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ABSTRACT 

 

This thesis develops advanced fuzzy optimization models to strengthen 

resilience in Supply Chain Aggregate Production Planning (SCAPP) by addressing 

uncertainties inherent in modern supply chains. Utilizing fuzzy logic, the model 

integrates uncertain parameters such as fluctuating demand, variable supplier 

reliability, and operational disruptions, providing approaches to managing 

unpredictability. This innovative framework is designed to tackle multiple conflicting 

objectives simultaneously, including cost minimization, resource allocation 

optimization, and risk mitigation, thereby enabling decision-makers to achieve 

balanced and efficient SCAPP. This advancement marks a departure from conventional 

approaches, which frequently focus on static assumptions and single-objective 

optimization.  

By systematically quantifying uncertainties, the model ensures that supply chain 

strategies remain robust against external shocks and internal variabilities. Its ability to 

provide adaptive solutions to unexpected scenarios demonstrates its relevance in 

industries where supply chains face frequent disruptions due to market volatility, global 

uncertainties, and rapid technological changes. The empirical results confirm that the 

proposed models enhance operational efficiency, reduce the risk of cost fluctuations, 
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and improve resource utilization, making it a valuable tool for businesses aiming to 

maintain stability in volatile environments. By bridging the gap between theoretical 

advancements and practical applications, this study contributes to both scholarly 

discourse and industry practice, emphasizing the importance of adaptable and scalable 

solutions in dynamic supply chain environments. 

 The findings of this thesis go beyond theoretical advancements, offering 

practical insights that empower supply chain managers to make more informed and 

effective decisions. By addressing real-world complexities, the model demonstrates its 

versatility and applicability across various industries, serving as a crucial tool for 

organizations aiming to achieve both operational efficiency and long-term 

sustainability. Additionally, this research lays a strong foundation for future studies, 

encouraging the exploration of more advanced fuzzy optimization models and further 

integration of risk mitigation strategies into SCAPP frameworks. 
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CHAPTER 1 

INTRODUCTION 
 

This chapter provides a thorough exploration of the research context, objectives, 

and contributions. It begins with a detailed research background, outlining the 

significance of the research within the broader field of production planning and supply 

chain management. The problem statement identifies the key challenges addressed by 

the research, specifically focusing on the complexities of managing supply chains under 

uncertainty. This chapter further highlights the research contributions, emphasizing the 

novel methodologies and frameworks proposed to improve the resilience and efficiency 

of supply chain operations. Finally, the thesis overview presents a roadmap of the 

subsequent chapters, offering a clear structure for the reader to follow as the study 

progresses from foundational concepts to advanced optimization techniques and 

practical applications. 

 
1.1 Research Background 

This research centers on the growing importance of Supply Chain Aggregate 

Production Planning (SCAPP) within the context of an increasingly complex and 

competitive marketplace. As businesses face increasing pressure from global 

competition, rapidly changing market conditions, and unpredictable demand patterns, 

SCAPP has become an essential tool for optimizing supply chain operations (Reyes et 

al. (2021); Ravindran et al. (2023)). Consequently, effective supply chain management 

presents significant challenges, primarily resulting from inherent uncertainties 

originating from diverse sources such as supply disruptions, fluctuating demand, and 

changing economic conditions. 

The complexities of modern supply chains are further compounded by the need 

to handle imprecise data that conventional deterministic models often fail to capture. 

This influences supply chain decisions, limiting their practical applicability. As such, 

there has been a growing interest in incorporating uncertainty into SCAPP through 

advanced methodologies that provide more flexible and adaptive solutions. This 

research focuses on utilizing fuzzy set theory and optimization techniques to address 
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these challenges, offering a robust framework for decision-making in uncertain 

environments. Fuzzy set theory, which addresses the representation of uncertain and 

vagueness information, has demonstrated its effectiveness as a robust tool for managing 

uncertainty in supply chain planning. This has been demonstrated by numerous 

researchers over the years, including pioneers such as Lotfi A. Zadeh, who originally 

introduced the concept of fuzzy sets in 1965, and later scholars like Tanaka et al. (1974), 

who pioneered the application of fuzzy set theory in linear programming, and more 

recently such as Tuan et al. (2021) and Mohamed et al. (2023), who have shown its 

relevance in modeling and optimizing uncertain parameters in supply chain and 

production planning environments. Their work has contributed significantly to 

establishing fuzzy set theory as a robust framework for supporting decision-making 

under uncertainty. Specifically, fuzzy numbers, such as triangular and intuitionistic 

triangular fuzzy numbers, allow for the representation of uncertain parameters, enabling 

decision-makers to model supply chain variables more accurately. By integrating fuzzy 

logic with optimization models, this research aims to enhance the reliability and 

operational efficiency of SCAPP under conditions of uncertainty and conflicting 

objectives by developing advanced fuzzy optimization models.  

Moreover, this research significantly contributes to the academic understanding 

of how advanced mathematical tools can be utilized to address the practical difficulties 

faced by modern supply chains. This research also emphasizes the importance of 

bridging the gap between theoretical advancements in optimization and their practical 

applications. By doing so, it equips supply chain managers with the necessary insights 

and tools to sustain operations even under adverse conditions. In essence, this research 

offers new pathways for enhancing resilience, adaptability, and sustainability in supply 

chain management, providing organizations with the strategies they need to not only 

survive but thrive in an increasingly unpredictable global marketplace. 

 

1.2 Problem Statement 

This research also emphasizes the importance of bridging the gap between 

theoretical advancements in optimization and their practical applications. By doing so, 

it equips supply chain managers with the necessary insights and tools to sustain 

operations even under adverse conditions. In essence, this research offers new pathways 
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for enhancing resilience and adaptability in supply chain management, providing 

organizations with the strategies they need to not only survive but thrive in an 

increasingly unpredictable global marketplace. 

Uncertainty in SCAPP arises from numerous unpredictable factors, including 

supplier delays, economic fluctuations, geopolitical tensions, and global crises. These 

factors further complicate the already difficult task of aligning production capacities 

with demand forecasts, leading to suboptimal resource utilization and increased risk 

exposure. Moreover, the presence of conflicting objectives adds a layer of complexity 

to the decision-making process. conventional planning methods often lack the 

flexibility and adaptability required to balance these competing demands and 

uncertainties effectively. These shortcomings significantly obstruct the ability of supply 

chain managers to make informed decisions and maintain operational continuity in the 

face of unforeseen events. Without the adoption of advanced tools and models that can 

better address the complexities of modern supply chains, organizations risk facing 

inefficiencies and disruptions that could threaten their long-term sustainability. 

To overcome these limitations, innovative approaches are urgently needed that 

integrate uncertainty and conflicting objectives into the planning process in a more 

comprehensive and effective manner. There is a clear need for methodologies that not 

only account for the inherent uncertainties in supply chains but also provide flexible, 

adaptive solutions that allow businesses to respond swiftly to dynamic market 

conditions. Therefore, this research seeks to fill these critical gaps by developing 

advanced fuzzy optimization models tailored for SCAPP. These models aim to enhance 

decision-making in environments characterized by uncertainty and conflicting 

objectives. By utilizing fuzzy logic, these models will enable supply chain managers to 

better quantify and incorporate uncertainties into the planning process, leading to more 

reliable, flexible, and adaptive production plans. Through this research, it is anticipated 

that organizations will be better equipped to foster resilience and improve 

responsiveness in their supply chain operations. 
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1.3 Research Contributions 

The potential research contributions are identified as follows: 

1. Development of Advanced Fuzzy Optimization Models for SCAPP 

This research contributes to supply chain management field by 

developing advanced fuzzy optimization models tailored specifically for 

SCAPP. These models integrate uncertainty and conflicting objectives, 

providing supply chain managers with more reliable and adaptive 

decision-making tools under dynamic market conditions. 

2. Improvement of Supply Chain Resilience and Flexibility 

This research enhances resilience of supply chain by providing models 

that can quickly adapt to sudden market changes, external crises, and 

unforeseen events. By focusing on flexibility, this research empowers 

organizations to respond to supply chain volatility and shifting market 

conditions more effectively, improving overall operational continuity. 

3. Introducing Downside Risk Management to SCAPP 

This study introduces Mean-Conditional Value at Risk Gap (MCVaRG) 

as a novel downside risk measure to capture and minimize the risk of 

uncertainty in decision-making under ambiguity. Unlike existing risk 

measures, MCVaRG focuses on the gap between expected outcomes and 

extreme losses in the lower tail of the distribution, offering a more 

sensitive and targeted assessment of downside risk. This is the first study 

to apply MCVaRG within an optimization framework for SCAPP, 

providing a unique approach that enhances both the reliability and 

robustness of decisions under uncertainty. 

4. Bridging the Gap Between Theory and Practice in SCAPP 

This research addresses the gap between theoretical advancements in 

fuzzy optimization and their practical applications. By developing 

models that are both theoretically sound and practically applicable, this 

research offers actionable insights and tools that supply chain managers 

can directly implement in real-world settings. 
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1.4 Thesis Overview 

Following this introductory chapter, the remaining chapters of the thesis are 

organized as outlined below: 

• Chapter 2: Review of Literature 

This chapter reviews key literature on supply chain management, uncertainty, 

fuzzy set theory, and optimization techniques. It begins with an overview of 

supply chain fundamentals and Supply Chain Aggregate Production Planning 

(SCAPP) as a strategy for balancing supply and demand. The discussion then 

examines uncertainty, its associated risks, and the challenges of conflicting 

objectives in decision-making. To address these issues, the chapter introduces 

Fuzzy Set Theory, including Fuzzy Numbers and Skewness Degree, as tools for 

modeling imprecise data. It also explores Fuzzy Mathematical Models, 

Defuzzification Approaches, and Pareto Optimal Solutions for optimizing 

trade-offs in multi-objective decision-making. Finally, Risk Measurement 

techniques are reviewed for assessing and mitigating potential negative 

outcomes. This literature review establishes the theoretical foundation for 

managing uncertainty in supply chain optimization. 

 

• Chapter 3: Research Methodologies and Case Studies 

This chapter presents the various research methodologies employed to address 

optimization problems under uncertainty, particularly focusing on fuzzy 

optimization approaches. It begins with an exploration of the conventional 

specific fuzzy optimization approach, laying the groundwork for understanding 

the foundational techniques used in modeling uncertainty and imprecision. This 

chapter then progresses to introduce a five-phase hybrid fuzzy optimization 

approach, combining elements of multiple methodologies to enhance decision-

making processes. Following this, a unified fairness and robustness fuzzy 

optimization approach is discussed, providing a structured framework for 

tackling unfair and sensitive optimization challenges. Then, this chapter 

presents a downside risk mitigation approach, providing a way to handle the 

risk of uncertainty. Each of these methodologies contributes to the advancement 
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of optimization practices, particularly in environments characterized by 

uncertainty and vagueness. Finally, this chapter presents an introduction and 

outlines the contributions of three case studies, each examining a distinct 

methodological approach to Supply Chain Aggregate Production Planning 

(SCAPP) under conditions of uncertainty. 

 

• Chapter 4: Results 

This chapter presents a comprehensive analysis of three case studies that explore 

distinct methodological approaches to Supply Chain Aggregate Production 

Planning (SCAPP) under uncertainty. Each case study introduces a unique 

framework designed to optimize production planning while addressing critical 

challenges such as cost efficiency, fairness, robustness, and risk mitigation. 

