizon.

e Maximum machine capacity and warehouse space at the manufacturer are
defined.

e The number of subcontracted product quantities is limited.

To demonstrate the effectiveness of the hybrid methods, the problem is
formulated to simultaneously optimize three objectives (total supply chain costs, total
product shortages, and total purchasing value) with equal importance (weightless).
However, the model can easily accommodate different weight assignments if required

by decision makers.

Table 4.5 Performance of suppliers.

o Supplier (s)
Criteria
51 S2 S3 S4
Price Expensive | Affordable | Affordable | Reasonable
Quality of Raw Material Premium Low Low Fair
Service Level of Supplier Intensive | Reliable Poor Poor
Weighted Score (TSS,;) 0.44 0.20 0.14 0.22
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Values
Parameters
t=1 =2 t=3 =4 =5 =6
ART; 144 160 168 176 120 192
AOT; 50 50 50 60 40 60
MHU,,; =1 =2 t=3 =4 =5 =6
n=1 0.3 0.3 0.3 0.3 0.3 0.3
n=2 0.5 0.5 0.5 0.5 0.5 0.5
MaxSQ,,; t=1 t=2 t=3 t=4 t=5 t=6
n=1 150 150 150 150 150 150
n=2 170 170 170 170 170 170
MaxMCy; t=1 t=2 t=3 t=4 t=5 t=6
n=1 264 264 264 264 264 264
n=2 288 288 288 288 288 288
n=1 n=2
SCE, 3,000 3,000
PT, 0.2 0.4
r=1 r=2 r=3
SCRM, 10,000 10,000 10,000
NRM,., r=1 =2 =3
n=1 2 3 0
=2 2 3 1
NIL, 5
PL 80
AFV 20
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Values Parameters Values
Parameters I ™
t=1 | t=2 | t=3 |t=4|t=5] t=6 TRMC,, (*107%) t=1|t=2[t=3[t=4[t=5|t=6
RTC, 0.6 0.6 0.6 0.6 0.6 0.6 s=1 1 1 1 1 1 1
OTC, 1 1 1 1 1 1 s=2 06 | 06 | 06 | 06 | 0.6 | 0.6
SC, 1.4 1.4 1.4 1.4 1.4 1.4 s=3 03 03|03 )]03 )| 03] 03
SW, 150 150 150 | 150 150 150 s=4 06 | 06 | 06 | 06 | 0.6 | 0.6
HC, 50 50 50 50 50 50 ACFRMg,, (*1073) r=1 r=2 r=3
FC, 70 70 70 70 70 70 s=1 0.9 1 1.1
ACSL, 0.7 0.7 0.7 0.7 0.7 0.7 s=2 1.5 1.7 1.6
Dy t=1 | t=2 | t=3 | t=4 | t=5| t=6 s=3 1.5 1.7 1.6
n=1 2,420 | 1,210 | 3,440 | 1,630 | 4,360 | 2,550 s=4 1.2 1.4 1.3
n=2 2,510 | 4,320 | 1,630 | 3,440 | 1,250 | 2,460 AVFRM,, (*1073) =1 =2 =3
TFC, (*1073) =1 =2 = =4 =5 =6 s=1 0.009 0.01 0.0088
n=1 5 5 5 5 5 5 s=2 0.015 0.017 0.0128
n=2 7 7 7 7 ¥ 7 =3 0.015 0.017 0.0128
PSC,, t=1 | t=2 | t=3 | t=4 | t=5 | t=6 s=4 0.012 0.014 0.0104
n=1 2.5 2.5 25 25 2.5 2.5 PC.,. (*1073) =1 =2 =3
n=2 2.8 2.8 2.8 2.8 2.8 2.8 =1 2 3 1
IRMC,, =1 =2 =3 =4 =5 =6 =2 1 2 0.5
r=1 1.8 1.8 1.8 1.8 1.8 1.8 =3 0.5 1 0.3
r=2 1.9 1.9 1.9 1.9 1.9 1.9 s=4 1 2 0.5
r=3 1.7 1.7 | 17 | 17 | 17 1.7 MaxCRMg,, (*1073) r=1 r=2 r=3
AVSLg, (*1073) t=1 | t=2 | t=3 |t=4|t=5] t=6 s=1 35 35 35
s=1 0.8 0.8 0.8 0.8 0.8 0.8 s=2 3 3 3
s=2 0.75 075 | 0.75 | 0.75 | 0.75 | 0.75 s=3 35 3 45
s=3 0.7 0.7 0.7 0.7 0.7 0.7 s=4 3 35 3.5
s=4 0.7 0.7 0.7 0.7 0.7 0.7
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Tables 4.6 and 4.7 present the input parameters for the supply chain production
planning model, including both crisp and fuzzy values. For this demonstration, three
key points of a triangular fuzzy number are generated by adding and subtracting 20%
from the most likely value. Similarly, six key points of a triangular intuitionistic fuzzy
number are generated by adding and subtracting 20% from the most likely value for the
membership function and adding and subtracting 40% from the most likely value for

the non-membership function.

4.1.3 Results of Case 1
This section highlights the effectiveness and strengths of the proposed five-
phase hybrid fuzzy optimization approach by comparing its results with those of the

conventional specific fuzzy optimization approach.

e Result of A Conventional Specific Fuzzy Optimization Approach

Table 4.8 Result of a conventional specific fuzzy optimization approach.

Conventional Specific Fuzzy Optimization
Approach
Minimize Total Supply Chain Costs $268,520
Minimize Total Shortage of Products 85,871 units
Maximize Total Values of Purchasing 12,644 units
Satisfaction Level of 1% objective 50.004%
Satisfaction Level of 2" objective 82.959%
Satisfaction Level of 3™ objective 50.000%
Maximize minimum satisfaction value 50.000%

The conventional specific fuzzy optimization approach effectively generates a
supply chain production plan with a minimum total cost of $268,520, a minimum total
product shortage of 85,871 units, and a maximum total purchasing value of 12,644
units. The overall satisfaction level achieved is 50%, with the minimum satisfaction
level among the objective functions being maximized. The satisfaction levels for the
first, second, and third objectives are 50.004%, 82.959%, and 50%, respectively.
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e Result of Five-Phase Hybrid Fuzzy Optimization Approach
A set of Pareto optimal solutions generated by this approach, allowing decision-

makers to select the most preferred solution. In cases where the preference for
objectives is not clearly defined, various methods are proposed to assist DMs in making
informed decisions. One such method is the linear normalization max method, initially
introduced by Jafaryeganeh et al. (2020) and applied in this study. Performance is
normalized by scaling each attribute value relative to the maximum value within its
criterion, with the overall score derived from the sum of these scaled ratios for all
objectives. The linear normalization max method is computed through distinct

equations depending on whether the goal is maximization or minimization.

e Normalized ratio of a maximization objective
NR, =-2_ (4.24)
Zj Z]I;’IS .
e Normalized ratio of a minimization objective

Z.
NRz, = (1- s (4.25)

J

where Z;, Z7'* and Z'S are objective value and Positive Ideal Solution (PIS) and

Negative Ideal Solutions (NIS) values of each objective function.
Then, these aggregated normalized ratios quantify the total deviation from ideal
solutions, whereby a greater score signifies a more optimal solution relative to others.

Aggregated score - 3._, normalized ratio of Z; (4.26)
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Objective Function Satisfaction Level Non-Satisfaction Level m?r?llrmzrﬁ Normalized Ratio
No. Minimize . satisfaction
Oof Total Mthumlze Maximize level and
. otal . . Aggregated
grid | e, e3 Supply | shortage | ., 1Ot Mz, | Mz, | Mgz Tz, | Tz, | o Minimize | NRz, | NRz, | yp Score
points Chain of Values of (%) (%) (%) (%) (%) (;3 maximum Z3
GP) Costs Products | Purchasing (%) non--
$) units) (units) satisfaction
level (%)
0 78,326 | 7,784 | 222,460 76,750 7,784 84.104 | 100 | 84.102 | 15.876 0 15.898 68.2049 | 0.0332 | 0.0000 | 0.6921 0.7254
1 78,248 | 8,660 | 222,460 76,829 8,660 84.104 | 100 | 84.102 | 15.876 0 15.898 68.2049 | 0.0332 | 0.0010 | 0.6575 0.6918
2 78,169 | 9,535 | 222,460 76,908 9,535 84.104 | 100 | 84.102 | 15.876 0 15.898 68.2049 | 0.0332 | 0.0020 | 0.6229 0.6582
3 78,090 | 10,410 | 222,460 76,987 10,410 84.104 | 100 | 84.102 | 15.876 0 15.898 68.2049 | 0.0332 | 0.0030 | 0.5883 0.6246
4 78,011 | 11,285 | 222,460 77,066 11,285 84.104 | 100 | 84.102 | 15.876 0 15.898 68.2053 | 0.0332 | 0.0041 | 0.5537 0.5910
5 77,932 | 12,160 | 222,460 77,144 12,160 84.104 | 100 | 84.102 | 15.876 0 15.898 68.2053 | 0.0332 | 0.0051 | 0.5191 0.5575
6 77,854 | 13,035 | 222,460 77,223 13,035 84.104 | 100 | 84.102 | 15.876 0 15.898 68.2056 | 0.0332 | 0.0061 | 0.4845 0.5239
7 77,775 | 13,911 | 222,460 77,302 13,911 84.104 | 100 | 84.102 | 15.876 0 15.898 68.2056 | 0.0332 | 0.0071 | 0.4498 0.4903
8 77,696 | 14,786 | 222,460 77,381 14,786 84.104 | 100 | 84.102 | 15.876 0 15.898 68.2056 | 0.0332 | 0.0082 | 0.4152 0.4567
9 77,617 | 15,661 | 222,460 77,460 15,661 84.104 | 100 | 84.102 | 15.876 0 15.898 68.2056 | 0.0332 | 0.0092 | 0.3806 0.4231
10 77,538 | 16,536 | 222,460 77,538 16,536 84.104 | 100 | 84.102 | 15.876 0 15.898 68.2056 | 0.0332 | 0.0102 | 0.3460 0.3895
11 77,460 | 17,411 | 222,460 77,617 17,411 84.104 | 100 | 84.102 | 15.876 0 15.898 68.2056 | 0.0332 | 0.0113 | 0.3114 0.3560
12 77,381 | 18,286 | 222,460 77,969 18,286 84.104 | 100 | 84.102 | 15.876 0 15.898 68.2056 | 0.0332 | 0.0123 | 0.2768 0.3224
13 77,302 | 19,161 | 222,480 77,775 19,161 84.104 | 100 | 84.064 | 15.915 0 15.936 68.1271 | 0.0333 | 0.0133 | 0.2422 0.2889
14 77,223 | 20,037 | 222,480 77,854 20,037 84.065 | 100 | 84.064 | 15.915 0 15.936 68.1271 | 0.0333 | 0.0143 | 0.2076 0.2553
15 77,144 | 20,912 | 222,480 77,932 20,912 84.065 | 100 | 84.064 | 15.915 0 15.936 68.1271 | 0.0333 | 0.0154 | 0.1730 0.2217
16 77,066 | 21,787 | 222,481 78,011 21,787 84.065 | 100 | 84.064 | 15.915 0 15.936 68.1271 | 0.0333 | 0.0164 | 0.1384 0.1881
17 76,987 | 22,662 | 223,680 78,090 22,662 81.399 | 100 | 85.004 | 18.581 0 14.996 62.8181 | 0.0389 | 0.0174 | 0.1038 0.1601
18 76,908 | 23,537 | 230,440 78,169 23,537 66.386 | 100 | 90.003 | 33.594 0 9.997 32.7924 | 0.0703 | 0.0184 | 0.6921 0.1580
19 76,829 | 24,412 | 237,250 78,248 24,412 51.279 | 100 | 95.001 | 48.701 0 4.999 2.5781 0.1019 | 0.0195 | 0.3460 0.1560
20 76,750 | 25,287 | 237,800 78,326 25,287 50.059 | 100 100 49.921 0 0 0.1380 0.1045 | 0.0205 | 0.0000 0.1250
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This section presents a comparison of the optimal results from the conventional

specific fuzzy optimization approach and the proposed five-phase hybrid fuzzy

optimization approach, emphasizing the key contributions.

Table 4.10 Results comparison of Case 1.

Conventional Specific Five-Phase Hybrid
Fuzzy Optimization Fuzzy Optimization
Approach Approach

I(\:Ac;ggsrnlze Total Supply Chain $268 520 $223 680
F'\,"r:)rglrj'(‘:'ée rotalgnenagetn 85,871 units 78,090 units
F'\,’Laé'hrgs'izﬁgma' palugsor 12,644 units 22,662 units

H H st
ig}gg\clgo” LevehghT 50.004% 81.399%

- - nd
igj“esgg\clgon adpabals 82.959% 100%

- - rd
igj“esgg\clgon revelior3 50.000% 85.004%
Non-Satisfaction Level of 1% 0
objective i 18.p51%
Non-Satisfaction Level of 2" ] 0%
objective 0
Non-Satisfaction Level of 3™ . 14.996%
objective ' °
Maximize minimum .
satisfaction value et
Maximize Minimum
Satisfaction Value and 0
Minimize Maximum Non- i 62.818%
Satisfaction Value

According to Table 4.10, the efficient supply chain production plan derived

from the five-phase hybrid fuzzy optimization approach, which simultaneously

maximizes the minimum satisfaction value and minimizes the maximum non-

satisfaction value, demonstrates clear advantages over the plan based on the

conventional specific fuzzy optimization approach, which focuses solely on

maximizing the minimum satisfaction value. The superior performance of the hybrid
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approach is evident not only in the aggregated results but also in the stability of
objective function values. Specifically, the hybrid model achieves a minimum total
supply chain cost of $223,680, with observed cost fluctuations ranging between
$223,680 and $256,310, indicating a more controlled and predictable cost behavior. It
also results in a minimum total product shortage of 78,090 units, fluctuating within a
narrower band of 78,090 to 82,450 units, demonstrating improved reliability in meeting
customer demand. Furthermore, the maximum total purchasing value reaches 22,662
units, varying between 20,310 and 22,662 units, which reflects more consistent
procurement planning. In contrast, the conventional approach exhibits wider and more
erratic fluctuations, with total supply chain costs ranging from $268,520 up to
$301,240, product shortages vary from 85,871 to 93,500 units and purchasing values
ranging from as low as 10,020 to a maximum of only 12,644 units. These wider
fluctuations indicate less robustness under uncertainty. Therefore, the hybrid approach
not only delivers better nominal performance but also improves the stability and

resilience of the SC against fluctuating conditions.

4.1.3.2 Case 1’s Validation of the Results
Validating the results is a critical step in confirming the robustness and
reliability of the proposed five-phase hybrid fuzzy optimization approach. This includes
assessing its ability to handle data fuzziness and hesitation, manage data fuzziness by
adjusting the confidence level of constraints, and evaluate the model's overall
robustness.
e Test Ability to Handle Data Fuzziness and Data Hesitation
To assess its ability to handle data fuzziness and hesitation, the model based on
the proposed five-phase hybrid fuzzy optimization approach is tested with
different acceptable sets of Triangular Intuitionistic Fuzzy Numbers (TIFN).
This is done by varying the acceptable level percentage (4 = 50%, 60%, 70%,
80%, 90%) and the rejection level percentage (R = 50%, 40%, 30%, 20%, 10%)

to identify the most efficient data set.
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Table 4.11 Results of testing ability to handle data fuzziness and data hesitation.