Case 1 introduces a five-phase hybrid fuzzy optimization approach that 

integrates multiple optimization techniques to enhance decision-making in 

SCAPP. Case 2 proposes a unified fairness and robustness fuzzy optimization 

approach, ensuring equitable resource distribution while maintaining resilience 

against uncertainties. Case 3 focuses on mitigating downside risk by 

incorporating advanced risk measurement techniques to minimize potential 

financial losses arising from fluctuations in supply chain operations. The 

structure of each case study includes a detailed formulation of the mathematical 

model, a description of the problem, an analysis of the results, and a discussion 

of key findings. The comparative insights drawn from these cases provide a 

holistic understanding of how various optimization strategies can be employed 

to improve SCAPP under uncertain circumstances. 
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• Chapter 5: Discussion and Conclusions 

This chapter provides a comprehensive analysis of the study’s findings, drawing 

meaningful conclusions and highlighting their broader implications. The 

discussion and conclusion section synthesizes key insights, interpreting the 

results in relation to existing literature and the research objectives. The 

managerial implications section explores the practical significance of the 

findings, offering strategic recommendations for decision-makers in supply 

chain management. Finally, the limitations and further study section 

acknowledges the study’s constraints and proposes directions for future 

research to enhance the robustness and applicability of the proposed 

methodologies. 
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CHAPTER 2 

REVIEW OF LITERATURE 
 

This chapter provides a comprehensive review of the key concepts, 

methodologies, and recent advancements that form the foundation of this research. It 

begins with an in-depth exploration of SCAPP, emphasizing the importance of aligning 

production capacity with resource allocation to optimize operational efficiency. 

 
2.1 Supply Chain 

A Supply Chain (SC) is a system of interconnected organizations, resources, 

processes, and technologies that collaboratively manage the flow of goods and services 

from initial suppliers to end consumers (Stevens (1989)). The primary objective of a 

SC is to efficiently satisfy customer demand while minimizing costs, optimizing 

resource utilization, and maintaining the flexibility to respond to market changes. An 

effectively managed SC can confer a competitive advantage to organizations by 

enhancing product availability, shortening lead times, and improving customer 

satisfaction. 

In addition to the physical flow of goods, modern supply chains also involve 

significant information flow (Kumar (2001)). Efficient information sharing and real-

time data access across all stakeholders enable better forecasting, decision-making, and 

performance monitoring. Technologies such as Enterprise Resource Planning (ERP) 

systems, Internet of Things (IoT) sensors (Yesodha et al. (2023)), and blockchain have 

become integral to ensuring smooth information flow throughout the SC. 
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The structure of a typical supply chain can be visualized in Figure 2.1 (New & 

Payne, (1995); Shukla et al. (2011)). 

 

 
 

Figure 2.1 The structure of a typical supply chain. 

 

The fundamental components of a supply chain are demonstrated as follows: 

• Suppliers: Supply raw materials, components, and services essential for 

production. 

• Manufacturers: Convert raw materials into finished or semi-finished 

products. 

• Distributors and Wholesalers: Oversee the storage and transportation of 

goods to retailers or directly to consumers. 

• Retailers: Offer products for sale to the final customers. 

• Consumers: Represent the ultimate end-users of the products. 

 

The processes in a SC can be represented as a series of interconnected stages, 

starting from raw material sourcing and ending with product delivery to the consumer 

(Christopher et al., (1998); Tan (2001)). Simple supply chain processes are typically 

explained as follows: 

• Procurement: Sourcing and acquisition of raw materials or components. 

• Production: Converting raw materials or components into finished products. 

• Logistics: Coordinating transportation, storage, and distribution. 
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• Demand Forecasting: Predicting customer needs to optimize planning. 

• Inventory Management: Balancing stock levels to meet demand without 

excess. 

 

Modern supply chains face numerous challenges as follows: 

• Demand Uncertainty: Fluctuating customer demand can complicate 

production and inventory management. 

• Supply Chain Disruptions: Incidents such as geopolitical conflicts, natural 

catastrophe, and supplier failures can lead to delays or shortages. 

• Globalization: Managing complex, multi-tier supply chains that span multiple 

countries, with different regulations and cultural expectations. 

• Sustainability: Integrating eco-friendly practices to reduce social and 

environmental impacts. 

 

2.1.1 Supply Chain Aggregate Production Planning 

Supply Chain Aggregate Production Planning (SCAPP) is a comprehensive 

framework that integrates production planning with supply chain management to 

optimize resources and meet customer demand efficiently (Mendoza et al. (2014)). The 

core concept centers on the coordination of supply chain activities such as procurement, 

manufacturing, inventory management, and distribution to fulfill organizational 

objectives. (Heizer & Render (2004)). 

The structure of SCAPP is built around a hierarchical planning process that 

encompasses strategic, tactical, and operational levels (Muriel & Simchi-Levi (2003); 

Bashiri et al. (2012)): 

• Strategic Level: At this level, long-term decisions are made concerning the 

overall configuration of the SC, including facility locations, production 

capacities, and supplier selection. These decisions set the foundation for tactical 

and operational planning and typically span several years. 

• Tactical Level: The tactical level focuses on medium-term planning, translating 

strategic decisions into actionable plans. This process includes aggregate 

production planning, which sets production volumes, inventory targets, and 
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labor needs over a planning period typically spanning several months to a year. 

Tactical SCAPP also addresses Material Requirement Planning (MRP) and 

capacity planning to ensure that resources are optimally allocated. 

• Operational Level: At the operational level, short-term plans are developed to 

execute tactical plans efficiently. This includes detailed scheduling of 

production activities, inventory replenishment, and order fulfillment. Real-time 

monitoring and adjustments are often necessary to address unforeseen 

disruptions or changes in demand. 

 

2.2 Uncertainty 

Uncertainty is a concept with diverse interpretations and applications across a 

wide range of disciplines, each offering unique insights and contextual emphases (Klir 

(1995)). In the physical sciences and engineering, uncertainty often relates to 

measurement inaccuracies and variability in experimental outcomes, reflecting the 

inherent limitations of instruments and natural processes. In statistics, it captures the 

probabilistic nature of data and the challenges of drawing inferences from incomplete 

or imperfect information. Economics and finance approach uncertainty in terms of 

market volatility, forecasting challenges, and risk management, emphasizing its 

implications for strategic planning and investment. The insurance industry focuses on 

uncertainty through risk assessment and actuarial models to quantify and manage 

potential losses. Philosophy focuses on the epistemological dimensions of uncertainty, 

exploring questions about the limits of human knowledge, the nature of truth, and how 

certainty is constructed or perceived. Meanwhile, psychology examines uncertainty 

from a behavioral perspective, investigating how individuals perceive, interpret, and 

respond to ambiguous or unpredictable situations in their decision-making processes. 
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To synthesize these perspectives, uncertainty can be broadly defined and 

understood through the following dimensions: 

• The state of not being known or clearly determined: This reflects the absence 

of definitive knowledge or clarity about a situation or outcome. 

• A condition of instability or change: Uncertainty arises in dynamic contexts 

where variables are subject to fluctuation and unpredictability. 

• A situation where the probability of outcomes is unknown: This denotes 

circumstances where it is difficult or impossible to assign precise probabilities 

to potential events. 

• Vagueness or ambiguity: Uncertainty often derives from imprecise, 

incomplete, or conflicting information, leading to multiple interpretations. 

• A lack of confidence or sureness: This form of uncertainty is experienced as 

doubt or hesitation, whether about a person, process, or forecast. 

 

It is important to distinguish that uncertainty arises from both objective and 

subjective sources. In some cases, uncertainty is inherent to physical systems, as in the 

randomness of a dice toss or quantum phenomenon, where outcomes are governed by 

probabilistic laws independent of human perception. In such instances, uncertainty 

exists regardless of whether a human observer is present. However, in many real-world 

applications, especially those involving decision-making, planning, or forecasting, 

uncertainty is closely tied to human perception, understanding, and limitations of 

knowledge. For example, uncertainty may emerge due to incomplete data, cognitive 

biases, or linguistic vagueness, which shape how information is interpreted and acted 

upon. Thus, while not all uncertainties originate from human cognition, many practical 

expressions of uncertainty in fields such as economics, supply chain management, and 

risk analysis are influenced by the way humans perceive, process, and evaluate 

information. Recognizing this distinction helps avoid overgeneralization and ensures a 

more precise interpretation of uncertainty across different contexts. 
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In this research, uncertainty is defined as the inherent unpredictability and 

variability present in real-world situations. It reflects the limitations of available 

information and acknowledges the potential for unforeseen events or outcomes. This 

definition emphasizes that uncertainty is not only an abstract concept, but also a 

practical challenge influencing decision-making, risk assessment, and strategic 

planning. 

The phenomenon of uncertainty arises from a confluence of factors, primarily 

deriving from a lack of understanding, incomplete knowledge, insufficient data, and the 

inherent variability present within natural processes. This state of uncertainty is further 

exacerbated by several key sources, as identified by Lawrence & Lorsch (1967) and 

Duncan (1972). Firstly, uncertainty arises when crucial information regarding 

environmental factors remains inaccessible or unattainable, preventing thorough 

evaluations of potential outcomes. Secondly, it surfaces when the anticipated results of 

a decision remain ambiguous, limiting the formulation of clear and informed strategies. 

Finally, uncertainty becomes more pronounced when assigning a degree of confidence 

to a given scenario proves ineffective, causing decision-making processes to be 

inherently volatile and precarious. 

In the context of business and supply chain operations, uncertainty typically 

originates from two primary sources: environmental uncertainty and system uncertainty 

(Cha-ume & Chiadamrong, 2012). 

• Environmental Uncertainty: This form of uncertainty derives from external 

factors that influence the SC and are often beyond the control of the business. 

One of the main contributors is the performance of suppliers, which can 

fluctuate due to various reasons such as production delays, financial instability, 

or logistical challenges. Another influential factor is customer behavior, 

particularly in terms of supply and demand dynamics. Shifts in consumer 

preferences, market trends, or changes in the economic landscape can lead to 

unpredictable demand patterns, making it challenging for businesses to 

accurately forecast needs and plan accordingly. Moreover, environmental 

uncertainty also encompasses broader geopolitical events, regulatory changes, 

and natural disasters, all of which can create sudden and significant disruptions 

in supply chain operations. 
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• System Uncertainty: System uncertainty arises from internal organizational 

factors that contribute to unpredictability. This type of uncertainty often derives 

from the unreliability and uncontrollability of internal processes. Issues such as 

machinery breakdowns, software malfunctions, or human errors can disrupt the 

flow of operations, leading to unexpected delays or failures. Furthermore, 

inefficiencies within workflows, a lack of coordination between departments, 

or insufficient resource management practices can amplify system uncertainty, 

making it difficult for an organization to achieve consistent performance. This 

type of uncertainty also includes the challenges of aligning organizational 

strategies with rapidly changing internal and external conditions, such as 

fluctuating workforce availability or changes in production capabilities. 

 

Uncertainty within organizational decision-making and operations can be 

categorized into four distinct types: data uncertainty, model uncertainty, parameter 

uncertainty, and scenario uncertainty. 

• Data Uncertainty: This type of uncertainty arises from limitations or 

inaccuracies in the available data, which affects the reliability or validity of the 

information on which decisions are based. Whether the data is outdated, 

incomplete, or corrupted, data uncertainty limits organizations from making 

confident and accurate assessments, ultimately impacting strategic planning and 

operational efficiency (Jones et al., 2020). 

• Model Uncertainty: Model uncertainty refers to the uncertainty associated 

with the mathematical or computational models used to represent real-world 

systems. These models, whether mathematical, computational, or statistical, are 

simplified representations of complex environments, and their structure may not 

fully capture the complexity of the real world. As a result, model uncertainty 

reflects the limitations of these representations and their inability to account for 

all possible variables or scenarios, which can lead to inaccurate predictions or 

conclusions (Brown & Johnson, 2018). 

 

Ref. code: 25686422300019ALF



15 
 
 

 
 

• Parameter Uncertainty: Parameter uncertainty arises from the uncertainty 

surrounding the values or estimates of parameters within a model. These 

parameters often involve estimates based on historical data, expert judgment, or 

assumptions that may carry inherent variability or imprecision. In many cases, 

slight changes in the values of key parameters can lead to significant variations 

in the model's output, highlighting the challenge of ensuring precision in 

parameter estimation (Chen et al., 2021; Li and Wu (2006)). 

• Scenario Uncertainty: Scenario uncertainty pertains to the uncertainty related 

to future conditions or scenarios that could affect outcomes. This includes a 

broad range of factors such as changes in market conditions, technological 

advancements, regulatory shifts, or unforeseen geopolitical events. Since these 

factors are often unpredictable and can evolve rapidly, scenario uncertainty 

plays a critical role in strategic decision-making, requiring businesses to plan 

for a variety of potential futures rather than a single anticipated outcome (Li & 

Wang, 2017). 

 

Recognizing and understanding these diverse types of uncertainty is crucial for 

organizations operating in complex and dynamic environments. By acknowledging the 

different sources and categories of uncertainty, businesses can develop more robust 

strategies for managing risks, enhancing decision-making, and improving their ability 

to adapt to unforeseen changes. This understanding allows organizations to implement 

comprehensive risk management frameworks, which not only account for known 

variables but also prepare for the unpredictable factors that can impact performance, 

market stability, and long-term growth. In turn, businesses can adopt a proactive 

approach to navigating uncertainty, positioning themselves to thrive through volatility 

and change. 
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2.2.1 Risk of Uncertainty 

The concept of risk, as discussed by Rachev et al. (2011), derives from inherent 

uncertainty and the likelihood of adverse exposure. The presence of uncertainty often 

leads to the perception of risk, which reflects the potential for adverse effects on 

individuals or organizations. According to Rachev et al., (2011) risk encompasses both 

the element of uncertainty where future events or conditions are unpredictable and the 

exposure to potential negative consequences that may result from these uncertain 

factors. This perspective highlights that risk cannot be fully understood or managed 

without considering the inherent uncertainty in any given situation. 

Uncertainty refers to the incomplete knowledge of future outcomes or 

conditions, which introduces variability and unpredictability into decision-making 

processes. When uncertainty exists, it implies that there are multiple possible outcomes, 

each with varying probabilities. Risk, therefore, emerges because of this uncertainty, as 

it represents the potential for adverse outcomes resulting from the unknown (Head 

(1967)). For instance, in financial investments, uncertainty about market movements 

creates the risk of financial loss. Similarly, in project management, uncertainty about 

resource availability or project timelines introduces the risk of delays and cost overruns. 

The subjective nature of risk underscores that different individuals or 

organizations may perceive and respond to risk differently based on their own 

experiences, knowledge, and risk tolerance. This subjectivity means that the same level 

of uncertainty can be viewed as more or less risky depending on the context and 

perspective of the decision-makers (Toma et al. (2012)). For example, a high-risk 

investment may be perceived as attractive to a risk-tolerant investor but as too risky for 

a more conservative investor. 

Effective risk management, therefore, involves not only understanding and 

quantifying uncertainty but also addressing how this uncertainty impacts exposure to 

potential negative outcomes. Accordingly, various risk measurement methods have 

been proposed to assist decision makers gain a comprehensive perception of the risks 

they encounter and to formulate effective mitigation or management strategies. 
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2.2.2 Risk Measurement 

Risk measurement is a critical process in risk management that involves 

quantifying the potential impact of uncertainties on an organization or investment. This 

process aims to provide a clear and objective assessment of risk exposure by evaluating 

the likelihood and severity of adverse outcomes. Risk measurement helps decision-

makers understand the extent of potential losses or damage and aids in developing 

strategies to mitigate these risks effectively (McGoun (1995)). 

One fundamental approach to risk measurement involves calculating the 

probability and impact of different risk events. Probability quantifies the likelihood of 

a risk event occurring, whereas impact evaluates the potential severity or consequences 

should the risk materialize. Techniques such as risk assessments, simulations, and 

statistical analyses are commonly used to evaluate these factors (Fishburn (1984)). For 

instance, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are pivotal tools 

in risk management and decision analysis, widely used to quantify uncertainty in 

environments where financial or operational risks prevail (Jorion, 2007). Value-at-Risk 

(VaR) is a statistical metric that estimates the maximum potential loss within a specified 

time frame at a predetermined confidence level. (Marshall & Siegel, 1997). It 

establishes a threshold beyond which the probability of experiencing larger losses is 

relatively low. Although VaR effectively captures the probability of losses, it does not 

convey information regarding the magnitude of losses that exceed the VaR threshold. 

This limitation is a significant drawback, as it fails to describe the magnitude of extreme 

events, a critical consideration, particularly in high-risk situations where large losses 

can have catastrophic consequences (Artzner et al., 1999). To better handle this 

limitation, CVaR (Expected Shortfall) evaluates the anticipated loss assuming losses 

exceed the VaR threshold, thereby offering a more informative risk assessment 

(Rockafellar & Uryasev, 2000). CVaR addresses the limitations of VaR by 

concentrating on the tail of the loss distribution, thereby offering a more comprehensive 

assessment of risks linked to extreme events. By capturing the average of the worst 

losses beyond the VaR point, CVaR not only estimates the likelihood of severe losses 

but also quantifies their potential magnitude, making it a more robust risk measure, 

especially for institutions or systems exposed to extreme risk (Acerbi & Scandolo, 

2008). The strength of CVaR lies in its mathematical properties, which ensures that 
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diversification of risk leads to a reduction in total risk, a feature that is not guaranteed 

by VaR. 

An additional critical element of risk measurement involves employing metrics 

and indicators to continuously monitor and manage risk over time. These metrics can 

include measures such as standard deviation, which gauges the volatility of returns, or 

the beta coefficient, which assesses the sensitivity of an asset’s returns to market 

movements (Szegö (2005)). By tracking these indicators, organizations can identify 

changes in risk levels and make adjustments to their risk management strategies 

accordingly. Additionally, scenario analysis and stress testing are valuable tools for 

examining how different scenarios or extreme conditions might impact risk, allowing 

organizations to prepare for and mitigate potential adverse outcomes. 

In summary, risk measurement is a crucial component of risk management that 

involves quantifying the probability and impact of potential adverse events. By 

employing various techniques and metrics, organizations can assess their risk exposure, 

monitor changes over time, and develop strategies to mitigate potential losses. 

Integrating quantitative data with qualitative insights provides a more holistic view of 

risk, enhancing decision-making and helping to safeguard against uncertainties. 

 

2.3 Fuzzy Set Theory 

Fuzzy logic, introduced by Lotfi Zadeh in the 1960s, revolutionized 

computational science by providing a mathematical framework for handling 

uncertainty. In contrast to conventional set theory, which employs binary logic to 

categorize information as either true or false, fuzzy logic accommodates varying 

degrees of truth, thereby capturing the ambiguity inherent in real-world situations. This 

approach has been extensively utilized across various fields such as data mining, 

artificial intelligence, control systems, and decision-making. By enabling machines to 

process imprecise or incomplete data, fuzzy logic improves the adaptability and 

robustness of intelligent systems, making them more capable of reasoning in uncertain 

environments.   
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Essentially, fuzzy logic enhances classical binary logic by allowing truth values 

to vary continuously between 0 and 1, which supports more subtle and complex 

reasoning. Instead of categorizing statements as entirely true or false, fuzzy logic 

introduces linguistic variables and fuzzy rules that better capture human reasoning. This 

flexibility makes it particularly useful in modeling complex systems where precise 

categorization is impractical. Applications of fuzzy logic span diverse domains, 

including climate modeling, risk analysis, and customer behavior prediction, where 

uncertainty is a fundamental challenge. By simulating human-like decision-making 

processes, fuzzy logic provides a more realistic and effective approach to handling 

vague or imprecise data.   

The introduction of fuzzy logic into optimization methods further expanded its 

applicability. In 1974, Tanaka et al. incorporated fuzzy set theory into Linear 

Programming (LP), allowing for fuzzy goals and constraints to model uncertainty in 

optimization problems. This advancement enabled decision-makers to incorporate 

imprecise parameters into optimization models, making them more reflective of real-

world conditions. Building on this, Bellman and Zadeh (1970) developed fuzzy 

decision models that linked fuzzy set theory with optimization techniques, 

demonstrating its effectiveness in addressing vagueness. The mathematical foundations 

of fuzzy logic, including constructs like Triangular Fuzzy Numbers (TFNs) and 

Trapezoidal Fuzzy Numbers (TrFNs), provide structured methods for representing 

uncertain data. These developments have solidified fuzzy logic as a critical tool in 

computational science, influencing fields ranging from industrial control systems to 

decision support tools. 

 

2.3.1 Fuzzy Number 

Fuzzy number possesses a set of well-defined mathematical properties that 

make them suitable for representing imprecise numerical values, where each element is 

assigned a membership degree ranging from 0 to 1. Unlike crisp numbers with precise 

values, fuzzy numbers accommodate uncertainty and imprecision, making them more 

suitable for modeling real-world scenarios where exact values are difficult to determine 

(Dubois & Prade, 1993). A fuzzy number is defined by a membership function that 

assigns varying degrees of certainty to values within its range. A membership degree 
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of 1 indicates full membership, while 0 represents complete non-membership, with 

intermediate values capturing partial truth. This flexibility allows fuzzy numbers to 

extend beyond conventional binary logic, incorporating a spectrum of possibilities that 

better reflect uncertain circumstances (Heilpern, 1997). 

In addition, its special properties include normality, convexity, boundedness, 

and upper semi-continuity. Normality ensures that the fuzzy number has at least one 

value with full membership (i.e., a membership degree of 1), representing the most 

plausible or core value. Convexity implies that all α-cuts of the fuzzy number form 

convex sets, which guarantees that the degree of membership does not increase once it 

begins to decrease, preserving the intuitive idea of gradual uncertainty around the core. 

Boundedness refers to the requirement that the support of the fuzzy number; the set of 

all values with non-zero membership, is finite, ensuring that the fuzzy number remains 

computationally manageable. Additionally, the membership function of a fuzzy number 

must be upper semi-continuous, which prevents abrupt increases in membership grades 

and ensures mathematical stability. These foundational properties are essential for 

enabling consistent fuzzy arithmetic operations and integration into fuzzy optimization 

models (Dubois & Prade, 1978). 

Fuzzy numbers play an essential role in fuzzy logic and fuzzy set theory, 

providing a structured way to handle vague or incomplete data (Zadeh, 1988). They are 

widely applied in supply chain management field, where they model fluctuating 

demand and unpredictable lead times, enhancing decision-making in uncertain 

environments. Their ability to integrate ambiguity into mathematical models makes 

them valuable for optimizing processes that require adaptability and robustness. By 

allowing for a more realistic representation of dynamic systems, fuzzy numbers 

contribute to improved planning and operational efficiency, particularly in complex and 

data-limited scenarios. 

A fuzzy number is a special type of fuzzy set defined over the real numbers. 