Obijective Function

Minimize Minimize | Maximize

A R Total Total Total
Deviation

(%) | (%) | Supply | Shortage of | Values of
. : (%)

Chain Costs | Products | Purchasing

$ (units) (units)
50 | 50 262,720 80,262 12,647 0.02598
60 | 40 261,580 78,272 12,647 0.02261
70 | 30 260,410 77,834 12,650 0.04748
80 | 20 259,240 77,375 12,651 0.05215
90 | 10 257,990 76,960 12,673 2.29106

264,000
263,000
262,000
261,000
260,000

259,000

Minimize Total Supply Chain Costs

A=B0A, R=50%  A=G0%, R=d40% A=T0%, R=30%  A-B80%, R=20% A=90%, R=10%

Minimize Shortage of Products

A=50%, R=50%  A=G0%, R=40%

AsT70%, Re30%  A=B0%, Ra20% A=00%, A=10%

Maximize Total Values of Purchasing

A=50%, R=50%

A=G0%, R=d0s  A=T0%, R=230%  A=80%,R=20%  A=90%, R=10%

Figure 4.2 Objective function values of testing ability to handle data fuzziness

and data hesitation.

As shown in the outcomes in Table 4.11 and Figure 4.2, increasing the

acceptable level percentage or decreasing the rejection level percentage leads to

improved values for the objective functions. Consequently, this approach enables the
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generation of efficient outputs, allowing decision-makers to adjust the acceptable level

(o) and rejection level (B) percentages according to their experiences or preferences.

This flexibility supports the development of effective operational and strategic plans to

address future uncertainties.

e Test Ability to Handle Data Fuzziness by Setting the Confident Level of

Constraints

To evaluate its capability to handle data fuzziness by adjusting the confidence

level of constraints, the model based on the proposed five-phase hybrid fuzzy

optimization approach is tested using various confidence level percentages (y=
50%, 60%, 70%, 80%, 90%, and 100%).

Table 4.12 Result of testing ability to handle data fuzziness by setting the

confident level of constraints.

Objective Function
Minimize Total | Minimize Total Maximize
% confident level |

Supply Chain Shortage of Total Values

2 Costs Products of Purchasing
($) (UnitS) (UnitS)
50 222,140 75,854 22,775
60 224,550 76,750 21,879
70 226,910 77,626 21,003
80 229,250 78,497 20,132
90 231,610 79,373 19,256
100 233,930 80,231 18,398
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Minimize Total Supply Chain Costs Minimize Shortage of Products
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Figure 4.3 Objective function values of testing ability to handle data fuzziness by

setting the confident level of constraints.

As shown in Table 4.12 and Figure 4.3, increasing the confidence level
percentage results in higher values for all objective functions. This indicates that the
objective functions become less desirable due to the trade-off between the confidence
level for risk violations and the optimal value of the objective function. Therefore, when
the confidence level for risk violation is high (indicating a lower risk of constraint
violations), the feasible solution set is reduced, leading to less favorable optimal

objective function values.

e Test Ability of Model Robustness
To evaluate the robustness of the model, the outcomes obtained from the RRP
approach are compared with those of the conventional approach, which utilizes
the EV and CCP methods without incorporating RRP. The comparison is based
on two performance metrics: the average value and standard deviation, which
reflect the efficiency and reliability of the optimal solution. This evaluation is
conducted across 10 scenarios, each generated using a uniform distribution

between the pessimistic value and optimistic value of the fuzzy parameters.
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Accordingly, only the minimization of total supply chain costs; fuzzy objective

function, is tested under these scenarios, as presented in Table 4.13.

Table 4.13 Result of testing ability of model robustness.

No. of Scenarios | EV and CCP Approaches | RRP Approach
(y=0.8) (v =0.8)

1 $207,903.433 $208,213.495

2 $209,885.950 $209,934.020

3 $211,606.324 $211,654.546

4 $213,326.704 $213,375.070

5 $215,047.079 $215,077.055

6 $216,767.454 $216,798.344

7 $218,487.833 $218,517.705

8 $220,208.207 $220,238.185

9 $221,928.585 $221,958.562

10 $223,648.962 $223,678.938
Average $215,881.053 $215,844.592

Standard Deviation $5,252.465 $5,042.711

As shown in Table 4.13, the average values of both approaches are similar, but

the Standard Deviation (SD) value for the RRP approach is smaller. This clearly
indicates that the RRP approach is more effective in handling information distribution.

Therefore, the robustness of the model can be confirmed.

4.1.4 Summary

Creating an effective and realistic supply chain production plan requires
addressing two critical challenges: data uncertainty and conflicting objectives. This
study offers a range of valuable insights and implications to support managerial
decision-making in practice.

In real-world applications, it is difficult for companies to separate supply chain
operations from production planning. This study provides a valuable example of how
these operations can be integrated and optimized simultaneously. Moreover, collected
data can be imprecise due to factors such as unavailability, incompleteness, estimation
errors, time variation, and DMSs' hesitation. An effective approach is essential to manage
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these uncertainties, enabling companies to develop more robust operational and
strategic plans to handle future uncertainties effectively.

A significant challenge in practical applications is the difficulty DMs face in
controlling the fuzziness levels of constraints. However, knowing the optimal fuzziness
levels can assist DMs in making better decisions for their operations. By employing a
credibility level to indicate the likelihood of a fuzzy event, the uncertain parameters can
be transformed into crisp values. Adjusting these credibility levels leads to a range of
optimal results, from optimistic to pessimistic, providing planners and managers with
flexible inputs. This enables them to develop operational and strategic plans that
account for different scenarios, allowing them to select the most appropriate plan based
on their specific situation.

Another issue in supply chain operations and production planning is the
presence of data noise, which cannot be fully controlled. Data noise arises from both
the data collection process and calculations. The model robustness addressed in this
study helps generate reliable optimal solutions, even in the presence of data noise,
enhancing the overall reliability of the decision-making process.

When multiple conflicting objectives are considered simultaneously, this study
demonstrates that a set of strong Pareto optimal solutions can be generated. These
solutions reflect different compromises between satisfaction and non-satisfaction
levels, offering DMs valuable choices in alignment with their policies, where no
objectives are drastically worsened or overly sacrificed.

The five-phase hybrid approach proposed in this study outperforms the
conventional fuzzy linear programming approach in several ways. It was demonstrated
and validated through a multiple-objective SCPP problem that incorporates uncertainty
in customer demand and related costs. The SCPP problem integrated procurement,
production, and distribution plans, optimizing the minimization of total supply chain
costs, the minimization of product shortages, and the maximization of total purchasing
values simultaneously.

The proposed approach effectively addresses the weaknesses of the
conventional specific FLP model. It uses Triangular Intuitionistic Fuzzy Numbers
(TIFN) to represent both imprecise data and data hesitation. The (a, 8)-cut approach

filters out unacceptable data, while the Realistic Robust Programming (RRP) manages
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uncertainty in fuzzy objective functions and enhances model robustness. The Chance-
Constrained Programming (CCP) approach deals with uncertainty in fuzzy constraints
and sets credibility levels. The Intuitionistic Fuzzy Linear Programming (IFLP)
approach optimizes multi-objective problems with respect to both satisfaction and non-
satisfaction levels. Finally, The AUGMECON approach concludes by generating
multiple Pareto optimal solutions, offering flexibility for decision-makers to select an
alternative that best fits their objectives or constraints.

In summary, the optimal solutions obtained from the proposed five-phase
hybrid approach demonstrate its effectiveness in providing efficient and consistent
solutions. It also provides flexibility by generating different efficient solutions,
allowing DMs to select the preferred satisfactory solution. Despite these strengths, the
study has some limitations. First, there are no restrictions on the amount of fuzziness
parameters, which could impact the final solution. Second, all fuzzy parameters were
represented by triangular distributions, but other distribution types could also be used.
Third, the study could be expanded to include more realistic conditions, such as
multiple manufacturers, customers, and distributors, which would increase the
complexity and realism of the model. As the model becomes more complex, exploring
the use of meta-heuristic algorithms, such as Genetic Algorithms (GA), could offer a
near optimal results or approximately optimal results. Additionally, incorporating
alternative transportation routes and addressing vehicle routing and lateral

transshipment problems could further enhance the model’s applicability.

4.2 Case 2: A Unified Fairness and Robustness Fuzzy Optimization Approach
for Supply Chain Aggregate Production Planning

Aggregate Production Planning (APP) in Supply Chain (SC) management is
essential for aligning production activities with organizational goals. However,
conventional specific fuzzy optimization approach to APP often fails to address two
critical challenges: Proportional Fairness (PF) among competing objectives and
robustness under uncertainty. The lack of fairness in multi-objective optimization can
lead to inequitable outcomes, where certain objectives are prioritized over others based
on differing priorities. Similarly, neglecting robustness in APP optimization can result

in unreliable and non-resilient plans, particularly when dealing with uncertain or
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imprecise information. These challenges underscore the need for an innovative
approach that integrates both fairness and robustness into the APP process. To address
this gap, this study proposes a unified fairness and robustness optimization model that
combines Proportional Fairness (PF) and Robust Chance-Constrained Programming
(RCCP). This study aims to address the complexities of managing multi-objective APP
in uncertain environments. The effectiveness of the proposed approach is demonstrated
through a case study that focuses on minimizing total costs, minimizing total workforce
level fluctuations, and maximizing total value of purchasing. Comparative analysis
shows that the proposed approach outperforms conventional specific fuzzy
optimization approach by enhancing both fairness and robustness in APP outcomes.
This study provides decision-makers with a comprehensive framework to achieve
equitable and resilient APP solutions, contributing to the long-term sustainability and

efficiency of supply chain operations.

4.2.1 Mathematical Notations and Model
The notations for indexes, parameters, and decision variables are provided in

Tables 4.14 to 4.17. Notably, all fuzzy parameters are represented with a tilde (~)

above the corresponding symbols to indicate their fuzzy nature.

Table 4.14 Indexes of SCAPP problem (Case 2).

Indexes Meaning

List of suppliers (s =1, ..., 5)
t List of planning horizons (t=1, ..., T)
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Table 4.15 Crisp parameters of SCAPP problem (Case 2).

Crisp Parameters Meaning
W, Initial staffing level (persons)
P Worker output efficiency (%) (0 < PL < 1)
AWV Allowed variation in staffing (%)
TS, Total score of supplier s (%)
ProdT Processing time per product at the plant (minutes)
ART; Regular time availability in period t (hours)
AOT; Overtime availability in period t (hours)
RPP Quantity of raw materials required per product (units)
MaxM, Maximum operational capacity of machines in period t (m/c-hours)
MU, Machine operating time per unit in period t (m/c-hours/unit)
The amount of warehouse capacity reserved for raw materials at the factory in
WSR, i oy
period t (m*/unit)
The amount of warehouse capacity reserved for final products at the factory in
WSP, . .~
period t (m*/unit)
MaxWs$, The upper limit of storage space usable at the factory in period t (m?)
The upper limit of raw material available from supplier s in period in period t
MaxRs (units)
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Table 4.16 Uncertain parameters of SCAPP problem (Case 2).

Uncertain Parameters Meaning
CRT, Production cost under fuzziness for regular hours in period t ($/minute)
COT, Production cost under fuzziness for overtime hours in period t ($/minute)
WS, Wage cost under fuzziness for workers in period t ($/person)
HC, Recruitment cost under fuzziness in period t ($/person)
FC, Termination cost under fuzziness in period t ($/person)
ACSL, Service level threshold under fuzziness for the production plant during period t (%)
ICR, Raw material inventory cost under fuzziness in period t ($/unit)
TCR,, Transportation expenses under fuzziness for raw materials from supplier s in period t ($/unit)
AVSL, Average service performance under fuzziness from supplier s in period t (%)
—— Delivery expenses under fuzziness for shipments from the production plant to customers in period t
TCP, .
($/unit)
ICP, Product inventory carrying cost under fuzziness in period t ($/unit)
PeC, Penalty cost under fuzziness for product stockouts affecting customers in period t ($/unit)
De, Product demand under fuzziness from customers in period t (units)
ACFR Tolerable raw material failure rate under fuzziness in the production facility (%)
AVFR, Average fuzzy defect rate for raw materials delivered by supplier s (%)
PuC, Acquisition expenses under fuzziness for raw materials from supplier s in period t ($/unit)
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Table 4.17 Decision variables of SCAPP problem (Case 2).

Decision

Variables Meaning

NW, Workforce headcount in period t (persons)

NHW, Total recruited workforce in period t (persons)
NFW, Total terminated workforce in period t (persons)
IR, Ending raw material stock for period t (units)
RTQ; Production volume within regular time in period t (units)
0TQ; Production volume within overtime in period t (units)

PQ, Product volume allocated to customers in period t (units)
1P, Ending product stock for period t (units)
SPO, Insufficient product availability for customers in period t (units)

RQq,+ Raw material volume delivered by supplier s in period t (units)

Obijective Functions

1. Minimizing total costs is a fundamental objective in formulating an effective APP
strategy within a SC. This objective underscores the importance of cost efficiency in
ensuring the overall competitiveness and sustainability of supply chain operations.
Typically, the total costs (denoted as TC) in such models are subject to uncertainty,
reflecting the inherent variability in supply chain processes. These costs are aggregated
as the sum of several critical components, including purchasing costs (TPuC),
production costs (TPrC), workers’ costs (TWC), inventory costs (TIC), transportation
costs (TTC), and shortage costs (T'SQ), each of which contributes to the total financial

expenditure over a specified planning horizon.

Minimize TSC = TPuC + TPrC + TWLC + TIC + TTC + TSQ

= (X321 X121 PuCye X RQy) + (271 CRT, X PT X RTQ,)

+(XT_, COT, x PT x OTQ,) + (XT-, WS, x NW,) + (X_, HC, X NHW,)

+(XT_ FC, x NFW,) + (X1, ICR, X IR,) + (X1_, ICP, X IP,)

+(Z§=1 Y1 TCRy X RQst) + (Z§=1 TCP, x PQt) + (Z{=1 PeC, x SPQt) (4.27)

Ref. code: 25686422300019ALF



105

2. Minimizing fluctuations in workforce levels is a vital aspect of effective supply
chain and production planning, as maintaining a stable workforce is crucial for
operational efficiency and long-term sustainability. Workforce fluctuations, often
caused by seasonal demand variations or production uncertainties, pose significant
challenges for organizations. Excessive changes in workforce levels can lead to the loss
of experienced and skilled workers, whose expertise is vital for maintaining
productivity and quality. Furthermore, these fluctuations often result in substantial
costs, including recruitment, training, severance, and overtime compensation, which

can strain financial resources and reduce overall profitability.

Minimize TCNW = YT_,(NHW, — NFW,) (4.28)

3. Maximizing the total value of purchasing is a critical objective in supply chain
production planning, ensuring the company obtains the ideal number of raw materials
from top-quality suppliers. This objective emphasizes strategic procurement practices
that prioritize suppliers based on their performance in key criteria such as competitive
pricing, superior quality, and timely delivery. By focusing on total value of purchasing,
organizations can strengthen their supply chain resilience, reduce costs, and enhance

the overall efficiency of their production processes.

Maximize TVP = Y5_,TS; X RQg, (4.29)

Constraints
1. Raw Material Quality Assessment: This criterion plays a vital role in ensuring the

efficiency and reliability of supply chain operations. It serves as a systematic method
for assessing the raw materials quality provided by suppliers in each specific period.
High-quality raw materials are critical for maintaining product standards, reducing
defects, and ensuring efficient production processes. By assessing raw material quality
regularly, organizations can ensure that the supplied inputs meet predefined

specifications and performance requirements.

S_1AVFR; X RQs < ACFR; X Y35_1 RMQy,, VteT (4.30)
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2. Supplier Capacity: Supplier capacity denotes the highest quantity of raw materials
that a supplier can consistently provide within a designated time frame. This metric is
critical for effective supply chain planning, as it directly impacts the ability of the
organization to meet production schedules and customer demand. Understanding
supplier capacity enables companies to allocate resources more effectively, balance

supply with demand, and avoid potential bottlenecks in the production process.

RQg < MaxRg; VseSteT (4.31)

3. Supplier Service Level: The supplier service level is an important measure that
evaluates suppliers’ reliability and effectiveness, especially regarding their punctuality
in delivering raw materials within each designated period. This metric is essential for
maintaining a smooth and uninterrupted supply chain, as timely deliveries are crucial
for meeting production schedules, fulfilling customer demands, and avoiding costly

delays.

S_ AVSL, X RQy = ACSLX ¥5_,RQ;,  Vt€eT (4.32)

4. Raw Material Availability: Ensuring raw material availability is a cornerstone of
effective supply chain and production planning. This criterion represents the combined
total resources supplied by all vendors within a given period, ensuring that the overall

raw material demand for production during that time is fully satisfied.

RPP X (RTQp: + OTQp) < ¥5_; RQq; VteT (4.33)

5. Raw Material Inventory: Raw material inventory represents the leftover quantity
of raw materials available at the close of each production period, following the
fulfillment of manufacturing needs for that timeframe. This remaining stock is crucial
for maintaining smooth operations and reducing the risks linked to supply chain

interruptions.

IR, = IR(-1) + X3-1 RQst — (RTQ, + OTQ,) X RPP VteET (4.34)
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6. Product Shortages: Product shortages occur when the available quantity of products
is insufficient to meet customer demand within a specified period. This metric
highlights the gap between the required quantity of products and the actual amount that
can be supplied to customers, indicating instances where demand exceeds production
capacity or supply availability. A product shortage may occur due to various factors,
such as production delays, supply chain disruptions, insufficient raw materials, or

inaccurate demand forecasting.

SPQ; = SPQ-1) + De; — PQ, VteET (4.35)

7. Production Time Availability: Production time availability is a critical constraint
that governs the total hours available for production activities within a given period. It
includes both regular working hours and overtime hours, which are subject to
limitations based on workforce levels and operational capacities. This constraint is
essential for ensuring that the production process aligns with the required output to meet
customer demand while adhering to workforce availability and scheduling restrictions.
NW, X P x (RT; + OT,) = (RTQp¢ + OTQ,) XPT  VtE€ T (4.36)

8. Product Inventory: Product inventory refers to the remaining stock of finished
products after fulfilling customer demand within a specific period. It functions as a key
measure of the company’s effectiveness in overseeing production and distribution
operations, ensuring that customer orders are fulfilled promptly. The level of product
inventory directly reflects the balance between production output, customer demand,
and the effectiveness of inventory management strategies.

IP, =IPy_1)+ RTQ, + OTQ, —PQ, Vt€T (4.37)

9. Warehouse Space Limitation: Warehouse space limitation refers to the confined
storage capacity at the manufacturing facility available for storing raw materials and
products within each period. It is a critical operational constraint that directly impacts
the efficiency of both production processes and inventory management. The limited
availability of warehouse space forces companies to optimize the storage and

Ref. code: 25686422300019ALF



108

movement of materials and goods, ensuring that space is utilized efficiently to avoid

bottlenecks, storage inefficiencies, and potential disruptions in production schedules.

(WSP, x IP,) + (WSR, X IR,) < MaxWS, VteT (4.38)

10. Workforce Balancing: Workforce balancing is a critical operational strategy used
to allocate the number of workers across various periods in a way that ensures equitable
distribution based on production needs, skill requirements, and other operational
factors. This equation helps to achieve a workforce allocation that supports optimal
productivity while minimizing disruptions caused by fluctuations in workforce levels.
Proper workforce balancing enables companies to maintain an optimal number of
employees at the appropriate times, leading to more streamlined production, lower labor

expenses, and enhanced overall productivity.

NW, = NW,_;, + NHW, — NFW,  Vt>1 (4.39)

11. Workforce Level Variation Proportion: The concept of workforce level variation
proportion is crucial in managing the fluctuations in workforce size over time, ensuring
that these variations are controlled within acceptable limits. This equation is used to
control the extent of changes or fluctuations in workforce levels between consecutive
periods. By effectively controlling workforce variation, organizations can mitigate the
risks associated with extreme fluctuations, such as labor shortages or excesses, which

could adversely impact production efficiency, labor costs, and employee morale.

NHW; + NFW, < AWV X NW;_;y  VtE€T (4.40)

12. Machine Capacity: Machine capacity is defined as the highest volume of output a
machine can produce within a given period, usually measured in units per hour, day, or
shift. This value is a critical parameter in manufacturing planning and optimization, as
it directly influences production efficiency, throughput, and the overall capacity of the
production facility to meet demand. Machine capacity plays a significant role in

determining how well a company can balance supply with demand, as any limitation in
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machine capacity can lead to production delays, inefficiencies, or even an inability to

meet customer expectations.

MU, X (RTQu; + OTQy) < MaxM,  Vte€T (4.41)

13. Non-Negativity: Constraints (4.42) — (4.45) ensure that all decision variable values

are non-negative, with certain values required to be integers.

NW,, NHW;, NFW, = 0 and integer VteT (4.42)
RTQ:, 0TQy, SQ, 1P, = 0 and integer VteT (4.43)
IR, SPQ:,PQ;, = 0 VteT (4.44)
RMQ, = 0 VseS teT (4.45)

4.2.2 Problem Description of Case 2

The supply chain optimization for the APP problem includes four authorized
suppliers supplying raw materials, one manufacturing facility managing production,
and the customer, as illustrated in Figure 4.4. The planning period covers six months.
This optimization model focuses on three main objectives: (1) minimizing total costs,
which include expenses related to raw material procurement, production, and other
associated costs; (2) minimizing workforce variability to ensure stable and efficient
labor management; and (3) maximizing the total purchasing value to enhance raw
material acquisition. The optimization takes place in an uncertain setting, where key
elements such as customer demand, product failure rates, service quality, and costs vary
and are modeled using Triangular Fuzzy Numbers (TFNs). Given the problem’s
inherent complexity, a thorough methodology is necessary to effectively manage the

multiple objectives and uncertainties present in supply chain operations.
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Figure 4.4 The structure of supply chain.
The evaluation involved a group of certified suppliers whose performance was
rated according to price, quality of raw materials, and supplier service levels, as

summarized in Table 4.18.

Table 4.18 Performance of suppliers.

Y Supplier (s)
Criteria
51 Sz S3 Sa
Price of Raw Material Expensive | Standard Cheap Standard
Quality of Raw Material Top-tier Weak Weak Good
Service Level of Supplier Superior | Satisfactory | Substandard | Substandard
Weighted Score (TSS;) 0.44 0.20 0.14 0.22

The assumptions for the SCPP plan are as follows:

e The uncertainty in raw material failure rates arises from possible material
defects, while variability in the manufacturer's service level is linked to
inconsistencies in delivery punctuality.

e Customer demand for products fluctuates over the six-month planning horizon,

and all associated supply chain costs are affected by uncertainty.
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e Meeting customer demand can result in either full fulfillment or shortages.

e Any shortage results in a penalty, represented by associated shortage costs.

e Lead time is considered insignificant.

Tables 4.19 and 4.20 display the input parameters for the APP in the SC model,

including both precise and fuzzy data. In this case, the three points defining the

Triangular Fuzzy Numbers (TFNs) are calculated by applying a £20% deviation from

the most likely value.

Table 4.19 Precise parameters.

Parameters Values Parameters Values
W, 10 persons CapP 3,000 units
p 65% ProdT 0.4 minutes
AWV 15% RPP 5 units
CapR 10,000 units
t=1 t=2 t=3 t=4 t=5 t=6
ART, (hours) 144 160 168 176 120 192
AOT; (hours) 50 50 50 60 40 60
MaxM;
(mic-hours) 250 250 250 250 250 250
MU,
(m/c-hours/unit) 'R o A > 0 0
WSR, (m?/unit) 7 7 7 7 7 7
WSP, (m?/unit) 35 35 35 35 35 35
MaxWS$§, (m?) 5,000 5,000 5,000 5,000 5,000 5,000
s=1 3,500 3,500 3,500 3,500 3,500 3,500
MaxR; s=2 3,000 3,000 3,000 3,000 3,000 3,000
(units) s=3 3,500 3,500 3,500 3,500 3,500 3,500
s=4 3,000 3,000 3,000 3,000 3,000 3,000
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Table 4.20 Fuzzy Parameters (most likely value).
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Parameters Values
ACE 1.2%
t=1 t=2 t=3 t=4 t=5 t=6
CRT; ($) 0.6 0.6 0.6 0.6 0.6 0.6
COT, ($) 1.2 1.2 1.2 1.2 1.2 1.2
WS, ($) 150 150 150 150 150 150
HC, () 50 50 50 50 50 50
FC, ($) 70 70 70 70 70 70
ACSL, (%) 0.7 0.7 0.7 0.7 0.7 0.7
ICR, (3) 1.8 1.8 1.8 1.8 1.8 1.8
ICP; ($) 459 459 459 459 459 459
TCP, ($) 8.4 8.4 8.4 8.4 8.4 8.4
PeC, ($) 2.8 2.8 2.8 2.8 2.8 2.8
De, (units) 2510 | 4,320 | 1,630 | 3,440 | 1,250 | 2,460
s=1 1 1 1 1 1 1
TCR,, s=2 0.6 0.6 0.6 0.6 0.6 0.6
($) s=3 0.3 0.3 0.3 0.3 0.3 0.3
s=4 0.6 0.6 0.6 0.6 0.6 0.6
s=1 2 2 2 2 2 2
PucCy, s=2 1 1 1 1 1 1
%) s=3 0.5 0.5 0.5 0.5 0.5 0.5
s=4 1 1 1 1 1 1
s=1 s=2 s=3 s=4
AVSL (%) 0.8 0.75 0.7 0.7
AVFR, (%) 0.009 | 0.015 | 0.015 | 0.015
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4.2.3 Results of Case 2

The obtained results from conventional specific fuzzy optimization approach
and a unified fairness and robustness fuzzy optimization approach are presented and
compared to evaluate their effectiveness and advantages. By comparing the
performance of both approaches, this study provides insights into which methodology
best aligns with the objectives of minimizing total costs, minimizing total workforce
levels, and maximizing the total value of purchasing while maintaining a robust and

fair solution in the face of uncertainty.

e Result of Conventional Specific Fuzzy Optimization Approach

Table 4.21 Result of conventional specific fuzzy optimization approach.

Minimize Minimize Maximize
Total Supply Fluctuation in Total Values
Chain Costs | Workforce Levels | of Purchasing

Conventional Specific Fuzzy _
i} 49 $129,640 4 persons 1,202 units
Optimization Approach

Satisfaction Level

0, 0 0
(Membership Function) 39.997% 42.857% 85.007%

It should be noted that 39.997% represents the lowest satisfaction level achieved when maximizing the minimum satisfaction level.

According to Table 4.21, the conventional specific fuzzy optimization approach
delivers optimal results, achieving a minimum total cost of $129,640, a minimal total
workforce fluctuation of 4 persons, and a maximum total purchasing value of 1,202
units. The overall satisfaction level is calculated at 39.997%, reflecting the focus on
maximizing the minimum satisfaction level across the objective functions. However, it
is important to highlight that the highest satisfaction level in the purchasing
maximization objective could introduce fairness concerns. Specifically, this emphasis
may lead to an imbalance in how stakeholders' objectives are prioritized, creating

challenges in ensuring an equitable distribution of benefits across all parties involved.
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e Result of Fuzzy Optimization with Proportional Fairness Approach

Table 4.22 Result of fuzzy optimization with proportional fairness approach.

(Membership Function)

Minimize Minimize Maximize
Total Supply Fluctuation in Total Values
Chain Costs | Workforce Levels | of Purchasing
Fuzzy Optimization with
Proportional Fairness $121,740 4 persons 849 units
Approach
Satisfaction Leyef 49.997% 42.857% 49.975%

It should be noted that 42.857% represents the lowest satisfaction level achieved when maximizing the minimum satisfaction level.

As illustrated in Table 4.22, the fuzzy optimization using the proportional

fairness method achieves a minimum total cost of $121,740, a workforce fluctuation as

low as 4 employees, and a maximum purchasing quantity of 849 units. The overall

satisfaction level reaches 42.857%, highlighting the focus on maximizing the lowest

satisfaction level across the objective functions.

e Result of Unified Fairness and Robustness Fuzzy Optimization Approach

Table 4.23 Result of unified fairness and robustness fuzzy optimization approach.

(Membership Function)

Minimize Minimize Maximize
Total Supply Fluctuation in Total Values
Chain Costs | Workforce Levels | of Purchasing
Unified Proportional Fairness
and Robustness Fuzzy $118,650 5 persons 768 units
Optimization Approach
Satisfaction Level 54.868% 35.143% 42.561%

It should be noted that 35.143% represents the lowest satisfaction level achieved when maximizing the minimum satisfaction level.
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As detailed in Table 4.23, the unified fairness and robustness fuzzy optimization
method achieves the lowest total cost of $118,650, the smallest workforce fluctuation
of 5 employees, and the greatest total purchasing volume of 768 units. The overall
satisfaction level stands at 35.143%, indicating a focus on maximizing the minimum
satisfaction level among the objectives. Specifically, the satisfaction levels for
minimizing total supply chain costs, reducing workforce fluctuations, and maximizing
purchasing values are 54.868%, 35.143%, and 42.561%, respectively.

4.2.3.1 Case 2’s Comparison of the Results
e Result Comparison between Conventional Specific Fuzzy Optimization
Approach and Fuzzy Optimization with Proportional Fairness Approach

Table 4.24 Result comparison between conventional specific fuzzy optimization

approach and fuzzy optimization with proportional fairness approach.

Minimize Minimize o
- Maximize
Total Supply | Fluctuation in
] Total Values
Chain Costs Workforce .
of Purchasing
Levels
Conventional  Specific | Objective Values $129,640 4 persons 1,202 units
FUzzy N\ORTmIzation (Slslt('j:] g sz‘ﬂction) 39.997% 42.857% 85.007%
Approach P
% Fairness 14.398% 42.857% 15.053%
Fuzzy Optimization | Objective Values $121,740 4 persons 849 units
with Proportional (S&tg] o LeF‘Len'Cﬁon) 49.997% | 42.857% 49.975%
Fairness Approach P
% Fairness 39.653% 42.857% 40.000%

It is important to note that the minimum satisfaction levels are 39.997% for the Conventional Specific Fuzzy Optimization
Approach and 42.857% for the Fuzzy Optimization Approach with Proportional Fairness, both achieved by maximizing the

minimum satisfaction level.