Formally, a fuzzy number 𝐴̃𝐴 is a convex and normalized fuzzy set that satisfies specific 

conditions. First, there exists at least one real number 𝑥𝑥0 ∈ 𝑅𝑅 such that the membership 

function 𝜇𝜇𝐴𝐴�(𝑥𝑥0) = 1, meaning the degree of membership of 𝑥𝑥0 in the fuzzy set is 

maximal. Second, the membership function 𝜇𝜇𝐴𝐴�(𝑥𝑥0) must be piecewise continuous over 
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the real numbers, ensuring the fuzzy number is well-defined and mathematically 

tractable. These properties ensure that the fuzzy number represents imprecise but 

bounded and meaningful quantities in decision-making and optimization contexts. 

• Triangular Fuzzy Number 
 
Triangular Fuzzy Numbers (TFNs) are a widely used type of fuzzy number in 

fuzzy set theory, representing uncertainty in a structured way (Shyamal & Pal (2007)). 

In the context of minimization, TFNs are defined by three key parameters: 𝑎𝑎𝑜𝑜 (the 

optimistic value), 𝑎𝑎𝑚𝑚 (the most likely value), and 𝑎𝑎𝑝𝑝 (the pessimistic value), where 

𝑎𝑎𝑜𝑜 ≤ 𝑎𝑎𝑚𝑚 ≤ 𝑎𝑎𝑝𝑝  Conversely, for maximization problems, the order of these parameters 

is reversed. The triangular shape of the membership function for a TFN reflects the 

assumption that the most likely value (𝑎𝑎𝑚𝑚) has the highest degree of membership, while 

values closer to the lower and upper bounds (𝑎𝑎𝑜𝑜 and 𝑎𝑎𝑝𝑝) gradually have decreasing 

degrees of membership (Anand & Bharatraj (2017); Hierro et al. (2023)) as presented 

in Figure 2.2. 

 

 
Figure 2.2 Triangular Distribution. 
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The three parameters can be described as follows: 

1. 𝑎𝑎𝑜𝑜 is an optimistic value that represents the best case (for minimization context) 

and the worst case (for maximization context). It has a very low likelihood or 

possibility degree equal to 0. 

2. 𝑎𝑎𝑚𝑚 is the most likely value that represents the normal case. It has a very high 

likelihood or possibility degree equal to 1. 

3. 𝑎𝑎𝑝𝑝 is a pessimistic value that represents the worst case (for minimization 

context) and the best case (for maximization context). It has a very low 

likelihood or possibility degree equal to 0. 

 

A commonly used representation of fuzzy numbers is the Triangular Fuzzy 

Numbers (TFNs). The membership function of a triangular fuzzy number 𝐴̃𝐴 is defined 

as: 

 

𝜇𝜇𝐴𝐴�(𝑥𝑥0) =

⎩
⎨

⎧1 − 𝑎𝑎𝑚𝑚−𝑥𝑥
𝑎𝑎𝑜𝑜

, 𝑎𝑎𝑚𝑚 − 𝑎𝑎𝑜𝑜 ≤ 𝑥𝑥 ≤ 𝑎𝑎𝑚𝑚

1 − 𝑥𝑥−𝑎𝑎𝑚𝑚

𝑎𝑎𝑝𝑝
, 𝑎𝑎𝑚𝑚 ≤ 𝑥𝑥 ≤ 𝑎𝑎𝑚𝑚 + 𝑎𝑎𝑝𝑝

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⎭
⎬

⎫
             (2.1) 

 

Here, 𝑎𝑎𝑚𝑚is the most likely value, while 𝑎𝑎𝑜𝑜 and 𝑎𝑎𝑝𝑝 represent the left and right 

spreads, respectively. These parameters describe the uncertainty range around the 

central value. A triangular fuzzy number can be concisely denoted as 𝐴̃𝐴 = (𝑎𝑎𝑜𝑜,𝑎𝑎𝑚𝑚,𝑎𝑎𝑝𝑝). 

The set of all such triangular fuzzy numbers defined on real number R is represented as 

𝐹𝐹(𝑅𝑅). 

A fuzzy number 𝐴̃𝐴 is said to be nonnegative if all values with a degree of 

membership greater than zero are nonnegative. Formally, this means that 𝜇𝜇𝐴𝐴�(𝑥𝑥0) = 0 

for all𝑥𝑥 < 0. For a triangular fuzzy number 𝐴̃𝐴 = (𝑎𝑎𝑜𝑜,𝑎𝑎𝑚𝑚,𝑎𝑎𝑝𝑝), this condition translates 

to 𝑎𝑎𝑚𝑚 − 𝑎𝑎𝑜𝑜 ≥ 0, ensuring the entire support of the fuzzy number lies in the nonnegative 

real domain. 

Two triangular fuzzy numbers 𝐴̃𝐴 = �𝑎𝑎𝐴𝐴𝑜𝑜,𝑎𝑎𝐴𝐴𝑚𝑚,𝑎𝑎𝐴𝐴
𝑝𝑝� and 𝐵𝐵� = �𝑎𝑎𝐵𝐵𝑜𝑜 ,𝑎𝑎𝐵𝐵𝑚𝑚,𝑎𝑎𝐵𝐵

𝑝𝑝� are 

equal if and only if their respective modal values and spreads are identical. That is, 𝐴̃𝐴 =

𝐵𝐵�  if and only if 𝑎𝑎𝐴𝐴𝑜𝑜 = 𝑎𝑎𝐵𝐵𝑜𝑜 ,𝑎𝑎𝐴𝐴𝑚𝑚 = 𝑎𝑎𝐵𝐵𝑚𝑚, and 𝑎𝑎𝐴𝐴
𝑝𝑝 = 𝑎𝑎𝐵𝐵

𝑝𝑝. 
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A triangular fuzzy number is considered symmetric when the left and right 

spreads from the modal value are equal. Formally, a TFN 𝐴̃𝐴 = (𝑎𝑎𝑜𝑜, 𝑎𝑎𝑚𝑚, 𝑎𝑎𝑝𝑝) is 

symmetric if 𝑎𝑎𝑚𝑚 − 𝑎𝑎𝑜𝑜 = 𝑎𝑎𝑝𝑝 − 𝑎𝑎𝑚𝑚. This symmetry implies that the uncertainty 

surrounding the modal value is balanced on both sides. 

For computational purposes and model formulation, basic arithmetic operations 

on triangular fuzzy numbers are defined through their parameters. Let 𝐴̃𝐴 = �𝑎𝑎𝐴𝐴𝑜𝑜,𝑎𝑎𝐴𝐴𝑚𝑚,𝑎𝑎𝐴𝐴
𝑝𝑝� 

and 𝐵𝐵� = �𝑎𝑎𝐵𝐵𝑜𝑜 , 𝑎𝑎𝐵𝐵𝑚𝑚, 𝑎𝑎𝐵𝐵
𝑝𝑝�  be two triangular fuzzy numbers. Then the operations are 

defined as follows: 

• Addition: 

𝐴̃𝐴 + 𝐵𝐵� = �𝑎𝑎𝐴𝐴𝑜𝑜 + 𝑎𝑎𝐵𝐵𝑜𝑜 ,𝑎𝑎𝐴𝐴𝑚𝑚 + 𝑎𝑎𝐵𝐵𝑚𝑚,𝑎𝑎𝐴𝐴
𝑝𝑝 + 𝑎𝑎𝐵𝐵𝑃𝑃�  

• Subtraction: 

𝐴̃𝐴 − 𝐵𝐵� = �𝑎𝑎𝐴𝐴𝑜𝑜 + 𝑎𝑎𝐵𝐵𝑃𝑃,𝑎𝑎𝐴𝐴𝑚𝑚 + 𝑎𝑎𝐵𝐵𝑚𝑚,𝑎𝑎𝐴𝐴
𝑝𝑝 + 𝑎𝑎𝐵𝐵𝑜𝑜�  

• Multiplication (assuming all values are non-negative): 

𝐴̃𝐴 × 𝐵𝐵� ≈ �𝑎𝑎𝐴𝐴𝑜𝑜 × 𝑎𝑎𝐵𝐵𝑜𝑜 ,𝑎𝑎𝐴𝐴𝑚𝑚 × 𝑎𝑎𝐵𝐵𝑚𝑚,𝑎𝑎𝐴𝐴
𝑝𝑝 × 𝑎𝑎𝐵𝐵𝑃𝑃�  

• Scalar Multiplication (for a positive scalar 𝝀𝝀 > 𝟎𝟎): 

𝜆𝜆 × 𝐴̃𝐴 = �𝜆𝜆𝑎𝑎𝐴𝐴𝑜𝑜, 𝜆𝜆𝑎𝑎𝐴𝐴𝑚𝑚, 𝜆𝜆𝑎𝑎𝐴𝐴
𝑝𝑝�  

• Division: 

𝐴̃𝐴 ÷ 𝐵𝐵� = (𝑎𝑎𝐴𝐴𝑚𝑚 ÷ 𝑎𝑎𝐵𝐵𝑚𝑚, 𝑎𝑎𝐴𝐴𝑜𝑜 ÷ 𝑎𝑎𝐵𝐵𝑜𝑜 ,𝑎𝑎𝐴𝐴
𝑝𝑝 ÷ 𝑎𝑎𝐵𝐵

𝑝𝑝 , ) where 𝑎𝑎𝐵𝐵𝑚𝑚,𝑎𝑎𝐵𝐵𝑜𝑜 ,𝑎𝑎𝐵𝐵
𝑝𝑝  ≠ 0 

 
These arithmetic operations maintain the triangular shape of fuzzy numbers and 

enable their application in fuzzy mathematical programming, thereby facilitating 

systematic management of uncertainty in model parameters. 

 

• Triangular Intuitionistic Fuzzy Number 
 

Triangular Intuitionistic Fuzzy Numbers (TIFNs) extend the concept of 

Triangular Fuzzy Numbers (TFNs) by incorporating intuitionistic fuzzy sets, first 

introduced by Atanassov in 1983. Unlike conventional fuzzy sets, which rely solely on 

membership function, intuitionistic fuzzy sets also include a non-membership function, 

allowing for a more comprehensive representation of uncertainty. In TIFNs, each 

element is identified by both its degree of membership and non-membership, 
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effectively capturing hesitation and ambiguity in decision-making scenarios. This dual-

function approach makes TIFNs particularly valuable for modeling complex and 

imprecise conditions where uncertainty plays a significant role.   

A TIFN is mathematically defined by two functions: the membership function 

(μ(x)), representing the degree of belonging of an element to the set, and the non-

membership function (v(x)), quantifying the degree of non-belonging. These functions 

adhere to the condition 0 ≤ 𝜇𝜇(𝑥𝑥) + 𝑣𝑣(𝑥𝑥) ≤ 1, ensuring a balanced representation of 

uncertainty (Dymova & Sevastjanov, 2010; Husain et al., 2012). The triangular 

distribution of a TIFN is determined by three key points for both the membership and 

non-membership functions, denoted as (𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏𝑝𝑝) and (𝑏𝑏𝑜𝑜���, 𝑏𝑏𝑚𝑚, 𝑏𝑏𝑝𝑝���), respectively. In 

the context of minimization, the peak value (𝑏𝑏𝑚𝑚) represents the most likely value, while 

the lower (𝑏𝑏𝑜𝑜) and upper (𝑏𝑏𝑝𝑝) bounds define the range of uncertainty, where 𝑏𝑏𝑜𝑜 ≤

𝑏𝑏𝑚𝑚 ≤ 𝑏𝑏𝑝𝑝   Conversely, for maximization problems, the order of these parameters is 

reversed. The non-membership function complements this by quantifying the extent to 

which elements do not belong to the fuzzy set, offering deeper insights into the inherent 

vagueness of real-world problems (Burillo & Bustince, 1996). 

 

 
Figure 2.3 Triangular Intuitionistic Distribution. 
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The six parameters can be described as follows: 

1. 𝑏𝑏𝑜𝑜 is an optimistic value that represents the best case of membership function 

(for minimization context) and the worst case of membership function (for 

maximization context). It has a very low likelihood or possibility degree equal 

to 0. 

2. 𝑏𝑏𝑚𝑚 is a most likely value that represents the normal case of membership 

function. It has a very high likelihood or possibility degree equal to 1. 

3. 𝑏𝑏𝑝𝑝 is a pessimistic value that represents the worst case of membership function 

(for minimization context) and the best case of membership function (for 

maximization context). It has a very low likelihood or possibility degree equal 

to 0. 

4. 𝑏𝑏𝑜𝑜��� is an optimistic value that represents the best case of non-membership 

function (for minimization context) and the worst case of non-membership 

function (for maximization context). It has a very high likelihood or possibility 

degree equal to 1. 

5. 𝑏𝑏𝑚𝑚 is a most likely value that represents the normal case of non-membership 

function. It has a very low likelihood or possibility degree equal to 0. 

6. 𝑏𝑏𝑝𝑝��� is a pessimistic value that represents the worst case of non-membership 

function (for minimization context) and the best case of non-membership 

function (for maximization context). It has a very high likelihood or possibility 

degree equal to 1. 

 

TIFNs concept is introduced where its perception is analyzed as an 

unconventional approach to specify a fuzzy set. It holds the concept of the triangular 

distribution whereas the hesitation allowance is incorporated to provide an acceptable 

fuzzy set to decision makers. To provide an acceptable fuzzy set to decision makers, 

TIFNs is applied to (A, R)-cut approach. This approach can be used to generate the 

acceptable TIFNs under the controlling percentage of the acceptance level (A) and the 

percentage of the rejection level (R) as presented in Figure 2.4. The formulation of (A, 

R)-cut approach can be presented as follows: 
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Let 𝐵𝐵� = (𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏𝑝𝑝)�𝑏𝑏𝑜𝑜���, 𝑏𝑏𝑚𝑚, 𝑏𝑏𝑝𝑝���� where 𝑏𝑏𝑜𝑜���,≤ 𝑏𝑏𝑜𝑜 ≤ 𝑏𝑏𝑚𝑚 ≤ 𝑏𝑏𝑝𝑝 ≤ 𝑏𝑏𝑝𝑝���           (2.2) 
 

𝐵𝐵𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏𝑜𝑜 + 𝐴𝐴(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜), 𝑏𝑏𝑚𝑚 − 𝑅𝑅(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜���)�              (2.3) 
 

𝐵𝐵𝑚𝑚 = 𝐵𝐵𝑜𝑜+𝐵𝐵𝑝𝑝

2
                   (2.4) 

 
𝐵𝐵𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏𝑝𝑝 − 𝐴𝐴(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚), 𝑏𝑏𝑚𝑚 + 𝑅𝑅(𝑏𝑏𝑝𝑝��� − 𝑏𝑏𝑚𝑚)�              (2.5) 
where 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑝𝑝 denote the three key points defining the membership function, 

corresponding to optimistic, most likely, and pessimistic scenarios. Similarly, 

𝑏𝑏𝑜𝑜���, 𝑏𝑏𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑝𝑝���  refer to the respective data points in the non-membership function. The 

parameters 𝐴𝐴 and 𝑅𝑅 indicate the degrees of possibility for acceptance and rejection, 

respectively. 

 

 
Figure 2.4 (𝐴𝐴,𝑅𝑅)-Cut Approach. 

 

Mathematically, the degree of membership is a linear function between the 

bounds 𝑏𝑏𝑜𝑜  and 𝑏𝑏𝑝𝑝 , with a peak at 𝑏𝑏𝑚𝑚 . The non-membership function captures the 

"degree of doubt" and decreases accordingly as 𝑥𝑥 moves closer to the mode value 𝑏𝑏𝑚𝑚. 

The specific formulas are as follows: 

 

𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥) =

⎩
⎨

⎧
𝑥𝑥−𝑏𝑏𝑜𝑜

𝑏𝑏𝑚𝑚−𝑏𝑏𝑜𝑜
,          𝑖𝑖𝑖𝑖 𝑏𝑏𝑜𝑜 ≤ 𝑥𝑥 ≤ 𝑏𝑏𝑚𝑚

𝑏𝑏𝑝𝑝−𝑥𝑥
𝑏𝑏𝑝𝑝−𝑏𝑏𝑚𝑚

,          𝑖𝑖𝑖𝑖 𝑏𝑏𝑚𝑚 ≤ 𝑥𝑥 ≤ 𝑏𝑏𝑝𝑝

0,          𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⎭
⎬

⎫
              (2.6) 

where 𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜 and 𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚 must more than zero. 
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𝑣𝑣𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥) = 1 − 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥)                 (2.7) 

 
The degree of membership and non-membership are constrained so that their 

sum is no greater than one: 𝜇𝜇(𝑥𝑥) + 𝑣𝑣(𝑥𝑥) ≤ 1. This reflects the intuitive idea that, for 

any given value 𝑥𝑥 , it cannot belong to both the fuzzy set and its complement 

simultaneously at full strength. 

 

2.3.2 Skewness Degree 

The skewness degree is a statistical metric that quantifies the asymmetry  degree 

in a probability distribution relative to its mean (Adcock & Shutes (2005); Arnold & 

Groeneveld (2012)) as shown in Figure 2.5. It indicates whether the data points in a 

dataset are distributed symmetrically or if they lean more heavily toward one side of 

the mean. When a distribution has zero skewness, it is perfectly symmetrical, often 

taking the shape of a bell curve. A positive skewness means the distribution has an 

extended tail on the right (right-skewed), whereas a negative skewness reflects a longer 

tail on the left side (left-skewed). The skewness degree provides insights into the shape 

of the data, which can be critical for understanding underlying trends, patterns, and 

anomalies in various analytical contexts. 

 

 
Figure 2.5 Types of Skewness Degree. 

 

The function of the skewness degree lies in its ability to describe and interpret 

the shape and balance of a dataset. It is especially valuable in fields such as finance, 

economics, and quality control, where comprehending the characteristics of data 

distributions is crucial. For instance, in financial risk analysis, skewness helps identify 

the likelihood of extreme losses or gains by analyzing the distribution of returns. 

Similarly, in quality control, skewness can signal deviations from expected 
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performance metrics, prompting further investigation. By quantifying asymmetry, the 

skewness degree complements other statistical metrics like mean and standard 

deviation, offering a more comprehensive view of data characteristics and enabling 

better decision-making. 

 
2.4 Mathematical Modeling 

Modeling refers to the creation of simplified depictions of real systems aimed 

at understanding their dynamics and predicting potential results under diverse 

conditions. (Blomhøj (2004)). These models, which can be physical, conceptual, 

mathematical, or computational, serve as tools to simulate complex systems that may 

be difficult to study directly due to factors like scale, uncertainty, or cost (Edmonds 

(2017)). Depending on the complexity of the system, available data, and analysis goals, 

different types of models are employed. Physical models represent tangible objects, 

while conceptual models focus on relationships and structure, mathematical models use 

equations, and computational models rely on simulations and algorithms.  

In optimization, modeling is essential for defining objectives, constraints, and 

controllable variables, enabling decision-makers to find optimal solutions (Sarker & 

Newton (2007); Singh (2012)). Models not only support decision-making but also offer 

a structured approach to testing theories, making predictions, and evaluating decisions 

without real-world consequences. They are invaluable tools for improving efficiency, 

minimizing risks, and ensuring systems operate effectively. Additionally, models can 

be updated with new data, allowing for continuous improvement and learning, which 

helps refine strategies and solutions over time, particularly in dynamic fields like supply 

chain management, finance, and resource allocation. 

 

• Fuzzy Linear Programming Model 

Fuzzy Linear Programming (FLP) extends conventional linear programming by 

incorporating fuzzy logic to address uncertainty and ambiguity in decision-making. 

Unlike classical LP, which assumes precise values for parameters, FLP allows for the 

representation of parameters as fuzzy sets, providing flexibility in modeling problems 

where data is uncertain or imprecise (Negoita (1981)). Rooted in fuzzy set theory, FLP 

applies membership functions to the objective function and constraints, describing the 
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satisfaction degree or feasibility of solutions within a specified range. This approach 

makes FLP especially useful in real-world applications where exact data is difficult to 

obtain or subject to variation over time. 

 

An FLP model consists of the following components (Delgado et al. (1989)): 

• Fuzzy Objective Function: In FLP, the objective function is a linear expression 

that includes fuzzy coefficients, aiming to maximize or minimize the function 

while considering the fuzziness of the involved parameters.   

• Fuzzy Constraints: FLP incorporates fuzzy constraints, allowing for the 

representation of constraints within a range, as opposed to strict equality or 

inequality constraints.   

• Fuzzy Decision Variables: Decision variables in FLP are represented as fuzzy 

numbers, meaning they exist within a range, allowing flexibility and uncertainty 

in the solution. These variables may have membership functions that define 

their potential values.   

 

Fuzzy Linear Programming (FLP) offers several advantages over conventional 

linear programming, particularly its ability to handle uncertainty and vagueness, which 

makes it well-suited for real-world problems with imprecise data. By directly modeling 

uncertainty, FLP provides more flexible and robust solutions that can response to 

changing conditions, making it an effective tool for problems involving subjective 

judgments, approximations, or estimates. However, FLP also has limitations, such as 

the defuzzification process, potentially leading to a reduction in information accuracy 

when converting fuzzy solutions into crisp values. Additionally, the use of fuzzy 

numbers requires careful interpretation of membership functions, and varying methods 

of fuzzification and defuzzification can lead to different results, introducing 

subjectivity. Moreover, solving FLP problems can be more computationally intensive 

as a consequence of the added complexity of fuzzy numbers, requiring specialized 

algorithms and techniques for optimization (Buckley & Feuring, 2000; Figueroa–

García et al., 2022; Ghanbari et al., 2020). 
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• Intuitionistic Fuzzy Linear Programming Model 

Intuitionistic Fuzzy Linear Programming (IFLP) is a sophisticated optimization 

technique that extends the principles of conventional linear programming to address the 

challenges of uncertainty and ambiguity in decision-making processes. Conventional 

linear programming assumes precise numerical data and deterministic models, which 

are often inadequate for real-world problems where ambiguity and imprecision prevail. 

IFLP overcomes these limitations by incorporating the concept of intuitionistic fuzzy 

sets, offering a comprehensive framework for modeling uncertainty through the 

simultaneous consideration of membership and non-membership (Parvathi (2012); 

Parvathi & Malathi (2012)). 

The foundation of IFLP lies in intuitionistic fuzzy sets, a concept introduced by 

Atanassov in 1986. Unlike conventional fuzzy sets, which only consider the degree of 

membership of an element to a set, intuitionistic fuzzy sets introduce additional 

parameter: non-membership (the indeterminate portion that reflects the lack of 

knowledge). These parameters enable a richer representation of uncertainty, 

accommodating the real-world scenarios where precise information is often 

unavailable. In IFLP models, constraints and objective functions are expressed using 

intuitionistic fuzzy numbers, effectively capturing the vagueness and imprecision 

inherent in problem data (Kabiraj et al. (2019)). 

IFLP provides a binary perspective in decision-making that flexible for complex 

systems with incomplete or ambiguous information. Decision variables, constraints, 

and objective functions are no longer rigidly defined but instead exist within a spectrum 

of possibilities. This adaptability makes IFLP a powerful tool for addressing problems 

in fields such as finance, engineering, and supply chain management. 