Table 4.24 provides a comparative analysis of the outcomes obtained from the
fuzzy optimization with the proportional fairness approach and the conventional
specific fuzzy optimization approach, with emphasis on two key dimensions:

satisfaction level and fairness level.
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e Comparing in terms of satisfaction levels and objective values

Satistaction Level Minimize Total Su

\ . cr000

(Membership Function)

Minimize Fluctuation in Workforce Levels Maximize Total Values of Purchasing
(persons) {Units)

Figure 4.5 The satisfaction level and objective value comparison.

As illustrated in Figure 4.5, introducing the fairness term into the model results
in notable changes. The minimum total cost drops from $129,640 to $121,740, while
the minimum workforce fluctuation stays steady at 4 employees. Meanwhile, the
maximum total purchasing volume decreases from 1,202 units to 849 units. The
satisfaction level for minimizing total supply chain costs rises from 39.99% to 49.99%,
the satisfaction for minimizing workforce fluctuations remains at 42.86%, and the

satisfaction level for maximizing total purchasing value falls from 85.01% to 49.98%.

e Comparing in terms of fairness level
This study uses proportional fairness to assess the model’s equity, guaranteeing
that no single objective is given undue preference over others. A fairness score of 0%
indicates that the objective is either insignificant or entirely overlooked, while a score
of 100% reflects that the objective is fully prioritized as the main focus. The fairness
percentage is determined by the following formula:
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NIS
Xi —Xi

(4.46)

X
where x; represents the obtained solution for each objective function, and xS

corresponds to the Negative Ideal Solution (NIS) for each objective function.

% Fairness of Conventional Specific Fuzzy Optimization
Approach

15.053% [14.398%

42.857%

Minimize Total Supply Chain Costs ($)
Minimize Fluctuation in Workforce Levels (persons)

Maximize Total Values of Purchasing (units)

% Fairness of Fuzzy Optimizationwith Proportional Fairness
Approach

40.000% | 39.653%

42.857%

Minimize Total Supply Chain Costs ($)
Minimize Fluctuation in Workforce Levels (persons)

Maximize Total Values of Purchasing (units)

Figure 4.6 The fairness level comparison.
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As illustrated in Figure 4.6, the inclusion of the fairness term in the model
results in fairness values for all objective functions that are more closely aligned,
contrasting with the imbalanced fairness values observed in the conventional specific
fuzzy optimization approach. This signifies that the trade-off solutions across all
objective functions are now managed with improved fairness and balance.

Consequently, the fairness of the model is effectively substantiated.
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e Result Comparison between Conventional Specific Fuzzy Optimization Approach, Fuzzy Optimization with Proportional

Fairness Approach, and Unified Fairness and Robustness Fuzzy Optimization Approach

Table 4.25 Result comparison between conventional specific fuzzy optimization approach, fuzzy optimization with proportional fairness

approach, and unified fairness and robustness fuzzy optimization approach.

o Minimize Maximize Total
Minimize Total o
) Fluctuation in Values of
Supply Chain Costs )
Workforce Levels Purchasing
Obijective Values $129,640 4 persons 1,202 units
Conventional Specific Fuzzy Optimization I(_l\%?rl] gzriﬁ'gls?g;l;ri\on) 39 997% 42 857% 85.007%
Approach P
Percentage of Fairness 14.398% 42.857% 85.007%
Obijective Values $121,740 4 persons 849 units
Fuzzy Optimization with Proportional Fairness i i
yop P Level of Satisfctiol 49.997% 42.857% 49.975%
Approach (Membership Function)
Percentage of Fairness 39.653% 42.857% 40.000%
Obijective Values $118,650 5 persons 768 units
Unified Fairness and Robustness Fuzz i i
Y Level gfSatistaction 54.868% 35.143% 42.561%
Optimization Approach (Membership Function)
Percentage of Fairness 42.185% 57.143% 45.724%

It is important to note that the minimum satisfaction levels are 39.997% for the Conventional Specific Fuzzy Optimization Approach and 42.857% for the Fuzzy Optimization Approach with Proportional

Fairness, both achieved by maximizing the minimum satisfaction level.
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Table 4.25 compares the outcomes of the unified fairness and robustness fuzzy
optimization approach with those of the conventional specific fuzzy optimization
approach and the fuzzy optimization with proportional fairness approach across three

key aspects:

e Comparing in terms of satisfaction levels and objective values

Satisfaction Level Minimize Total Supply Chain Costs
(Membership Function) (%)

$128.640

$121,740

= : - 000
/ \ \ g 120.0¢ $118,650
indr i 1

Minimize Fluctuation in Worktorce Levels Maximize Total Values of Purchasing

(persons) (units)

1202

768

Figure 4.7 The satisfaction level and objective value comparison.

As depicted in Figure 4.7, applying the unified fairness and robustness fuzzy
optimization method results in a reduction of the minimum total cost from $129,640 to
$118,650, a slight increase in the minimum workforce fluctuation from 4 to 5
employees, and a decrease in the maximum total purchasing volume from 1,202 to 768
units. The satisfaction level for minimizing total supply chain costs rises from 39.99%
to 54.87%, while the satisfaction for reducing workforce fluctuations falls from 42.86%
to 35.14%, and the satisfaction level for maximizing purchasing values drops from
85.01% to 42.56%.
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Approach

15.05% 14.40%

42.86%

b Fairness of Conventional Specific Fuzzy Optimization

Minimize Tol

40.00%

% Fairness of Fuzzy Optimizationwith Proportional Fairness

Approach

39.65%

42.86%

% Fairness of Unified Fairness and Robustness Fuzzy

Optimization Approach

45.72% 42.19%

57.14%

Figure 4.8 The fairness level comparison.

Figure 4.8 displays the outcomes of integrating both proportional fairness and

robustness within the model. The results reveal that the fairness percentage achieved

by this combined approach exceeds those of the conventional specific fuzzy

optimization method and the fuzzy optimization using proportional fairness.

Additionally, the unified fairness and robustness fuzzy optimization approach

maintains a more balanced fairness percentage across the various objective functions.
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e Comparing in terms of robustness level

To evaluate the model’s robustness, the results from the unified fairness and
robustness fuzzy optimization approach are compared against those from the
conventional specific fuzzy optimization method and the fuzzy optimization with
proportional fairness. The comparison uses the average value and standard deviation as
primary indicators to measure the effectiveness and consistency of the optimal
solutions. This analysis performed over 10 scenarios, where fuzzy parameters are
randomly and uniformly varied within their pessimistic and optimistic limits. As a
result, only the fuzzy objective function related to minimizing total supply chain costs
is examined in these scenarios, as presented in Table 4.26.

As presented in Table 4.26, the average values obtained from the three fuzzy
optimization approaches are closely comparable. Nevertheless, the unified fairness and
robustness fuzzy optimization approach exhibits the lowest Coefficient of Variation
(CV), indicating its superior capability in managing data variability. This underscores
the approach’s effectiveness in controlling input data fluctuations, thereby enhancing

the overall robustness of the model.
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Table 4.26 Result comparison of robustness level.
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- Standard Coefficient of
Scenario Average o o
Deviation Variation
1 2 3 4
$99,043.20 $104,532.28 $109,297.84 $114,467.32
Conventional Specific Fuzzy Optimization 5 6 7 8
$121,912.52 $14,459.86 0.11861
Approach $119,132.88 $124,378.84 $129,867.92 $134,333.48
9 10
$139,802.96 $144,268.52
) Standard Coefficient of
Scenario Average o o
Deviation Variation
1 2 3 4
$96,865.60 $101,749.44 $106,813.12 $111,780.16
Fuzzy Optimization with Proportional 5 6 7 8
. $118,972.99 $14113.38 0.11863
Fairness Approach $116,043.84 $121,590.72 $126,474.56 $131,038.24
9 10
$136,205.28 $141,168.96
. Standard Coefficient of
Scenario Average o o
Deviation Variation
1 2 3 4
$93,688.00 $97,191.20 $101,677.60 $105,266.80
Unified Fairness and Robustness Fuzzy 5 6 7 8
S $111,594.16 $11,632.97 0.10424
Optimization Approach $109,453.20 $113,725.60 $117,428.80 $121,615.20
9 10
$125,904.40 $129,990.80
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4.2.3.2 Case 2’s Sensitivity Analysis

The proposed approach integrates three critical parameters: the possibility
degree of confidence level (y), p, representing the penalty associated with potential
violations of the objective function, and o, denoting the penalty for possible violations
of individual constraints. These parameters can be adjusted according to the decision
maker’s preferences and may affect the resulting plans and their comparative outcomes.
Accordingly, a sensitivity analysis of these parameters will be conducted as described
below.

e Sensitivity Analysis of the Percentage of Credibility
As previously noted, credibility denotes the degree of trustworthiness or

reliability. A higher possibility degree of confidence signifies increased assurance that
the fuzzy event will occur, thereby reducing the risk of violation.
According to Table 4.27, it can be concluded as follows:

e As the possibility degree of confidence level (y) varies from 0% to 100%, the
minimum total cost rises from $94,040 to $124,080, while the minimum total
workforce fluctuation remains steady at 5 persons. Furthermore, the maximum
total purchasing value increases from 697 units to 1,001 units.

e Regarding satisfaction percentages, the results indicate that as the possibility
degree of confidence level (y) increases, corresponding to a lower risk of
violation, the satisfaction percentage for minimizing total supply chain costs
decreases. The satisfaction percentage for minimizing total workforce
fluctuations remains constant, while the satisfaction percentage for maximizing
total purchasing values also declines. This occurs because, as satisfaction levels
rise, the value of minimization objectives decreases, whereas the value of

maximization objectives increases.
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e Regarding the fairness percentages, the outcomes demonstrate that as the
possibility degree of confidence level (y) increases, indicating a lower risk of
violation, the fairness percentage for minimizing total supply chain costs
decreases, while the fairness percentage for minimizing total workforce
fluctuations remains unchanged. Furthermore, the fairness percentage for
maximizing total purchasing values also declines. This trend arises because a
higher confidence level, corresponding to a reduced risk of violation, leads to a
decrease in the fairness percentages.
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y=0 |y=10| y=20 | y=30 | y=40 | y=50 | y=60 | y=70 | y=80 | y=90 | y =100
Minimizing Total Supply Chain
Cost (9) 94,040 | 97,010 | 100,100 | 103,190 | 106,280 | 109,560 | 112,450 | 115,540 | 118,650 | 121,710 | 124,080
0S
Minimizing Fluctuation in
5 5 5 5 5 5 5 5 5 5 5
Workforce Levels (persons)
Maximizing Total Values of
) ) 1,001 989 966 948 905 872 837 794 768 723 697
Purchasing (units)
% Satisfaction of Minimizing
) 62.761 | 61.653 | 60.839 59.619 58.922 57.713 56.814 55.547 54.868 53.234 52.146
Total Supply Chain Cost
% Satisfaction of Minimizing
Fluctuation in Workforce 35.143 | 35.143 | 35.143 35.143 35.143 35.143 35.143 35.143 35.143 35.143 35.143
Levels
% Satisfaction of Maximizing
] 50.544 | 49.832 | 48.456 47.981 46.683 45.167 44.859 43.742 42.561 41.754 40.826
Total Values of Purchasing
% Fairness of Minimizing Total
] 50.90 49.82 48.52 47.06 46.31 45.45 44.82 43.39 42.18 40.14 39.72
Supply Chain Cost
% Fairness of Minimizing
Fluctuation in Workforce 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14
Levels
% Fairness of Maximizing
) 53.21 52.06 51.68 50.96% 49.58 48.81 47.27 46.90 45.72 44.50 43.27
Total Values of Purchasing

The highlighted cell shows the results obtained by applying y at 80%, as utilized in the case study.
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e Sensitivity Analysis on the Penalty Value of a Possible Violation of
Objective Function and the Penalty Value of a Possible Violation of each
Constraint
As previously noted, p denotes the penalty value associated with potential

violations of the objective function, while o represents the penalty value for potential
violations of individual constraints, with their sum constrained to equal 1. Tables 4.28
and 4.29 present a sensitivity analysis exploring variations in the proportions of p and
o, assessing the model’s fairness and robustness.

As presented in Table 4.28, variations in the penalty values for potential
violations of the objective function (p) and individual constraints (c) do not affect the
model’s robustness. The average and Standard Deviation (SD) values across all models
remain consistent with prior results, with the unified fairness and robustness approach
maintaining the lowest Coefficient of Variation (CV). Consequently, the robustness of

the model is affirmed.
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Table 4.28 Result of sensitivity analysis on the penalty value of a possible violation of objective function and the penalty value of a

possible violation of each constraint for testing model robustness.

Standard Coefficient of
Scenario Average o o
Deviation Variation
p=0, 6=100 p=10, 6=90 p=20, 0=80 p=30, 0=70
$109,764 $113,968 $117,968 $121,836
Conventional p=40, 6=60 p=50, 6=50 p=60, 6=40 p=70, 6=30
Lo $129,529.55 $12,398.51 0.09572
Optimization Approach $125,232 $129,640 $133,187 $137,480
p=80, 6=20 p=90, 6=10 p=100, 6=0
$141,560 $145,050 $149,140
Standard Coefficient of
Average o o
Deviation Variation
p=0, 6=100 p=10, 6=90 p=20, 6=80 p=30, 6=70
$107,788 $111,991 $115,878 $119,767
Fuzzy Optimization with Proportional p=40, 6=60 p=50, 6=50 p=60, 6=40 p=70, 6=30
. $127,522.64 $12,328.82 0.09668
Fairness Approach $123,953 $127,803 $131,029 $135,115
p=80, 6=20 p=90, o=10 p=100, 6=0
$139,184 $143,191 $147,050
Standard Coefficient of
Average L o
Deviation Variation
p=0, c=100 p=10, 6=90 p=20, 0=80 p=30, 0=70
$103,296 $106,257 $109,534 $112,171
Unified Fairness and Robustness Fuzzy p=40, 6=60 p=50, 6=50 p=60, 6=40 p=70, 6=30
o $118,540.09 $9,641.40 0.08133
Optimization Approach $115,432 $118,650 $121,843 $124,681
p=80, 6=20 p=90, 6=10 p=100, 6=0
$127,736 $130,914 $133,427

The highlighted cell displays the results of applying p and o at 50%, as implemented in the case study.
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Table 4.29 Result of sensitivity analysis on the penalty value of a possible violation of objective function and the penalty value of a

possible violation of each constraint.

p=0, =100

p=10, =90

p=20, c=80

p=30, c=70

p=40, c=60

p=50, 0=50

p=60, 6=40

p=70, =30

p=80, 0=20

p=90, 0=10

p=100, 6=0

Minimizing Total Supply
Chain Cost

$103,296

$106,257

$109,534

$112,871

$115,432

$118,650

$121,543

$124,681

$127,436

$130,214

$133,427

Minimizing Fluctuation

in Workforce Levels

5 persons

5 persons

5 persons

5 persons

5 persons

5 persons

5 persons

5 persons

5 persons

5 persons

5 persons

Maximizing Total Values

of Purchasing

881 units

862 units

836 units

811 units

789 units

768 units

747 units

725 units

701 units

683 units

664 units

% Satisfaction of
Minimizing Total Supply
Chain Cost

59.87%

58.85%

57.46%

56.55%

55.67%

54.87%

53.46%

51.94%

50.51%

49.47%

48.36%

% Satisfaction of
Minimizing Fluctuation

in Workforce Levels

35.14%

35.14%

35.14%

35.14%

35.14%

35.14%

35.14%

35.14%

35.14%

35.14%

35.14%

% Satisfaction of
Maximizing Total Values

of Purchasing

45.64%

45.02%

44.85%

44.68%

43.48%

42.56%

42.05%

41.86%

41.23%

40.75%

40.43%

% Fairness of
Minimizing Total Supply
Chain Cost

47.54%

46.42%

45.36%

45.07%

43.63%

42.18%

40.72%

39.16%

38.22%

37.34%

36.19%

% Fairness of
Minimizing Fluctuation

in Workforce Levels

57.14%

57.14%

57.14%

57.14%

57.14%

57.14%

57.14%

57.14%

57.14%

57.14%

57.14%

% Fairness of
Maximizing Total Values

of Purchasing

49.18%

48.53%

47.25%

47.09%

46.78%

45.72%

44.84%

44.55%

43.31%

43.12%

42.85%

The highlighted cell displays the results of applying p and c at 50%, as implemented in the case study.
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According to Table 4.29, it can be concluded as follows:

When the penalty value for potential violations of the objective function (p) is
varied from 0% to 100%, or equivalently, the penalty value for potential
violations of individual constraints (o) is adjusted from 100% to 0%, the
minimum total cost increases from $103,296 to $133,427. The minimum
workforce fluctuations remain constant at 5 persons, while the maximum total
purchasing value decreases from 881 units to 664 units.

Regarding satisfaction percentages, the results indicate that an increase in the
penalty value for potential violations of the objective function (p), or a
corresponding decrease in the penalty value for violations of individual
constraints (o), leads to a decline in the satisfaction percentage for minimizing
total supply chain costs. The satisfaction percentage for minimizing workforce
fluctuations remains unchanged, while the satisfaction percentage for
maximizing total purchasing values also decreases. This behavior arises because
a higher satisfaction level corresponds to a lower value for minimization
objectives and a higher value for maximization objectives.

Regarding the fairness percentages, the results show that an increase in the
penalty value for potential violations of the objective function (p), accompanied
by a corresponding decrease in the penalty value for violations of individual
constraints (o), leads to a decline in the fairness percentage for minimizing total
supply chain costs. The fairness percentage for minimizing workforce
fluctuations remains unchanged, while the fairness percentage for maximizing
total purchasing values also decreases. This effect arises because elevating the
penalty associated with objective function violations (p) increases the
optimality term, thereby narrowing the gap between Z,,,,, (the maximum value
of the objective function) and Z,,;, (the minimum value of the objective
function), which enhances model robustness. However, this adjustment causes
the obtained solution to deviate further from the positive ideal solution, resulting
in less favorable objective values. Consequently, both satisfaction levels and

fairness percentages decline.
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4.2.4 Summary

This study provides managerial insights for decision-makers in supply chain
aggregate production planning under uncertainty. One key takeaway is the advantage
of incorporating multiple objectives into APP. Unlike single-objective approaches, a
multi-objective strategy allows for greater flexibility and resilience in dynamic
environments, helping decision-makers address challenges like supply network
disruptions or demand shifts. This approach also fosters the creation of robust risk
mitigation plans, ensuring long-term stability and sustainability in the SC.

This study further explores the integration of chance constraint programming
into APP, which introduces a probabilistic element to conventional models. By
considering the likelihood of different outcomes, this method enhances decision-
making, improves resilience, and supports more effective risk management.
Additionally, the incorporation of fairness into the APP framework helps maintain
stable relationships among stakeholders, ensuring equitable treatment of all parties and
fostering trust within the supply chain. This is crucial for mitigating risks and ensuring
a more resilient and collaborative supply chain ecosystem.

The concept of robustness in APP is also central to the study's findings. A robust
APP enables organizations to maintain stability and operational efficiency in the face
of dynamic changes and disruptions. By proactively identifying and addressing
potential risks, a robust system ensures that resources are allocated efficiently and that
the organization remains adaptable to uncertainties. The study underscores the
importance of integrating fairness and robustness into a fuzzy optimization approach,
making the supply chain more resilient and better suited to handle the complexities of
real-world challenges.

Furthermore, this study demonstrates the superiority of the proposed unified
fairness and robustness fuzzy optimization approach compared to conventional
methods. By concurrently optimizing multiple conflicting objectives, namely,
minimizing supply chain costs, stabilizing workforce levels, and maximizing
purchasing values under uncertainty, the proposed approach proves its effectiveness in
practical applications. The incorporation of triangular fuzzy numbers to model

imprecise data, combined with the introduction of a fairness term and Realistic Robust
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Programming (RRP), substantially enhances both the fairness and robustness of the
optimization process.

The optimal solutions obtained through this approach highlight its ability to
resolve complex optimization challenges, particularly in scenarios with conflicting
objectives. However, the study acknowledges certain limitations, including the absence
of constraints on the degree of fuzziness and the opportunity for future research to
investigate different distribution models for the fuzzy parameters. This study suggests
that future work could refine the model by incorporating advanced meta-heuristic

algorithms for even better optimization outcomes in more complex scenarios.

4.3 Case 3: A Downside Risk Mitigation Approach for Supply Chain Aggregate
Production Planning

In today’s dynamic and unpredictable business landscape, formulating effective
strategies for Supply Chain Aggregate Production Planning (SCAPP) presents
considerable challenges for decision-makers. Conventional fuzzy optimization methods
often prove inadequate in handling the uncertainties and risks that are intrinsic to supply
chain operations, resulting in less-than-optimal outcomes and increased operational
expenses. These shortcomings become especially apparent when coordinating activities
across various levels of the supply chain, where disruptions, fluctuating demand, and
unexpected events can significantly raise costs and impair efficiency. As a result, there
is a growing demand for more resilient and comprehensive approaches capable of
managing these uncertainties while enhancing supply chain performance. This research
proposes an innovative business model that integrates open innovation principles to
improve both cost efficiency and resilience within the supply chain. To address
uncertainty-related risks, particularly those associated with adverse outcomes, the
Mean-Conditional Value at Risk Gap (MCVaRG) is employed. Additionally, the model
leverages asymmetrical triangular fuzzy numbers to reflect the inherent ambiguity and
variability in critical supply chain elements such as costs, customer requirements, and

machine operating times.
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4.3.1 Mathematical Notations and Model

The notations for indexes, parameters, and decision variables are detailed in

Tables 4.30 to 4.34. Notably, all fuzzy parameters are distinguished by a tilde (~)

placed above their respective symbols to signify their fuzzy characteristics.

Table 4.30 Indexes of SCAPP problem (Case 3).

Indexes Meaning
s Suppliers’ array (s = 1, ..., S5)
r Retailers’ array (r =1, ..., R)
Planning periods’ array (d = 1, ..., D)

Table 4.31 Crisp parameters of SCAPP problem (Case 3).

Crisp
Parameters
LH, Labor time allocated per product unit at the plant for period d
(person-hours/unit)
MaxPCRT,; | Regular-time production limit of the plant in period d (units)
MaxPCOT,; | Overtime production limit of the plant in period d (units)
MaxSupCapsy | Maximum amount of raw materials available from supplier s in
period d (units)

Meaning

RMQgy Raw material units supplied by supplier s in period d (units)
RTQ, Total units produced within the regular time in period d (units)
0TQy, Total units produced within the overtime in period d (units)

ShortPPQ, | Product deficit at the plant in period d (units)
IRMQ,4 Inventory level of raw materials at the plant in period d (units)
IPQ 4 Inventory level of products at the plant in period d (units)
HL, Total workforce employed in period d (persons)
FL, Total workforce fired in period d (persons)
Ly Total of workforce in period d (persons)
TranQ,4 Product shipment volume directed to retailer r in period d (units)
IRQ,4 Inventory of products held by retailer r in period d (units)

ShortPRQ,, | Product deficit experienced by retailer r in period d (units)
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Uncertain Meaning
Parameters
Rﬂ‘Esd Uncertain cost of raw material delivered by supplier s in period d
($/unit)
RC P Uncertain cost associated with regular-time production per product
unit in period d ($/unit)
o’b'd Uncertain cost associated with overtime production per product unit in
period d ($/unit)
ShoFftTDCd Uncertain cost per unit related to shortages at the plant in period d
($/unit)
INnCRM 4 Uncertain cost associated with storing one unit of raw materials at the
plant in period d ($/unit)
InCPM. 4 | Uncertain cost associated with holding one unit of product inventory
at the plant in period d ($/unit)
HC, Uncertain cost associated with labor hiring in period d ($/person)
FC, Uncertain cost associated with labor firing in period d ($/person)
Trfﬁ{ér q | Uncertain transportation cost per unit of product delivered to retailer r
during period d ($/unit)
IanT?r 4 | Uncertain cost associated with storing one unit of product inventory at
retailer r during period d ($/unit)
pc’Lfgjd Uncertain cost penalty per unit due to lost sales at retailer r during
period d ($/unit)
De,, Uncertain demand quantity of products at retailer r during period d

(units)

Table 4.33 Decision variables of SCAPP problem (Case 3).

Decision Meaning
Variables
RMQ, Total raw materials furnished by supplier s in period d (units)
RTQ, Production volume during regular working hours in period d (units)
0TQ, Production volume during overtime working hours in period d (units)
ShortPPQ, | Amount of unmet product demand at the plant in period d (units)
IRMQ, Inventory level of raw materials stored at the plant in period d (units)
IPQ4 Inventory level of products stored at the plant in period d (units)
HL, Amount of hired labors in period d (persons)
FL, Amount of fired labors fired in period d (persons)
Ly Amount of overall labors in period d (persons)
TranQ,.; | Volume of products transported to retailer r in period d (units)
IRQ,4 Amount of products kept in inventory at retailer r in period d (units)

ShortPRQ,4

Shortfall in product availability at retailer r in period d (units)
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Table 4.34 Related notations of SCAPP problem.

Notations Meaning
y Credibility level
TSCNC Total supply chain network costs
ProCC Total procurement costs
ProDC Total production costs
DisTC Total distribution costs

Objective Functions

1. Minimizing total supply chain operation costs is widely considered a fundamental
objective when developing an efficient supply chain system. The total supply chain
network costs (TSCNC) are typically subject to uncertainty and consist of the combined
procurement costs (ProCC), production costs (ProDC), and distribution costs (DisTC)
over a specified period. Procurement costs include the expenses associated with
purchasing raw materials, while production costs account for regular production costs,
overtime production costs, product shortage costs, raw material and product inventory
holding costs, and costs related to labor hiring and firing. Distribution costs encompass
expenditures at the retail level, such as transportation costs, inventory holding costs,

and penalty costs incurred from lost sales at retail locations.

Minimize (TSCNC) = ProCC + ProDC + DisTC

= YSYDRMC,y x RMQ,, + (X5 RC, x RTQ,) + (X5 0C4 x 0TQ,,)

+ (25 ShortPCy x ShortPPQq) + (X5 InCRM, x =120

+ (28 mCPM, x TH=L228) 4 (38 [y x HLg) + (25 FCq X FLy)

H(EF SR TTanC,q X TranQpq) + (IR 18 InCPRyq x o4 7r)

+ (X2 PCLS, 4 x ShortPRQ,,) (4.47)

2. Minimizing the Mean-Conditional Value at Risk Gap (MCVaRG) of total
supply chain operation costs plays an essential role in building a resilient supply
chain. It supports decision-makers in mitigating uncertainties in costs, particularly
focusing on reducing the risk of adverse outcomes. Downside risk represents the
likelihood of incurring costs that exceed expected levels, ensuring that the supply chain

remains cost-efficient even under adverse conditions.
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Minimize MCVaRG = (MCVaR(ProCC) + MCVaR(ProDC) + MCVaR(DisTC)) — TSCNC

= 2324l = YIRMCE + (P)RMC],] X RMQsq + (Zg1(1 — Y)RCF + (PRCG] x RTQ )

+ (ZE[@ —y)ocT + 1OCE] x 0TQ,) + (Z5[(1 — ¥)ShortPCT + (y)ShortPCY| x ShortPPQ,)
+(Z8[(1 = INCRM + (y)InCRME] x “H2a=1IRI04) 4 (301(1 — y)HCY + ()HCY] X HLy)
+(ZB[C = InCPMF + ()mCPME] x UL 1 (SR[(1 —IFCE + (DFCE] X FLy)
+(ZR 23 — ) TranCls + () Tranc?;]| x TranQyq)

IRQrq—1+IRQy
+(ZEZ2ICL~ P)InCPRJ) + (P)InCPRE] x Mt 110sd)

+(ZXX2[(1 — y)PCLST + (y)PCLSY,] x ShortPRQ,,) (4.48)

The parameter y denotes the credibility level, reflecting the extent of trustworthiness.
For this study, y is assigned a value of 80%.

Constraints
1. Suppliers’ Capacity for Providing Raw Materials: The maximum quantity of raw

materials that suppliers can deliver within a specific period, reflecting their production

and logistical capabilities.

RMQgyy < MaxSupCapgg Vs, d (4.49)

2. Raw Material Availability: The extent to which required raw materials are
accessible from suppliers, considering factors like supply chain disruptions, inventory

levels, and lead times for procurement.

Y3-1RMQgq = (RTQq +0TQq)  Vd (4.50)

3. Product Shortages at the Plant: It occurs when the production facility lacks
sufficient raw materials or components to meet the planned production targets,

potentially causing delays, increased costs, or missed delivery deadlines.

ShortPPQ, = IPQ,_, — ShortPPQ,_, + RTQ,4 + OTQ, — IPQ, — De,qy V71,d
(4.51)
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4. Labor Capacity: It refers to the availability and ability of the workforce to meet
production demands. It includes the number of workers, their skills, working hours, and
productivity levels, ensuring that the production plant can operate efficiently without

shortages or excessive overtime.

LH; X RTQy < Ly %9,600  Vd (4.52)

5. Workforce Balancing: It refers to the strategic allocation of labor resources to match
production needs and workloads. It involves adjusting staffing levels across different
shifts or production stages to ensure efficient operations, minimize downtime, and

avoid overworking employees while maintaining optimal productivity.

Ld = L(d—l) + HLd iy FLd \Y d (453)

6. Limitation of Regular Time Production: This indicates the greatest production
volume that can be reached within regular shift times, without requiring overtime. This
limitation is typically determined by factors such as available labor, equipment
capacity, and operational hours, and plays a key role in managing production schedules

and costs.

RTQ4 < 28,000 vd (4.54)

7. Limitation of Overtime Production: Indicates the greatest additional production
capacity available by utilizing labor during overtime periods. This limitation is often
constrained by factors such as labor laws, employee availability, and increased labor
costs, and must be carefully managed to optimize production while controlling costs.

0TQ4 < 7,000 vd (4.55)
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8. Raw Material Inventory: Refers to the stock of raw materials held by a company
for production purposes. It ensures that the production process can continue smoothly
without interruptions due to shortages. The inventory level is managed to balance the
cost of holding materials with the need to meet production demands, while also
accounting for factors like lead time, demand fluctuations, and storage costs.