 
2.5 Defuzzification Approach 

Defuzzification is the process of transforming fuzzy quantities, represented by 

fuzzy sets, into precise, actionable outputs, making them suitable for decision-making. 

This step is essential in fuzzy logic systems, as it transforms the ambiguous and 

imprecise results of fuzzy computations into clear, usable information for real-world 

applications. While fuzzification allows for flexible and nuanced analysis by converting 

precise inputs into fuzzy sets, defuzzification extracts a single value from the fuzzy set 
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that best represents its overall meaning. This process involves selecting a crisp value 

from a range of possible values with varying degrees of membership, ensuring that the 

fuzzy output can be interpreted and applied effectively in decision-making scenarios 

(Rondeau et al., 1997; Roychowdhury & Pedrycz, 2001; Chakraverty et al., 2019; 

Leewijck & Kerre, 1999). 

 

• Defuzzification Approach for Objective Function 

In the context of fuzzy objective functions, these defuzzification approaches are 

applied to convert fuzzy representations into crisp values, enabling effective 

optimization and decision-making. By transforming fuzzy objectives into crisp values 

through defuzzification, decision-makers can better interpret and utilize the results of 

fuzzy optimization models (Ahmed et al. (2017); Karimi et al. (2022)). This process 

ensures that the inherent uncertainty in the data is appropriately accounted for, while 

also enabling concrete, actionable insights to be drawn from the fuzzy analysis. This 

makes defuzzification an essential step in the practical application of fuzzy set theory 

in optimization and decision-making processes. 

The fuzzy coefficients used in objective function are generally represented as 

follows: 

 
   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀    𝒄𝒄 �𝑥𝑥            (2.8) 

 
Here, the triangular distribution is used to explain the type of fuzzy numbers 𝑐̃𝑐 =

(𝑐𝑐𝑜𝑜 , 𝑐𝑐𝑚𝑚, 𝑐𝑐𝑝𝑝). In the context of minimization, 𝑐𝑐𝑜𝑜 , 𝑐𝑐𝑚𝑚, and 𝑐𝑐𝑝𝑝 are the optimistic, the most 

likely, and the pessimistic values of 𝑐̃𝑐, respectively. Conversely, for maximization 

problems, the order of these parameters is reversed. 
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• Defuzzification Approach for Constraints 

In the context of fuzzy constraints, defuzzification techniques are crucial for 

converting fuzzy representations into crisp values, allowing for effective optimization 

and decision-making. Fuzzy constraints, which contain inherent vagueness and 

imprecision, must be transformed into specific, actionable values for practical use. 

Defuzzification facilitates this process, ensuring that fuzzy constraints become precise 

values that decision-makers can easily interpret and apply (Runkler & Glesner, 1994; 

Saletic & Popovic, 2006). By addressing the uncertainty in the data, defuzzification 

enables optimization models to reflect real-world conditions more accurately, providing 

clearer insights for decision-makers. This capability to translate fuzzy data into 

actionable intelligence underscores the importance of defuzzification in the practical 

application of fuzzy set theory, enhancing the reliability of decision-making in 

uncertain environments (Verstraete et al., 2024). 

The standard structure of fuzzy constraints on the left-hand side of the equations 

is presented below: 

 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡:   �𝑨𝑨�𝑥𝑥� ≤  𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎  𝑥𝑥 ≥  0          (2.9) 

 
Here, the triangular distribution is used to explain the type of fuzzy numbers 𝐴̃𝐴 =

(𝐴𝐴𝑜𝑜,𝐴𝐴𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝑝𝑝), where 𝐴𝐴𝑜𝑜,𝐴𝐴𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝑝𝑝 are the optimistic, the most likely, and the 

pessimistic values of 𝐴̃𝐴, respectively. 

The standard structure of fuzzy constraints on the right-hand side of the 

equations is presented below: 

 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡:   �𝑨𝑨�𝑥𝑥� ≤  𝒃𝒃 � ,𝑎𝑎𝑎𝑎𝑎𝑎  𝑥𝑥 ≥  0          (2.10) 

 
Here, the triangular distribution is used to explain the type of fuzzy numbers 𝑏𝑏� =

(𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑝𝑝). In the context of minimization, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑝𝑝 are the optimistic, the 

most likely, and the pessimistic values of 𝑏𝑏�, respectively. Conversely, for maximization 

problems, the order of these parameters is reversed. 
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2.6 Conflicting Objectives 

Conflicting objectives arise when two or more goals within a decision-making 

or optimization problem cannot be simultaneously achieved. This phenomenon is 

common in real-world scenarios where resources, priorities, or outcomes are 

constrained, leading to trade-offs between competing objectives (Raiffa & Keeney 

(1975)). 

In multi-objective optimization, conflicting objectives are formally addressed 

through mathematical models that account for the trade-offs between goals. The 

presence of conflicting objectives adds complexity to decision-making as it requires 

prioritization, negotiation, and sometimes compromise. It also highlights the 

importance of stakeholder involvement, as different stakeholders may place varying 

levels of importance on each objective. For example, a company’s management might 

prioritize profitability, while its customers value sustainability and product quality. 

Addressing such conflicts requires clear communication and a shared understanding of 

the overarching goals. 

Identifying and comprehending conflicting objectives is essential for making 

well-informed decisions and efficiently allocating resources. It allows organizations 

and decision-makers to anticipate challenges and devise strategies that align with 

overarching goals while accommodating trade-offs. By systematically addressing 

conflicts, decision-makers can achieve solutions that balance competing priorities, 

leading to more sustainable and practical outcomes in various fields, such as logistics, 

healthcare, and environmental management (Bell et al. (1977)). 

To address conflicting objectives, mathematical frameworks like multi-

objective optimization are employed. Multi-objective optimization models aim to find 

solutions that provide the best possible trade-offs among competing goals. These 

solutions are represented as a Pareto front, a set of non-dominated solutions where 

improving one objective would result in worsening another. Decision-makers can then 

select a solution from the Pareto front based on their preferences and the specific 

context of the problem (Purshouse & Fleming (2007)). 
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2.7 Pareto Optimal Solution 

A Pareto optimal solution, also known as a Pareto efficient or Pareto frontier 

solution, is a key concept in multi-objective optimization that represents a state where 

no objective can be enhanced without compromising at least one other objective. 

Widely applied in fields such as economics, engineering, and decision-making, a 

solution is assessed Pareto optimal if it is impossible to reallocate resources or adjust 

variables to improve one objective without negatively affecting another (Jiménez & 

Bilbao, 2009; Kovalenko et al., 2020). In multi-objective optimization, the set of Pareto 

optimal solutions, known as the Pareto front or Pareto frontier, offers decision-makers 

a range of alternatives that balance competing objectives in various ways. Each solution 

on the Pareto front represents a different trade-off, helping to understand the 

relationship between objectives. A solution is Pareto optimal if it is not dominated by 

any other solution, meaning no other solution is better in all objectives and strictly better 

in at least one (Deb & Gupta, 2005; Wang & Rangaiah, 2016). 

Symbolically, the formulation of Pareto Optimal Solution is articulated as 

follows: 

 

Minimize �𝜓𝜓1(𝑥𝑥),𝜓𝜓2(𝑥𝑥), … ,𝜓𝜓𝑗𝑗(𝑥𝑥)� 
subject to: 𝑥𝑥 ∈ 𝑋𝑋                 (2.11) 

 
Here, a point 𝑥𝑥� ∈ 𝑋𝑋 is called: 

• A dominated solution if there exist 𝑥𝑥 ∈ 𝑋𝑋 such that 𝜓𝜓𝑗𝑗(𝑥𝑥) ≤ 𝜓𝜓𝑗𝑗(𝑥𝑥�) ∀𝑖𝑖, with at 

least one strict inequality holding. 

• A weak Pareto Optimal Solution if and only if there does not exist 𝑥𝑥 ∈ 𝑋𝑋 such 

that 𝜓𝜓𝑗𝑗(𝑥𝑥) < 𝜓𝜓𝑗𝑗(𝑥𝑥�) ∀𝑖𝑖 

• A strong Pareto Optimal Solution if and only if there does not exist another 

solution 𝑥𝑥 ∈ 𝑋𝑋 such that 𝜓𝜓𝑗𝑗(𝑥𝑥) ≤ 𝜓𝜓𝑗𝑗(𝑥𝑥�) ∀𝑖𝑖, with at least one strict inequality. 
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One of the key advantages of using Pareto optimal solutions in multi-objective 

optimization is the valuable insight they provide into the trade-offs between objectives. 

By analyzing the Pareto front, decision-makers can better understand how 

improvements in one objective affect others, leading to more informed and balanced 

decisions. Additionally, the Pareto optimal concept supports stakeholder negotiations 

and consensus-building by presenting a set of optimal trade-off solutions. This allows 

stakeholders with differing priorities to identify mutually acceptable compromises, 

ensuring that the final decision reflects a balanced consideration of all objectives and 

results in more sustainable outcomes. However, the epsilon-constrained approach 

sometimes leaves decision-makers unable to clearly select the most appropriate 

solution, or without clear preferences for specific objectives. To address this, methods 

like the linear normalization max method, introduced by Jafaryeganeh et al. (2020), 

have been developed. This method normalizes attribute values relative to the maximum 

value for each criterion, enabling comprehensive comparison by summing the 

normalized ratios of all objectives (Zargaryan et al., 2020). 
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CHAPTER 3 

RESEARCH METHODOLOGIES AND CASE STUDIES 
 

This chapter explores various research methodologies used to address 

optimization problems under uncertainty, with a particular emphasize on fuzzy 

optimization approaches. These methodologies play a significant role in advancing 

optimization practices, especially in environments marked by uncertainty and 

vagueness. By examining these approaches through the case studies, this chapter 

highlights their contributions to improving decision-making and optimizing outcomes 

under uncertain. 

 
3.1 A Conventional Specific Fuzzy Optimization Approach 

In this study, a conventional specific fuzzy optimization approach is utilized as 

a benchmark to appraise the performance of the developed fuzzy optimization 

approach. By using the conventional method as a reference, the efficiency of the 

proposed approach can be assessed, particularly in its capacity to address the 

complexities of uncertainty and conflicting objectives in supply chain planning. The 

following section outlines the key steps and processes of the conventional specific 

fuzzy optimization approach, which have been historically employed to tackle supply 

chain optimization challenges under uncertain circumstances. 

 

 
Figure 3.1 Methodology of a conventional specific fuzzy optimization approach. 
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Phase 1: Data Preparation: Data can typically be classified into two 

categories: crisp and imprecise. Crisp data are clearly defined and precisely known, 

making them easy to gather, whereas imprecise data are challenging to collect and 

manage. To address this, Triangular Fuzzy Numbers (TFNs) are often employed to 

represent uncertain parameters in a conventional specific fuzzy linear programming 

models. However, this approach does not adequately capture data hesitation. 

Phase 2: Defuzzification Process: This process can convert uncertain data into 

crisp data. Model fuzziness can be segmented into two primary types based on its 

position within the model: fuzziness in objective functions and fuzziness in constraints. 

 

• Defuzzification Approach at the objective functions: Expected Value (EV) 

serves as a conventional technique for defuzzifying objective functions by 

emphasizing their average performance, as shown in the following (Heilpem 

(1992)). 