IRMQ4 = IRMQq—1) + X3, RMQ_, — (RTQ; + 0TQ,) ~ Vd (4.56)

9. Limitation of Transferring Products to Retailers: This refers to constraints in the
ability to deliver products from the production facility to retail locations. These
limitations can include factors like transportation capacity, logistical challenges,
delivery schedules, or regulatory restrictions. Efficient management of these constraints
ensures that retailers receive products on time, preventing stockouts or delays that could

negatively impact sales and customer satisfaction.

YRTranQ,qy <RTQ, + OTQ, vd (4.57)

10. Minimum Retailer Service Level for Satisfying Demand: This refers to the
minimum level of product availability that retailers must maintain to meet customer
demand. It ensures that retailers have enough stock to avoid stockouts, aiming to satisfy
customers' needs consistently. Meeting this service level is vital for maintaining
customer satisfaction, loyalty, and competitive advantage in the market.

TranQ,q = 0.8 X De,4 vr,d (4.58)

11. Product Shortages at Retailers: This refers to the situation where a retailer does
not have enough stock of a product to meet customer demand. This usually causes sales
losses, decreases customer satisfaction, and may negatively impact the retailer’s image.
Proper management of product shortages is vital to maintaining supply chain efficiency

and fulfilling customer requirements on schedule.

ShortPQR,q = IRQyq—; — ShortPQR,4_1 + TranQ,qy — IRQ,q — De,4 vr,d (4.59)
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12. Non-Negativity: Constraints (4.60) — (4.63) ensure that all decision variable values

are non-negative, with certain values required to be integers.

L4, HLy, FLyg, IRMQy = 0 and Integer vd (4.60)
RTQ,, OTQg4, ShortPPQ,4,IRMQ,4, IPQ, = 0 and Integer vd (4.61)
RMQgq = 0 and Integer Vs,d (4.62)
TranQ.,q, IRQ,q, ShortPRQ,q = 0 and Integer vr,d (4.63)

4.3.2 Problem Description of Case 3

This study features a case study of a small Thai manufacturer specializing in
plastic bottles to demonstrate and evaluate the proposed fuzzy multi-criteria decision-
making model. The production process begins with melting Polyethylene Terephthalate
(PET) resin, which is then shaped into a tubular form, known as a parison, by extrusion
through a circular die. This parison is inserted into a mold cavity within a blow molding
machine and expanded with high-pressure air to conform to the mold's shape.
Afterward, the product is cooled to solidify, and excess material is removed to ensure
a clean finish. Final steps include quality checks, labeling, and packaging to maintain
consistency in producing standardized plastic bottles for distribution. In the SC, four
certified suppliers offer PET resin at varying prices, depending on resin quality and
pricing flexibility. The production plant is limited by its manufacturing capacity, while
six retailers, located in different regions, generate diverse demand levels, as depicted in

Figure 4.9. The SCAPP planning period for this case extends over six months.
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Polyethylene Terephthalates (PET) Plastic Bottle
(Raw Material) (Product)
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Figure 4.9 Supply network design along with retailer site locations.
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Figure 4.10 Skewed configurations within triangular fuzzy sets.

Figure 4.10 demonstrates the asymmetrical skewness of risks, highlighting three
distinct forms of skewness in triangular fuzzy numbers: left-skewed, symmetric, and
right-skewed. In terms of cost and risk, left-skewness indicates a higher likelihood of
achieving lower costs and reduced risk of uncertainty. Symmetry suggests an equal
chance of either obtaining lower costs with lower risk or higher costs with higher risk.
Right-skewness, conversely, indicates a higher probability of encountering higher costs

and greater risk of uncertainty.

Table 4.35 Raw material pricing represented under fuzzy conditions.

. Triangular Fuzzy Number
RMCsd T - T
Optimistic | Most Likely | Pessimistic Skewness Type
Supplier 1 5.23 9.50 13.78 Symmetry (£45%)
Supplier 2 6.50 10.00 13.50 Symmetry (£35%)
Supplier 3 8.44 11.25 14.06 Symmetry (£25%)
Supplier 4 10.84 12.75 14.66 Symmetry (£15%)
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Four qualified suppliers offer PET resin at varying uncertain prices, which are
modeled using symmetrical Triangular Fuzzy Numbers (TFNs) as shown in Table 4.35.
The raw material prices depend on both the quality of the resin and the supplier’s ability
to maintain price stability. For instance, Supplier 1 provides the lowest quality resin
with limited reliability, resulting in the lowest price that can vary by +45% around its
most probable value. Conversely, Supplier 4 supplies the highest quality resin with
strong reliability, commanding the highest price with fluctuations confined to £15% of
its most likely price. All suppliers have an equal maximum supply capacity
(MaxSupCaps,) of 25,000 units per period.

Table 4.36 Uncertain parameters associated with the manufacturing facility.

RC, 0C, ShortPC, InCRM,
$12.50/ unit $18.75/ unit $37.50/ unit $0.10/ unit
Most Likely InCPM, HC, FC,
$0.30/ unit $160/ man $280/ man

The production plant’s fuzzy parameters are represented using symmetrical
Triangular Fuzzy Numbers (TFNs) with a variability of +20% around their most
probable values, as detailed in Table 4.36. The plant must fulfill a minimum of 80% of
the demand for each retailer, which could lead to some lost sales at certain locations,
incurring penalty costs accordingly. This study assumes delivery lead times to be
negligible and does not account for any subcontracting. Additionally, Table 4.37 lists

other deterministic parameters applied in this case study.
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Table 4.37 Crisp parameters.

Values

LH,

MaxPCRT,

MaxPCOTy,

0.016 man-hours/unit

28,000 units

7,000 units

Table 4.38 Imprecise six-month retailers’ demand.
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Period (d) Derg (units)
Retailer 1 | Retailer 2 | Retailer 3 | Retailer 4 | Retailer 5 | Retailer 6

d=1 5,796 4,849 3,967 7,904 9,716 7,809
d=2 4,971 3,996 2,505 7,016 8,902 6,520
d=3 4,200 2,646 1,510 6,222 7,462 5,037
d=4 3,711 2,546 1,293 6,370 7,251 5,528
d=5 5,004 4,418 2,728 7,386 8,305 6,453
d=6 6,287 5,362 3,779 8,865 9,396 7,328

The demand for plastic bottles experiences seasonal variations, driven by

changes in water consumption throughout the year. The supply chain comprises six

retailers, each located in different areas and exhibiting unique seasonal demand

patterns. These demands are modeled using symmetrical Triangular Fuzzy Numbers

(TENs) with a £20% variability around their most probable values, as shown in Table

4.38. Both the production plant and retailers are situated relatively close to each other

in central Thailand. The production facility is located in Bangkok, while the retailers

operate across Bangkok, Nonthaburi, Pathum Thani, Nakhon Pathom, Samut Sakhon,

and Samut Prakan. This geographical distribution leads to differences in transportation,

inventory holding, and penalty costs associated with lost sales, which are detailed in
Figure 4.11 and Table 4.39.
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143

TranC,, Skewness Risk of
Optimistic | Most Likely | Pessimistic Type Uncertainty
Retailer 1 11.70 13.00 14.30 Symmetry Low
Retailer 2 6.00 10.00 11.00 Left skew Low
Retailer 3 3.45 11.50 16.10 Left skew Medium
Retailer 4 14.40 16.00 22.40 Right skew Medium
Retailer 5 10.50 17.50 29.75 Right skew High
Retailer 6 4.35 14.50 24.65 Symmetry High
InCPR,4 Skewness Risk of
Optimistic | Most Likely Pessimistic Type Uncertainty
Retailer 1 6.30 7.00 7.70 Symmetry Low
Retailer 2 2.40 4.00 4.40 Left skew Low
Retailer 3 1.65 5.50 7.70 Left skew Medium
Retailer 4 9.00 10.00 14.00 Right skew Medium
Retailer 5 6.90 11.50 19.55 Right skew High
Retailer 6 2.55 8.50 14.45 Symmetry High
PCLS,4 Skewness Risk of
Optimistic | Most Likely | Pessimistic Type Uncertainty
Retailer 1 6.90 23.00 36.80 Symmetry High
Retailer 2 6.00 20.00 28.00 Left skew Medium
Retailer 3 12.90 21.50 23.65 Left skew Low
Retailer 4 15.60 26.00 44.20 Right skew High
Retailer 5 24.75 27.50 38.50 Right skew Medium
Retailer 6 22.05 24.50 26.95 Symmetry Low
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Figure 4.11 Different skewness patterns and uncertainty risks in transportation

expenses.

Figure 4.11 illustrates the differences in transportation cost patterns and their
corresponding downside risks across various retailers. Retailers 1 and 6 display
symmetrical cost distributions; however, Retailer 6 encounters a significantly higher
downside risk of uncertainty (+60% from the most likely value) compared to Retailer
1, which has a relatively modest downside risk of +20%. In contrast, Retailers 2 and 3
exhibit left-skewed distributions. Retailer 3 faces a moderate downside risk (+40%),
whereas Retailer 2 is subjected to a lower level of risk (+20%). Retailers 4 and 5 both
present right-skewed cost distributions, with Retailer 5 experiencing a higher downside
risk than Retailer 4. These differences in transportation cost behavior and related risks
highlight the varying logistical and financial complexities the supply chain must
navigate in meeting retailer demand. By addressing these disparities, the study offers
valuable guidance on optimizing transportation and inventory decisions while taking

into account uncertainty and potential risk exposure.
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During operations, several factors can significantly increase the likelihood of
higher transportation costs for certain retailers. In this study, these factors include
scenarios such as unusual traffic congestion in specific areas. High population density,
especially in business districts during peak hours, can exacerbate traffic conditions.
Additionally, events like protests, roadblocks near government offices, or mass
gatherings (mobile vulgus) can severely disrupt traffic flow. Such situations not only
lead to prolonged delays but can also heighten driver frustration, increasing the risk of
road rage incidents and accidents, further compounding transportation delays. These
circumstances collectively contribute to a higher probability of elevated transportation
costs. A similar framework is applied to holding costs and penalty costs for lost sales,
which can also escalate under adverse operational conditions. The interconnected
nature of these factors highlights the importance of accounting for such risks in supply
chain planning. The detailed impacts of these variables on transportation, holding, and
penalty costs are summarized in Table 4.39.

The SCAPP model is developed based on the following assumptions:
e A predefined set of qualified suppliers is available, as outlined in Table 4.35.

e Retailer demand varies dynamically over the six-month planning horizon.

e Demand at each retailer may be completely fulfilled or partially unmet; any
shortages result in penalty costs.

e All cost components within the supply chain are subject to uncertainty and
display different forms of skewness, which are assumed to remain stable
throughout the planning period.

e The use of subcontractors is excluded from this scenario.

e Delivery lead times are considered negligible.

¢ Initial inventory levels and available labor resources are known at the beginning

of the planning period.
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4.3.3 Results of Case 3

This analysis examines three separate strategies: focusing solely on cost
minimization, solely on minimizing downside risk through the Mean-Conditional
Value at Risk Gap (MCVaRG), and a combined approach that targets both objectives
simultaneously. The resulting outcomes are carefully analyzed and compared to assess
their performance, advantages, and trade-offs. Through this comparative evaluation,
this study aims to offer meaningful insights into the effectiveness of each strategy,
emphasizing the benefits of integrated optimization methods that align cost-efficiency
with risk mitigation to support stronger and more resilient decision-making.

e Result of Purely Minimizing the Total Supply Chain Operational Costs

The Supply Chain Aggregate Production Planning (SCAPP) problem is
addressed using Fuzzy Linear Programming (FLP), with an emphasis on minimizing
total operational costs across the entire supply chain. The optimal outcomes, presented
in Table 4.40, highlight key decision variables and cost-saving strategies. Polyethylene
Terephthalate (PET) is primarily procured from Suppliers 1 and 2 due to their lower
material costs. Production of plastic bottles initially takes place during regular working
hours; however, after reaching 28,000 units, overtime is employed to produce an
additional 7,000 units. Any demand beyond this capacity results in shortages,
particularly evident during peak seasons, 3,025 units in period 1 and 4,001 units in
period 6. Workforce levels are adjusted between 40 and 55 employees over the six-
month planning horizon to align with production requirements. Retailer service levels
are managed with a primary focus on minimizing costs. Retailer 5 achieves full demand
fulfillment, while Retailers 4, 6, 1, 2, and 3 attain service levels of 99.00%, 96.00%,
93.39%, 91.71%, and 89.59%, respectively. This approach strictly targets cost
efficiency without accounting for the downside risk linked to cost uncertainty.
Although total operational expenses are reduced to $7,712,875, the corresponding
downside risk escalates to $2,147,100, potentially surpassing acceptable risk
thresholds. This outcome highlights the critical need to incorporate risk considerations

alongside cost objectives in supply chain planning.
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Table 4.40 Result obtained exclusively aiming to minimize total operational costs in

the supply chain.
Value
Minimum Total
Supply Chain $7,712,875.00

Operation Costs

Downside Risk

of Total Supply

Chain Operation
Costs

$2,147,100.00

Period | Period | Period | Period | Period | Period
1 2 3 4 5 6
Production
volume during | »g 15y | 28000 | 20,364 | 25455 | 28,000 | 28,000
regular working . - - . . "
. h units units units units units units
hours in period
d
Production
volumeduring | 7454 | 4566 | 0 0 | 4950 | 7,000
overtime 4 . | : ; )
] units units unit unit units units
working hours
in period d
Amount of
unmetproduct |5 po5 | g 0 0 0 4,001
demand at the : ! | . . F
A . units unit unit unit unit unit
plant in period d
(units)
AmoUlt UL g Y ~be 55 40 50 55 55
averallaborsin ersons | Persons | persons | persons | persons | persons
period d p p p p p p
Total raw materials furnished by supplier s in period d
(units)
Period | Period | Period | Period | Period | Period
1 2 3 4 5 6
Supplier 1 25,000 | 25,000 | 20,364 | 25,000 | 25,000 | 25,000
Supplier 2 10,000 7,566 0 455 7,950 10,000
Supplier 3 0 0 0 0 0 0
Supplier 4 0 0 0 0 0 0
Volume of products transported to retailer r in period d
. Average
(units) Service
Period | Period | Period | Period | Period | Period Level (%)
1 2 3 4 5 6
Retailer 1 4,685 4,747 3,080 3,935 4,780 4,879 93.39%
Retailer 2 3,711 3,772 1,526 2,770 4,194 4,021 91.71%
Retailer 3 2,805 2,281 838 1,841 2,504 2,755 89.59%
Retailer 4 7,168 6,792 4,878 5,250 7,162 8,529 99.00%
Retailer 5 9,380 8,678 6,125 6,131 8,081 9,060 100.00%
Retailer 6 7,251 6,296 3,917 5,528 6,229 5,756 96.00%

The highlighted cells indicate the suppliers selected to provide Polyethylene Terephthalate (PET) and the retailers who achieved

the highest service level satisfaction percentages.
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e Result of Purely Minimizing Mean-Conditional Value at Risk Gap
(MCVaRG) of Total Supply Chain Operation Costs
Fuzzy Linear Programming (FLP) is utilized to tackle the SCAPP problem,
focusing primarily on minimizing the Mean-Conditional Value at Risk Gap (MCVaRG)
related to the total operational costs of the supply chain. The optimal results, shown in
Table 4.41, emphasize values of decision variable aimed at lowering downside risk.
Suppliers 3 and 4 are chosen to provide PET to the production plant because of their
reduced downside risk, indicating a lower likelihood of cost increases. Despite this
change in suppliers, production volumes, shortages, and labor levels remain similar to
those in the cost-minimization approach, ensuring that retailer demand is still met. In
this scenario, Retailer 1 attains a full-service level of 100%, followed by Retailer 4 at
99.00%, Retailer 2 at 97.61%, Retailer 5 at 94.80%, Retailer 3 at 94.19%, and Retailer
6 at 92.34% across the six-month planning horizon. This strategy prioritizes minimizing
downside risk from cost uncertainties, with supplier and retailer choices guided by risk
reduction rather than solely cost considerations. Consequently, the downside risk
decreases substantially to $1,731,676.04, though the total operational costs rise to
$8,429,300, which may be above the acceptable limits for decision-makers. This
outcome highlights the essential trade-off between managing costs and mitigating risk
in supply chain planning.
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Table 4.41 Result obtained exclusively aiming to minimize Mean-Conditional Value

at Risk Gap (MCVaRG) of total operation costs in the supply chain.