 

𝐸𝐸𝐸𝐸�𝑍𝑍�� =  
𝑍𝑍𝑜𝑜+𝑍𝑍𝑚𝑚

2 +𝑍𝑍
𝑚𝑚+𝑍𝑍𝑝𝑝

2
2

=  𝑍𝑍
𝑜𝑜+2𝑍𝑍𝑚𝑚+𝑍𝑍𝑝𝑝

4
           (3.1) 

 

where 𝑍𝑍𝑜𝑜, 𝑍𝑍𝑚𝑚, and 𝑍𝑍𝑝𝑝 represent the objective function values under optimistic, 

most likely, and pessimistic scenarios, respectively. 

 

• Defuzzification Approach at the right-hand side of the constraint: The 

Weighted Average (WA) is a mathematical technique used to combine multiple 

values into a single representative value, with each component assigned a 

weight based on its relative importance or contribution. It is particularly useful 

in decision-making and optimization processes, especially when dealing with 

uncertain or imprecise data. By assigning different weights to individual values, 

the weighted average ensures that more significant factors have a greater 

influence on the result. Mathematically, it is calculated by multiplying each 

value by its corresponding weight and summing the products, providing a 

flexible approach to aggregating information and reflecting the relative 
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importance of each component in the overall outcome. However, it is important 

to note that the WA approach does not account for managing risk violations. 

 

𝑤𝑤𝑜𝑜𝑏𝑏𝑜𝑜 + 𝑤𝑤𝑚𝑚𝑏𝑏𝑚𝑚 + 𝑤𝑤𝑝𝑝𝑏𝑏𝑝𝑝               (3.2) 

 

𝑤𝑤𝑜𝑜 + 𝑤𝑤𝑚𝑚 + 𝑤𝑤𝑝𝑝 = 1                (3.3) 

 

where 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, and 𝑏𝑏𝑝𝑝 represent the available resources under optimistic, most 

likely, and pessimistic conditions, respectively, while 𝑤𝑤𝑜𝑜, 𝑤𝑤𝑚𝑚, and 𝑤𝑤𝑝𝑝  

correspond to the weights allocated to each of these scenarios. 

 

• Defuzzification Approach at both sides of the constraint: The Fuzzy 

Ranking (FR) approach is a sophisticated defuzzification technique used to 

handle fuzzy constraints, particularly in scenarios with imprecise values on both 

sides of an equation. This method addresses uncertainty by decomposing the 

original fuzzy equation into three sub-equations, each representing optimistic, 

most likely, and pessimistic cases. These sub-equations align to the lower 

bound, central value, and upper bound of the fuzzy sets, respectively. By 

analyzing these cases separately, the FR approach enables the transformation of 

fuzzy relationships into clear, crisp insights, allowing for a structured evaluation 

of potential outcomes. However, it is significant to note that the FR approach 

does not address the management of risk violations. 

 

𝐴𝐴𝑜𝑜𝑥𝑥 ≤ 𝑏𝑏𝑜𝑜               (3.4) 

 

𝐴𝐴𝑚𝑚𝑥𝑥 ≤ 𝑏𝑏𝑚𝑚               (3.5) 

 

𝐴𝐴𝑝𝑝𝑥𝑥 ≤ 𝑏𝑏𝑝𝑝               (3.6) 
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where 𝐴𝐴𝑜𝑜, 𝐴𝐴𝑚𝑚, and 𝐴𝐴𝑝𝑝, along with 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, and 𝑏𝑏𝑝𝑝, correspond to the values 

associated with the optimistic, most probable, and pessimistic scenarios, 

respectively. 

Phase 3: Membership Function: The procedure normalizes the differing units 

of several objective functions onto a standardized range, typically from 0.0 to 1.0, 

indicating satisfaction levels, as shown below. 

 

• Membership Function for Minimizing the Objective Function 

 

𝜇𝜇𝑍𝑍𝑖𝑖 =

⎩
⎨

⎧ 1,      𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃

𝑍𝑍𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍𝑖𝑖

𝑍𝑍𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃 ,     𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝑍𝑍𝑖𝑖 ≤ 𝑍𝑍𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁

0,      𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁 ⎭
⎬

⎫
            (3.7) 

 

• Membership Function for Maximizing the Objective Function 

 

𝜇𝜇𝑍𝑍𝑖𝑖 =  

⎩
⎨

⎧ 1,      𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃

𝑍𝑍𝑖𝑖−𝑍𝑍𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁

𝑍𝑍𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃−𝑍𝑍𝑖𝑖

𝑁𝑁𝑁𝑁𝑁𝑁 ,     𝑍𝑍𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁 ≤ 𝑍𝑍𝑖𝑖 ≤ 𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃

0,      𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁 ⎭
⎬

⎫
           (3.8) 

 

where 𝑍𝑍𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁 is the maximum value of the ith objective function among the 

solutions of individual minimization problems or the minimum value of the ith 

objective function among the solutions of individual maximization problems. 

𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 is the minimum value of the ith objective function among the solutions of 

individual minimization problems or the maximum value of the ith objective 

function among the solutions of individual maximization problems. 
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Phase 4: Optimization Process: Zimmermann's approach is a foundational 

methodology in fuzzy optimization, designed to tackle multi-objective decision-making 

under uncertainty. Developed by Hans-Jürgen Zimmermann in 1978, it combines fuzzy 

set theory with optimization techniques to address conflicting objectives and imprecise 

data. This approach allows decision-makers to model uncertainty and achieve a balance 

between multiple objectives by using fuzzy membership functions, which represent the 

satisfaction level for each objective. Unlike a conventional optimization, which 

assumes rigid, well-defined functions, Zimmermann's method accommodates 

vagueness by expressing objectives as fuzzy goals, where solutions are evaluated based 

on their proximity to a satisfactory level. The membership functions are aggregated 

using a max-min operator, aiming to maximize the minimum satisfaction level across 

all objectives, ensuring a fair balance without extreme trade-offs.  

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜇𝜇𝑍𝑍 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡: 𝑥𝑥 ∈ 𝐹𝐹(𝑥𝑥) 

    𝜇𝜇𝑍𝑍 ≤ 𝜇𝜇𝑍𝑍𝑖𝑖 ,     𝑖𝑖 = 1, 2, … , 𝐼𝐼           (3.9) 

 

where 𝜇𝜇𝑍𝑍 indicates the lowest satisfaction level across all objective functions, and 𝜇𝜇𝑍𝑍𝑖𝑖 

refers to the satisfaction level of each specific objective function. 
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Numerical example for conventional specific fuzzy optimization 

AB manufacturing is the company that makes a line of high qualities Glasses, Bottles, 
and Cups. It has three plants; Plant1, Plant2, and Plant3, that are used to produce high 
qualities Glasses, Bottles, and Cups. To produce a Glass, the production time is 2 
hours/unit at Plant1. The available production capacity of Plant1 varies according to a 
triangular distribution with a minimum available production capacity of 8 hours, a most 
likely available production capacity of 16 hours, and a maximum available production 
capacity of 24 hours. To produce a Bottle, the production time at Plant2 varies 
according to a triangular distribution with a minimum production time of 1.5 hours/unit, 
a most likely production time of 2.5 hours/unit, and a maximum production time of 3.5 
hours/unit. The available production capacity of Plant2 varies according to a triangular 
distribution with a minimum available production capacity of 12 hours, a most likely 
available production capacity of 24 hours, and a maximum available production 
capacity of 36 hours. To produce a Cup, the production time is 1.5 hours/unit at Plant3. 
The available production capacity of Plant3 is 36 hours. Profits of a Glass, a Bottle and 
a Cup are calculated as ($15, $20, $25), ($25, $30, $35), and ($35, $40, $45), 
respectively. The AB manufacturing attempts to find out not only how many units of 
Glasses, Bottles and Cups that should be produced to maximize total profit but also 
minimize total amount of pollution. For simplicity, the amount of pollution follows a 
linear function resulting from three decision variables 𝑋𝑋1,  𝑋𝑋2 and 𝑋𝑋3. 
 

2𝑋𝑋1 + 3𝑋𝑋2 + 4𝑋𝑋2 
       where 𝑋𝑋1,  𝑋𝑋2 and 𝑋𝑋3 denote decision variables representing numbers of produced 
Glass, Bottle, and Cup, respectively. 

 

Table 3.1 Parameters relate to production of Glass, Bottle, and Cup. 

 Glass Bottle Cup 
Available 

Production 
Capacity 

Production 
Time 

(Plant1) 
2 hours/unit -  

(8 hours,  
16 hours,  
24 hours) 

Production 
Time 

(Plant2) 
- 

(1.5 hours/unit, 
2.5 hours/unit, 
3.5 hours/unit) 

 
(12 hours,  
24 hours,  
36 hours) 

Production 
Time 

(Plant3) 
- - 1.5 hours/unit 36 hours 

Profit ($15/unit, $20/unit, 
$25/unit) 

($25/unit, 
$30/unit, 
$35/unit) 

($35/unit, 
$40/unit, 
$45/unit) 

- 
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Mathematical Formulation 
 Objective Functions 

1.Maximize total profits (defuzzify by Expected Value) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  (15+(2∗20)+25)

4
𝑋𝑋1+(25+(2∗30)+35)

4
𝑋𝑋2+(35+(2∗40)+45)

4
𝑋𝑋3 

2.Minimize total amount of pollution 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍2 = 2𝑋𝑋1 + 3𝑋𝑋2 + 4𝑋𝑋2 

 Uncertain Constraints 
1.Defuzzify by Weighted Average (equally weights assigned (33%)) 
Subject to:  2𝑋𝑋1 ≤ (0.33 × 8) + (0.33 × 16) + (0.33 × 24) 
2.Defuzzify by Weighted Average (equally weights assigned (33%)) 
Subject to: 1.5𝑋𝑋2 ≤ 12 

2.5𝑋𝑋2 ≤ 24 
3.5𝑋𝑋2 ≤ 36 

 Crisp Constraint 
Subject to: 1.5𝑋𝑋2 ≤ 36 

 Non-negativity Constraint 
Subject to: 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

 Membership Functions 
1.Membership Function for Maximization of the Objective Function (Maximize 
total profits)  

𝜇𝜇𝑍𝑍1 = 𝑍𝑍1−𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁

𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃−𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁
  

 
𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  (15+(2∗20)+25)

4
𝑋𝑋1+(25+(2∗30)+35)

4
𝑋𝑋2+(35+(2∗40)+45)

4
𝑋𝑋3 

Subject to:  2𝑋𝑋1 ≤ (0.33 × 8) + (0.33 × 16) + (0.33 × 24) 
1.5𝑋𝑋2 ≤ 12 
2.5𝑋𝑋2 ≤ 24 
3.5𝑋𝑋2 ≤ 36 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  (15+(2∗20)+25)

4
𝑋𝑋1+(25+(2∗30)+35)

4
𝑋𝑋2+(35+(2∗40)+45)

4
𝑋𝑋3 

Subject to:  2𝑋𝑋1 ≤ (0.33 × 8) + (0.33 × 16) + (0.33 × 24) 
1.5𝑋𝑋2 ≤ 12 
2.5𝑋𝑋2 ≤ 24 
3.5𝑋𝑋2 ≤ 36 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 
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2.Membership Function for Minimizing the Objective Function (Minimize total 
amount of pollution) 

𝜇𝜇𝑍𝑍2 = 𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍2
𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃

  

 
𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍2 = 2𝑋𝑋1 + 3𝑋𝑋2 + 4𝑋𝑋2 
Subject to:  2𝑋𝑋1 ≤ (0.33 × 8) + (0.33 × 16) + (0.33 × 24) 