Value
Minimum
Downside Risk
of total supply $1,731,676.00
chain operation
costs
Total Supply
Chain Operation $8,429,300.00
Costs
Period | Period | Period | Period | Period | Period
1 2 3 4 5 6
Production
volume during | »g 15y | 28000 | 20,364 | 25455 | 28,000 | 28,000
regular working . . . . - -
X ) units units units units units units
hours in period
d
Production
volume during | 765 | 4566 | 0 0 | 4950 | 7,000
overtime . . : . . .
' units units unit unit units units
working hours
in period d
Amount of
unmetproduct | 53 o5 | g 0 0 0 | 4001
demand at the : : | . . .
| . units unit unit unit unit units
plant in period d
(units)
AMOURLOF e 55 55 40 50 55 55
overall labors in
period d Persons | Persons | Persons | persons | Persons | persons
Total raw materials furnished by supplier s in period d
(units)
Period | Period | Period | Period | Period | Period
1 2 3 4 5 6
Supplier 1 0 0 0 0 0 0
Supplier 2 0 0 0 0 0 0
Supplier 3 10,000 | 7,566 0 455 7,950 | 10,000
Supplier 4 25,000 | 25,000 | 25,000 | 25,000 | 25,000 | 25,000
Volume of products transported to retailer r in period d
. Average
(units) Service
Period | Period | Period | Period | Period | Period Level (%)
1 2 3 4 5 6
Retailer 1 5,460 4,747 3,080 3,935 4,780 5,951 100.00%
Retailer 2 4,113 3,772 1,526 2,770 4,194 4,905 97.61%
Retailer 3 3,475 2,281 838 1,841 2,504 2,755 94.19%
Retailer 4 7,168 6,792 4,878 5,250 7,162 8,529 99.00%
Retailer 5 8,704 8,678 6,125 6,131 8,081 7,266 94.80%
Retailer 6 6,080 6,296 3,917 5,528 6,229 5,594 92.34%

The highlighted cells indicate the suppliers selected to provide Polyethylene Terephthalate (PET) and the retailers who achieved

the highest service level satisfaction percentages.
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e Result of Considering Both Cost and Downside Risk Minimization

Fuzzy Linear Programming (FLP) is utilized to address the SCAPP problem
with the dual goal of simultaneously minimizing total costs and downside risk
(MCVaRG). The optimal results, detailed in Table 4.42, illustrate the effectiveness of
a multi-objective fuzzy linear programming approach that achieves an overall
satisfaction level of 94.93% by maximizing the minimum satisfaction level. The lowest
total supply chain operational cost is $7,832,100 with a satisfaction level of 98.37%,
while the minimum downside risk stands at $1,921,500 with a satisfaction level of
94.93%. Additionally, Table 4.42 presents the decision variable values corresponding
to the joint minimization of costs and associated downside risks. In this scenario,
Suppliers 2 and 3 are chosen to supply PET to the production plant due to their balanced
profiles in terms of cost and moderate downside risk. The production plan, including
both regular and overtime hours, remains consistent, aligning with retailer demand.
Retailer priorities in terms of service levels over the six-month planning period place
Retailer 4 at 100%, followed by Retailers 2, 6, 1, 5, and 3, with service levels of 98.29%,
96.67%, 95.33%, 93.71%, and 92.30% respectively. This method represents a trade-off
approach that balances cost reduction with risk mitigation, selecting suppliers and
retailers that provide the most favorable combination of these objectives. Among the
retailers, 1, 3, and 5 are given lower priority for order fulfillment: Retailer 1 is chosen
last due to its low cost but elevated risk; Retailer 3 is deprioritized for both higher costs
and risks; and Retailer 5 is ranked last because of its low risk but comparatively higher

costs.
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Table 4.42 Result obtained by integrating both cost and downside risk minimization.

Value
Overall Satisfaction 94.93%
Level
Satisfaction Level of
Minimizing Total
Supply Chain 98.37%
Operation Costs
Satisfaction Level of
Minimizing Downside
Risk of Total Supply 24.33%
Chain Operation Costs
Minimum Total Supply
Chain Operation Costs L
Minimum Downside
Risk of Total Supply $1,921,500.00
Chain Operation Costs
PeTOd Per2|od Period 3 | Period 4 | Period 5 | Period 6
Production volume
during regular 28,000 | 28,000 | 20,364 25,455 28,000 28,000
working hours in units units units units units units
period d
Production volume
during overtime 7,000 4,566 0 0 4,950 7,000
working hours in units units unit unit units units
period d
Amount of unmet
product demand at the | 3,025 0 0 0 0 4,001
plant in period d units unit unit unit unit units
(units)
Amount of overall 55 55 40 50 55 55
labors in period d Persons | persons | persons | persons | persons | persons
Total raw materials furnished by supplier s in period d
(units)
Pegod Per2|od Period 3 | Period 4 | Period 5 | Period 6
Supplier 1 0 0 0 0 0 0
Supplier 2 25,000 | 25,000 | 25,000 | 25,000 | 25,000 | 25,000
Supplier 3 10,000 | 7,566 0 455 7,950 10,000
Supplier 4 0 0 0 0 0 0
Volume of products transported to retailer r in period d
(units) A\_/erage
Period Period ) ) ) ) Service Level
1 9 Period 3 | Period 4 | Period 5 | Period 6 (%)
Retailer 1 5,050 5,086 3,300 4,216 5121 5,776 95.33%
Retailer 2 4,535 4,041 1,635 2,968 4,493 5,285 98.29%
Retailer 3 3,090 2,444 898 1,972 2,682 3,289 92.30%
Retailer 4 8,108 1,277 5,226 5,625 7,673 9,138 100.00%
Retailer 5 8,250 9,298 6,562 6,569 8,658 8,307 93.71%
Retailer 6 7,207 6,746 4,197 5,922 6,674 6,991 96.67%

The highlighted cells indicate the suppliers selected to provide Polyethylene Terephthalate (PET) and the retailers who achieved

the highest service level satisfaction percentages.
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4.3.3.1 Case 3’s Comparison of the Results

Table 4.43 and Figure 4.12 present a comparative analysis of the results from
three fuzzy linear programming models, focusing on supplier selection, retailer
prioritization, and objective function values. In the model aimed at minimizing total
supply chain operational costs, the emphasis is placed entirely on cost-efficiency, with
no consideration for downside risk. Consequently, suppliers offering the most
economical Polyethylene Terephthalate (PET) are chosen, and retailers with the lowest
associated servicing costs are prioritized. This outcome is consistent with conventional
specific fuzzy programming approaches, where uncertainties are modeled using
symmetrical fuzzy numbers and resolved through standard defuzzification methods.
The decision rule in this context favors options with the lowest cost. Conversely, in the
model that targets the minimization of downside risk while disregarding cost, the focus
shifts entirely to risk mitigation. Suppliers with the least downside risk in PET pricing
are selected, and the production facility gives preference to fulfilling demands from
retailers that present the lowest exposure to risk. This approach clearly emphasizes
reducing uncertainty and potential losses rather than achieving cost savings.

The third scenario addresses the simultaneous minimization of both total supply
chain operational costs and downside risk. This approach achieves a balanced trade-off
between reducing expenses and mitigating downside risk, an aspect that conventional
specific fuzzy programming techniques often overlook due to their inability to
effectively handle the asymmetrical nature of risk, particularly downside risk. In this
model, suppliers are selected based on a moderate combination of cost and risk, while
the production plant prioritizes fulfilling demands from retailers that contribute to
minimizing both factors. The combined total operational costs and associated risks are
minimized, as illustrated in Figure 4.12. This is accomplished by maximizing the
minimum satisfaction level between cost reduction and risk mitigation, ensuring a
balanced performance across both objectives. However, such a compromise is feasible
only when downside risk has a substantial impact on costs, warranting the integration

of both considerations into the decision-making framework.
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Table 4.43 Result comparison of three fuzzy linear programming models’ outcomes.

FLP Model
(Minimizing total
supply chain
operation costs)

FLP Model
(Minimizing
downside risk of
total supply chain
operation costs)

MOFLP Model
(Minimizing both total
supply chain operation

costs and downside
risk of total supply
chain operation costs)

Supplier Selection

Supplier 1 and
Supplier 2

Supplier 3 and
Supplier 4

Supplier 2 and
Supplier 3

Retailer Selection:
(Average Service
Level)

Retailer 1: 93.39%
Retailer 2: 91.71%
Retailer 3: 89.59%
Retailer 4: 99.00%
Retailer 5: 100.00%
Retailer 6: 96.00%

Retailer 1: 100.00%
Retailer 2: 97.61%
Retailer 3: 94.19%
Retailer 4: 99.00%
Retailer 5: 94.80%
Retailer 6: 92.34%

Retailer 1: 95.33%
Retailer 2: 98.29%
Retailer 3: 92.30%
Retailer 4: 100.00%
Retailer 5: 93.71%
Retailer 6: 96.67%

Minimizing Total
Supply Chain
Operation Costs

$7,712,875.00

$8,429,300.00

$7,832,100.00

Minimizing
Downside Risk
(MCVaRG)

$2,147,100.00

$1,731,676.00

$1,921,500.00

Possible Range of
Total Supply Chain
Operation Costs

From $7,712,875.00
to $9,859,975.00

From $8,429,300.00
to $10,160,976.00

From $7,832,100.00
to $9,753,600.00

For each model, the bold and italicized retailers denote those with the highest three service level satisfaction rates.

Fuzzy Linear Programming Model
{Minimizing Total Supply Chain Operation Cost)

Membership Function

Chain Operation Costs

Possible Gap of Total Supply
=$9,859,975 - $7,712,875

7,712,875

=$2,147,100
T $value
9,859,975

Minimum Total Supply Maximum Total Supply
Chain Operation Costs Chain Operation Costs

Fuzzy Linear Programming Model
{Minimizing Downside Risk of Total Supply Chain Operation Cost)

Membership Function

1

Chain Operation Costs
=$10,160,976 - $8,429,300

Possible Gap of Total Supply
=$1,731,676

8,429,300

Minimum Total Supply
Chain Operation Costs

Fuzzy Linear Programming Model
(Minimizing Total Supply Chain Operation Cost and
Minimizing Downside Risk of Total Supply Chain Operation Cost)

Membership Function

1

Possible Gap of Total Supply
Chain Operation Costs
=$9,753,600 - $7,832,100

=$1,921,500

7,832,100

T $value
9,753,600

Minimum Total Supply Maximum Total Supply
Chain Operation Costs Chain Operation Costs

T $value
10,160,976

Maximum Total Supply
Chain Operation Costs

Figure 4.12 Demonstration of how to determine maximum overall supply chain

operation expenses in a pessimistic case.
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4.3.3.2 Case 3’s Sensitivity Analysis

The developed Multi-Objective Fuzzy Linear Programming (MOFLP) model
incorporates a credibility level parameter (y), which reflects the decision maker’s
judgment regarding downside risk, measured by the Mean-Conditional Value at Risk
Gap (MCVaRG). This parameter can impact on the resulting plans and their
comparative performance. Therefore, a sensitivity analysis will be performed to

evaluate the effect of varying this parameter, as described in the following section.

e Sensitivity Analysis of the Percentage of Credibility

As outlined earlier, the credibility parameter represents the level of confidence
or belief in the model's outcomes, where a higher value of y indicates stronger trust in
the results. In this study, downside risk is influenced by changes in the credibility level,
which is examined within the range of 0.5 to 1. The sensitivity analysis evaluates how
varying y affects the outcomes, as presented in Tables 4.44 and 4.45. When v is set to
0.5, corresponding to the most probable scenario, the model produces the lowest total
supply chain operational costs and downside risk. Conversely, at y = 1, representing the
most conservative or pessimistic scenario, both the operational costs and downside risk

reach their highest levels.

Table 4.44 Result of sensitivity analysis of the percentage of credibility.

Y Minimizing Total Supply Chain Minimizing Downside Risk

Operation Costs (MCVaRG)
50% $6,665,479.13 $888,131.70
60% $7,097,234.97 $1,151,982.54
70% $7,455,783.73 $1,530,145.78
80% $7,832,100.00 $1,921,500.00
90% $8,271,553.91 $2,365,962.17
100% $8,649,609.54 $2,740,306.33

The highlighted cell displays the results of applying y at 80%, which served as the initial benchmark in this case study.
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Figure 4.13 Objective value results correspond to different percentages of credibility.

Table 4.44 and Figure 4.13 illustrate that as the credibility level (y) increases

from 50% to 100%, total supply chain operational costs rise from $6,665,479.13 to
$8,649,609.54. Likewise, the minimum downside risk (MCVaRG) escalates from
$888,131.70 to $2,740,306.33. This trend offers valuable insights for decision-makers

by highlighting the potential variability in outcomes and supporting more informed,

proactive planning. A higher credibility level represents a more conservative outlook,

where both operational costs and downside risk are elevated. Thus, increasing y reflects

a stronger level of confidence in the reliability of the results produced by the model.
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Table 4.45 Result reflecting how average service levels change with varying percentage of credibility of each retailer.

Retailer 1 | Retailer 2 | Retailer 3 | Retailer 4 | Retailer 5 | Retailer 6
y=50% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
y=60% | 100.00% | 100.00% | 94.69% | 100.00% | 98.27% | 100.00%
v=70% 97.42% | 100.00% | 93.49% 100.00% | 94.52% 100.00%
vy =80% 95.33% 98.29% 92.30% 100.00% | 93.71% 96.67%
y=90% | 94.56% | 97.64% 91.85% | 100.00% | 92.82% 95.76%
y=100% | 93.03% 96.04% 88.99% 100.00% | 90.85% 94.56%
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Table 4.45 shows that as the credibility level (y) rises from 50% to 100%, the
service levels for each retailer vary accordingly. This variation occurs because higher y
values correspond to increased retailer demands, which are modeled as fuzzy and
defuzzified using chance-constrained programming. At the most probable scenario (y
= 0.5), all retailers’ demands are fully met, achieving a 100% service level. However,
as y increases, service levels for certain retailers gradually decline due to production
capacity constraints. The order of decreasing service levels is Retailer 3, Retailer 5,
Retailer 1, Retailer 6, and then Retailer 2. Importantly, Retailer 4 consistently maintains
a 100% service level, even at the highest credibility level (y = 1), because it incurs the
highest penalty cost for lost sales and is subject to the greatest uncertainty risk.

Allowing shortages for Retailer 4 would therefore lead to substantial costs and risks.

4.3.4 Summary

This research offers important managerial insights and practical implications
for those involved in SCAPP. Conventional SCAPP approaches typically concentrate
on reducing overall operational costs, often overlooking the risks tied to uncertainty.
The methodology presented in this study introduces a novel framework that accounts
for asymmetrical skewness, thereby enhancing decision-making under uncertain
conditions. By incorporating different forms of skewness into the model, it enables a
more thorough evaluation of risk, leading to improved allocation of resources and
greater operational effectiveness. Consequently, organizations are better equipped to
formulate customized strategies that optimize performance in evolving and complex
supply chain environments.

While the proposed model effectively targets the downside risk associated with
uncertainty, it does not account for the potential benefits of favorable cost outcomes.
By utilizing the Mean-Conditional Value at Risk Gap (MCVaRG) to measure and
reduce downside risk, the model emphasizes limiting the negative impacts of worst-
case scenarios. This risk-averse approach is particularly relevant for decision-makers
focused on avoiding adverse outcomes. However, the model's focus on minimizing
losses means it may not fully encompass the broader spectrum of uncertainty affecting
supply chain operational costs, which are subject to a variety of unpredictable

influences. Therefore, the study highlights the need for comprehensive risk
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management strategies that address the full range of uncertainties in supply chain
planning.

Integrating multiple objectives into SCAPP, particularly under uncertain
conditions, yields significant benefits. Relying on a single-objective model often falls
short when dealing with volatile markets and unexpected disruptions. A multi-objective
approach enables decision-makers to craft strategies that are both flexible and resilient,
allowing them to address weaknesses throughout the supply chain. This broader
perspective helps organizations respond more effectively to uncertainty, promoting
greater long-term stability and sustainability. The framework introduced in this study
supports decision-makers by offering tools to evaluate a wide range of cost scenarios
and manage risks proactively, ultimately fostering more robust and adaptable supply
chain systems.

Finally, this study presents an innovative multi-objective fuzzy linear
programming model designed to optimize SCAPP by simultaneously balancing cost
reduction and downside risk management. The proposed framework is both flexible
and robust, improving decision-making in complex and uncertain settings. This study
also identifies opportunities for future work, including investigating alternative fuzzy
distribution models, accounting for the dynamic behavior of parameters, and examining
the influence of external factors on outcomes. Additionally, incorporating advanced
optimization methods such as meta-heuristic algorithms and machine learning could
further strengthen the model’s performance, offering more adaptable and sophisticated
solutions. Future studies should also explore a variety of risk metrics and optimization
approaches to better reflect diverse risk preferences and priorities, thereby advancing

the development of more effective supply chain optimization models under uncertainty.
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CHAPTER 5
DISCUSSION AND CONCLUSIONS

This chapter presents a comprehensive analysis of the research findings,
highlighting the theoretical contributions and practical implications of the developed
fuzzy optimization models for SCAPP. It explores how the proposed framework
addresses the inherent uncertainties and conflicting objectives in modern supply chains,
offering adaptive and resilient solutions for cost minimization, resource optimization,
and risk mitigation. This chapter also reflects on the broader impact of these findings
on industry practices and academic discourse, providing actionable insights for
decision-makers and laying the groundwork for future research to advance the field

further.

5.1 Discussion and Conclusions
e Case 1 (A Five-Phase Hybrid Fuzzy Optimization Approach for Supply Chain
Aggregate Production Planning)

This study addresses the dual challenges of data uncertainty and conflicting
objectives in SCAPP, highlighting the inseparable nature of supply chain operations
and production planning in real-world scenarios. It proposes a five-phase hybrid fuzzy
optimization approach that integrates procurement, production, and distribution
planning while accommodating imprecise, incomplete, and noisy data. Utilizing
advanced fuzzy optimization techniques, including Triangular Intuitionistic Fuzzy
Numbers, (a, p)-cut, Realistic Robust Programming, Chance-Constrained
Programming, Intuitionistic Fuzzy Linear Programming, and the AUGMECON
method, the model generates a diverse set of Pareto optimal solutions tailored to
decision-makers' varying risk preferences. This adaptability enables strategic planning
across optimistic to pessimistic scenarios, providing decision-makers with a flexible
range of solutions that can be customized to specific operational needs. The managerial
implications are significant, offering a practical framework for addressing real-world
complexities by demonstrating the necessity of integrating supply chain operations with
production planning. This study encourages managers to adopt robust decision-making
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tools that can accommodate imprecise data, noisy inputs, and hesitation in human
judgment. By generating Pareto optimal solutions, the proposed approach empowers
managers to conduct trade-off analyses among competing objectives, ensuring that
supply chain goals align with organizational priorities and enhancing the reliability of

decisions in uncertain environments.

e Case 2 (A Unified Fairness and Robustness Fuzzy Optimization Approach for

Supply Chain Aggregate Production Planning)

This study provides valuable insights into SCAPP under uncertainty,
emphasizing the advantages of a multi-objective approach over conventional single-
objective models. By enhancing flexibility and resilience, the multi-objective strategy
enables decision-makers to effectively manage supply network dynamics and
fluctuations in demand, contributing to long-term supply chain sustainability. The
integration of Chance-Constrained Programming (CCP) introduces probabilistic
elements that improve decision-making and risk management by accounting for the
likelihood of various outcomes. Furthermore, the incorporation of fairness within the
optimization framework strengthens stakeholder relationships, fostering trust and
collaboration critical to ensuring a stable supply chain environment. This study also
highlights the importance of robustness in maintaining operational stability and
efficiency in dynamic, uncertain circumstances. The proposed unified fuzzy
optimization approach, which integrates fairness and robustness, outperforms
conventional methods by simultaneously optimizing conflicting objectives such as cost
reduction, workforce stabilization, and purchasing maximization. The use of triangular
fuzzy numbers and Realistic Robust Programming (RRP) enhances the optimization
process, making it more adaptable and effective in addressing the complex challenges
faced by modern supply chains.
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e Case 3 (A Downside Risk Mitigation Approach for Supply Chain Aggregate
Production Planning)

This study offers valuable insights for decision-makers in SCAPP, emphasizing
the importance of incorporating multiple objectives into supply chain strategies.
Traditional SCAPP models typically focus on minimizing operational costs, often
neglecting the associated risks. The proposed methodology enhances decision-making
under uncertainty by integrating various types of skewness, providing a more
comprehensive risk assessment and facilitating improved resource allocation. By
addressing downside risks through the Mean-Conditional Value at Risk Gap
(MCVaRG), the model helps mitigate the adverse effects of worst-case scenarios,
improving risk management and operational efficiency. This approach enables
organizations to develop more tailored strategies, optimizing performance in dynamic
and complex environments. However, while the model focuses on downside risk, it may
not fully capture all uncertainties impacting supply chain operation costs, which are
influenced by unpredictable factors. The managerial implications are significant, as the
model offers a strategic tool for managers to adopt a more holistic approach that moves
beyond cost minimization to incorporate risk management and resource optimization.
By proactively addressing potential losses through skewness and downside risk
assessment, managers can enhance decision robustness and reliability, fostering
resilient, adaptive supply chain strategies that align with organizational risk profiles.
Additionally, the model’s focus on fair resource allocation and efficient planning
contributes to improved stakeholder trust, better alignment of supply chain functions,

and long-term sustainability.
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e Overall Discussion and Managerial Implications

This study represents a significant advancement in Supply Chain Aggregate
Production Planning (SCAPP) by integrating advanced fuzzy optimization models to
address the inherent uncertainties within modern supply chains. Unlike conventional
models that rely on static assumptions, the proposed framework leverages fuzzy logic
to manage the unpredictable nature of supply chain systems, enabling decision-makers
to balance cost minimization, resource allocation, and risk mitigation effectively. The
model’s systematic approach to quantifying and managing uncertainties ensures
resilience against both external shocks and internal variability, making it particularly
relevant for industries affected by market volatility, global uncertainties, and rapid
technological changes. Empirical results demonstrate that this framework enhances
operational efficiency, mitigates cost-related risks, and optimizes resource utilization,
positioning it as a critical tool for businesses striving to maintain stability and
competitiveness in uncertain environments.

Beyond its theoretical significance, this study offers important managerial
insights, including the following:

e Enhanced Decision-Making Under Uncertainty: Managers can benefit from
a multi-objective approach that accommodates uncertainty and hesitation in
human judgment, enabling more informed and balanced decisions in fluctuating
supply chain environments.

e Strategic Trade-off Analysis: The availability of multiple optimal solutions
enables managers to conduct trade-off analyses among conflicting objectives,
supporting more balanced and aligned organizational strategies.

e Flexible Strategic Planning: By offering Pareto optimal solutions across a
range of optimistic to pessimistic scenarios, the model allows managers to select
strategies that best align with their risk tolerance and business conditions.

e Strengthening Stakeholder Relationships: By incorporating fairness into the
optimization framework, the proposed approach promotes equitable decision-
making, enhancing trust, cooperation, and long-term partnerships within the

supply chain.
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e Operational Stability in Uncertain Environments: The use of robustness in
the optimization process enhances operational consistency, reducing the impact
of variability and disruptions.

e Risk-Awareness Planning: By integrating Chance-Constrained Programming
(CCP), managers can incorporate probabilistic reasoning into their planning
processes, enhancing risk management by assessing the likelihood of various
outcomes. Additionally, the inclusion of downside risk analysis through the
Mean-Conditional Value at Risk Gap (MCVaRG) empowers managers to
proactively address worst-case scenarios, reducing potential losses and
strengthening the overall resilience of the SC.

e Strategic Use of Skewness in Planning: Leveraging skewness as part of risk
assessment empowers managers to better evaluate asymmetric uncertainties and
plan accordingly.

e Future-Ready Planning Framework: By integrating advanced
methodologies, the study provides a forward-thinking framework that prepares
managers to navigate increasingly uncertain and complex supply chain

environments.

5.2 Limitations and Further Study

While this study offers meaningful insights into supply chain production
planning, it also has certain limitations that future research should consider. The main
constraints identified across the three cases are outlined below:

e Data Availability and Quality: The model relies heavily on imprecise,
incomplete, and noisy data, which may impact its accuracy and effectiveness in
real-world applications, especially when data quality is suboptimal.

e Human Judgment Bias: Although the model accommodates hesitation and
human judgment, subjective biases in decision-making could still affect the
quality of the results, particularly in the absence of sufficient decision-maker

expertise or experience.
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Computational Complexity: The proposed fuzzy optimization approaches,
while comprehensive, can become computationally intensive, especially when
applied to large-scale supply chain scenarios, potentially limiting its practical
application in time-sensitive environments.

Limited Consideration of External Factors: Although the study addresses
data uncertainty and conflicting objectives, it may not fully account for all
external factors or unforeseen events (e.g., political, economic, or
environmental disruptions) that could influence supply chain operations.
Scalability Issues: The model may face challenges in scaling to large-scale
supply chains with many variables, decision-makers, and operational
complexities, potentially reducing its applicability in global or highly intricate
systems.

Assumption of Linear Relationships: The integration of various fuzzy
optimization techniques may oversimplify some non-linear relationships and
interactions in supply chain operations, which could affect the accuracy of the
solutions in certain cases.

Assumptions of Static Risk Preferences: The study assumed fixed risk
preferences of decision-makers across scenarios, which may not reflect the
dynamic nature of risk tolerance, particularly in fast-changing or uncertain
environments.

Narrow Focus on Downside Risk: The model primarily focuses on mitigating
downside risks and worst-case scenarios, but it may not fully capture all types
of uncertainties affecting supply chain operation costs, particularly those arising
from unpredictable factors such as sudden market shifts or geopolitical events.
Although the model integrates various types of skewness for a more
comprehensive risk assessment, it may still overlook certain non-quantifiable
risks or those driven by human factors, which can significantly influence supply

chain performance.
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e Over-Simplification of Fairness: While fairness is integrated into the
optimization framework, its implementation might not fully capture the
complex, diverse interests of all stakeholders, potentially simplifying the
nuances of real-world stakeholder dynamics.

e Simplification of Real-World Dynamics: The study assumes that decision-
makers can effectively adapt to a range of solutions, but real-world decision-
making often involves more complex interactions and constraints that may not
be fully captured in the proposed model.

e Generalizability to All Industries: The framework, though promising, may not
be universally applicable across all industries, especially those with highly
specific constraints or operational characteristics that differ significantly from

the study's focus.

According to all limitations of this study, future research can be explored as
follows:

e Enhanced Data Quality Management: Future studies could explore methods
for improving data collection, processing, and validation, especially in the
context of noisy or incomplete data, to enhance the accuracy and reliability of
the model's predictions.

e Human and Behavioral Factors: Further studies could also incorporate
insights from behavioral economics and decision-making theories to better
account for human judgment and biases in the decision-making process within
the supply chain context.

e Human-Computer Decision-Making Integration: Future studies could
investigate ways to better integrate human decision-makers with the fuzzy
optimization model, perhaps by using machine learning techniques to improve
the model's adaptability to human intuition and reduce decision bias.

e Computational Efficiency: Future studies could focus on reducing the
computational complexity of the model, making it more efficient for larger
datasets and more scalable for dynamic, real-time supply chain decision-

making.
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Integration of External Factors: Future studies could also explore the
inclusion of additional external uncertainties (e.g., market fluctuations,
geopolitical risks) that might influence supply chain operations and extend the
model’s applicability in dynamic environments.

Scalability and Efficiency Enhancements: Future studies could explore ways
to improve the scalability and efficiency of the multi-objective optimization
approach, potentially using advanced algorithms or heuristic methods that
reduce computational overhead for larger supply chains.

Stochastic and Non-linear Modeling: Future studies could investigate the
potential of incorporating stochastic or non-linear programming approaches into
the model to better capture complex relationships and improve the robustness
of solutions in more varied scenarios.

Dynamic Risk Assessment Models: Further studies could also focus on
developing dynamic models that evolve with changing market conditions,
enabling ongoing adjustments to risk assessments and optimizing supply chain
strategies over time.

Incorporating Broader Risk Categories: Future research could expand the
model to include other types of risks beyond downside risk, such as operational,
financial, and reputational risks, to provide a more comprehensive risk
assessment framework.

Exploration of Non-Quantifiable Risks: Future studies could investigate the
inclusion of qualitative or non-quantifiable risks, such as those related to human
behavior, organizational culture, or customer sentiment, to improve the
comprehensiveness of the risk assessment.

Fairness in Resource Allocation: Further research could investigate alternative
methods for quantifying and implementing fairness in resource allocation,
especially in multi-stakeholder environments, to refine the model’s practical
applicability.

Real-Time Application and Testing: The model could be tested in real-world

supply chain scenarios to assess its practicality and effectiveness in real-time
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decision-making, and adjustments could be made based on feedback from actual
operations.

Cross-Industry Application: Applying the model to different industries with
unique supply chain characteristics (e.g., healthcare, perishable goods, or
technology) could provide insights into its generalizability and identify
potential modifications for specific sectors.

Comparative Analysis with Other Models: Future studies could compare the
proposed approaches with other supply chain optimization models to evaluate
its relative advantages and limitations, potentially identifying areas for

improvement or adaptation for different industry sectors.
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