1.5𝑋𝑋2 ≤ 12 
2.5𝑋𝑋2 ≤ 24 
3.5𝑋𝑋2 ≤ 36 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍2 = 2𝑋𝑋1 + 3𝑋𝑋2 + 4𝑋𝑋2 
Subject to:  2𝑋𝑋1 ≤ (0.33 × 8) + (0.33 × 16) + (0.33 × 24) 

1.5𝑋𝑋2 ≤ 12 
2.5𝑋𝑋2 ≤ 24 
3.5𝑋𝑋2 ≤ 36 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 
 

 Optimization Process by Zimmermann’s Approach 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜇𝜇𝑍𝑍 
Subject to:  2𝑋𝑋1 ≤ (0.33 × 8) + (0.33 × 16) + (0.33 × 24) 

1.5𝑋𝑋2 ≤ 12 
2.5𝑋𝑋2 ≤ 24 
3.5𝑋𝑋2 ≤ 36 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

𝜇𝜇𝑍𝑍 ≤ 𝜇𝜇𝑍𝑍1 = 𝑍𝑍1−𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁

𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃−𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁
  

𝜇𝜇𝑍𝑍 ≤ 𝜇𝜇𝑍𝑍2 = 𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍2
𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃
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3.2 A Five-Phase Hybrid Fuzzy Optimization Approach 

The critical problem addressed in this study lies in the limitations of a 

conventional specific fuzzy optimization approaches in Supply Chain Aggregate 

Production Planning (SCAPP), which often fail to adequately address real-world 

complexities. These limitations include issues such as hesitation in decision-making, 

insufficient robustness to handle uncertainty, an inability to account for non-satisfaction 

levels, and challenges in achieving Pareto optimality. Existing methods are often ill-

equipped to manage the dynamic, multifaceted nature of modern supply chains, where 

multiple conflicting objectives and uncertainties must be considered. The proposed 

five-phase hybrid fuzzy optimization approach aims to overcome these deficiencies by 

systematically improving upon conventional models, offering a more robust and 

effective framework for decision-makers. This study underscores the necessity of an 

advanced methodology capable of addressing these shortcomings, providing a more 

comprehensive solution to the complex challenges faced in SCAPP. A five-phase 

hybrid fuzzy optimization approach is proposed to assist decision-makers in addressing 

real-world challenges in Supply Chain Production Planning (SCPP) while overcoming 

the limitations of the conventional specific fuzzy optimization approach. The proposed 

algorithm is structured into five distinct phases, each carefully designed to address 

specific shortcomings of the conventional specific fuzzy optimization approach, with 

detailed explanations of each phase provided below, as demonstrated in Figure 3.2. 
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Figure 3.2 Methodology of a five-phase hybrid fuzzy optimization approach. 

 

Phase 1: Data Preparation: Hesitation often arises during the data collection 

process, and a triangular fuzzy number alone is insufficient to address this uncertainty. 

To overcome this limitation, the triangular intuitionistic fuzzy number is introduced as 

an unconventional extension of the fuzzy set concept that can handle data hesitation. 

This approach retains the essence of the triangular distribution while incorporating 

hesitation to create a more flexible and representative fuzzy set for decision-makers. 

To enhance decision-making, the triangular intuitionistic fuzzy number is 

applied using the (𝐴𝐴, 𝑅𝑅)-cut approach. This approach enables the generation of an 

acceptable triangular fuzzy number by controlling the percentage of acceptance level 

(𝐴𝐴) and rejection level (𝑅𝑅). The formulation of the (𝐴𝐴, 𝑅𝑅)-cut approach is as follows: 

 

𝐿𝐿𝐿𝐿𝐿𝐿 𝐵𝐵� = (𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏𝑝𝑝)�𝑏𝑏�𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏�𝑝𝑝�  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏�𝑜𝑜 ≤ 𝑏𝑏𝑜𝑜 ≤ 𝑏𝑏𝑚𝑚 ≤ 𝑏𝑏𝑝𝑝 ≤ 𝑏𝑏�𝑝𝑝 

 

𝐵𝐵𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑜𝑜 + 𝐴𝐴(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜), 𝑏𝑏𝑚𝑚 − 𝑅𝑅(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜)�          (3.10) 

 

𝐵𝐵𝑚𝑚 = 𝐵𝐵𝑜𝑜+𝐵𝐵𝑝𝑝

2
               (3.11) 
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𝐵𝐵𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑝𝑝 − 𝐴𝐴(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚), 𝑏𝑏𝑚𝑚 + 𝑅𝑅(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚)�          (3.12) 

 

where 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, and 𝑏𝑏𝑝𝑝 represent three key data points of the membership function for 

the optimistic, most likely, and pessimistic situations, respectively and 𝑏𝑏�𝑜𝑜, 𝑏𝑏𝑚𝑚, and 𝑏𝑏�𝑝𝑝 

correspond to the three key data points of the non-membership function for these same 

situations. The 𝐴𝐴 and 𝑅𝑅 values represent possibility degrees of the acceptable level and 

rejection level, respectively. 

 

Phase 2: Defuzzification Process: At this stage, all fuzzy data are converted 

into crisp data, and the risk violations of constraints can also be effectively controlled. 

 

• Defuzzification Approach at the objective functions: The concept of model 

robustness in optimization, as introduced by Mulvey et al. (1995), is divided 

into two main forms: optimality robustness, which focuses on keeping the 

solution close to the best possible outcome under uncertainty, and feasibility 

robustness, which ensures that constraints are met despite uncertain factors. To 

effectively manage both types of robustness, the Robust Programming (RP) 

approach was developed, allowing decision-makers to balance the trade-offs 

between optimality and feasibility under uncertainty. Pishvaee et al. (2012) 

proposed a comprehensive classification of RP into three distinct 

classifications: Hard Worst Robust Programming (HWRP), Soft Worst Robust 

Programming (SWRP), and Realistic Robust Programming (RRP). HWRP is 

the most conservative approach, designed to minimize the impact of the worst-

case scenario under uncertainty. It guarantees that the solution retains feasibility 

and delivers satisfactory performance even in the worst-case scenarios. This 

method is especially appropriate for critical situations where failure cannot be 

afforded. SWRP introduces flexibility by relaxing the strict robustness of 

HWRP. It allows for a controlled level of risk by tolerating some constraint 

violations or performance degradation, making it more adaptable to real-world 

situations where absolute robustness may be unnecessarily rigid or costly. RRP 

aims to strike a practical balance between conservatism and flexibility. It 
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incorporates more realistic assumptions about nature and the likelihood of 

uncertainty, often using probabilistic or scenario-based methods. This approach 

seeks to improve solution quality while maintaining a reasonable level of 

robustness, thereby enhancing its applicability in practical decision-making 

contexts. For this research, RRP is selected as the most suitable approach for 

making robustness of the model, as it offers a practical compromise between 

optimal performance and feasible solutions, making it ideal for real-world 

business decision-making. This approach considers three key aspects: the 

average total performance of the objectives, optimality robustness, and 

feasibility robustness, as shown below. 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸�𝑍𝑍�� + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
𝑍𝑍𝑜𝑜 + 2𝑍𝑍𝑚𝑚 + 𝑍𝑍𝑝𝑝

4
+ 𝜌𝜌(𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚) 

+((𝜎𝜎(𝑑𝑑𝑝𝑝 − (1 − 𝛾𝛾)𝑑𝑑𝑚𝑚 − 𝛾𝛾𝑑𝑑𝑝𝑝) + 𝛿𝛿(𝛾𝛾𝐵𝐵𝑜𝑜 + (1 − 𝛾𝛾)𝐵𝐵𝑚𝑚 − 𝐵𝐵𝑜𝑜)) 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡:𝐺𝐺𝐺𝐺 ≥ (1 − 𝛾𝛾)𝑑𝑑𝑚𝑚 + 𝛾𝛾𝑑𝑑𝑝𝑝 

        (𝛾𝛾𝐵𝐵𝑜𝑜 + (1 − 𝛾𝛾)𝐵𝐵𝑚𝑚 − 𝐵𝐵𝑜𝑜)𝑦𝑦 ≥ 𝐻𝐻𝐻𝐻          (3.13) 

 

The first term of the objective function targets to minimize the average total 

performance of the objectives under consideration. The second term represents the 

difference between the two extreme possible values of 𝑍𝑍, where 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 are 

determined as follows: 

 

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓𝑝𝑝𝑦𝑦 + 𝑐𝑐𝑝𝑝𝑥𝑥              (3.14) 

 

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓𝑜𝑜𝑦𝑦 + 𝑐𝑐𝑜𝑜𝑥𝑥              (3.15) 

 

where 𝑓𝑓𝑝𝑝 and 𝑐𝑐𝑝𝑝 represent the worst-case values of the objective function coefficients, 

while 𝑓𝑓𝑜𝑜 and 𝑐𝑐𝑜𝑜 represent best-case values. 𝑥𝑥 and 𝑦𝑦 are the decision variables associated 

with the constraints and 𝐺𝐺 and 𝐻𝐻 are crisp coefficients within the constraint structure. 

In the minimization context, 𝑍𝑍𝑜𝑜, 𝑍𝑍𝑚𝑚, and 𝑍𝑍𝑝𝑝 correspond to the optimistic, most likely, 
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and pessimistic values of the objective function, respectively. The parameters 𝑑𝑑𝑚𝑚 and 

𝑑𝑑𝑝𝑝 are imprecise right-hand side coefficients of the constraints, representing the most 

likely and pessimistic values. Similarly, 𝐵𝐵𝑜𝑜 and 𝐵𝐵𝑚𝑚 are imprecise left-hand side 

coefficients representing the optimistic and most likely values. The parameter 𝜌𝜌 denotes 

the weight assigned to the second term in the objective function, which governs 

optimality robustness by minimizing the maximum deviation above and below the 

expected optimal value. The third term addresses feasibility robustness by evaluating 

the deviation of each constraint, where 𝜎𝜎 and 𝛿𝛿 are penalty values associated with 

potential violations. Additionally, 𝛾𝛾 represents the confidence level percentage used to 

manage the risk of constraint violations. 

• Defuzzification Approach at the constraints: Chance-Constrained 

Programming (CCP) was originally introduced by Charnes and Cooper (1959) 

as part of the stochastic programming framework, where constraints involving 

random variables need to conform to a certain probability level. This approach 

is widely used in operations research and mathematical programming to manage 

probabilistic uncertainty. However, in recent decades, this concept has been 

extended to the fuzzy optimization domain, where the underlying uncertainty is 

not stochastic but linguistic, imprecise, or fuzzy in nature. In such contexts, 

some researchers (Liu and Iwamura, 1998; Chakraborty, 2002) have employed 

the term chance-constrained programming to describe models where fuzzy 

constraints must comply with a certain possibility level or necessity level. In 

this interpretation, the term “chance” reflects the possibility measure rather than 

the probability measure. In this study, the term chance-constrained 

programming is used in the latter sense, referring to a fuzzy-based 

generalization of the classical CCP model. Specifically, this study models 

uncertain parameters as fuzzy numbers and interprets the constraint satisfaction 

in terms of possibility theory rather than probability theory. 

Chance-Constrained Programming (CCP) is a robust optimization methodology 

designed to manage uncertainty by integrating fuzzy measurements, specifically 

credibility, into the optimization model. This technique allows for the handling 

of fuzzy data while ensuring that constraints are satisfied with a certain level of 
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confidence. The credibility metric, represented by a possibility degree (γ), 

quantifies the likelihood that fuzzy constraints will be met, with higher values 

indicating greater confidence. This probabilistic approach provides a more 

realistic framework for decision-making compared to a conventional 

deterministic method, accounting for real-world variability. By incorporating 

credibility into the model, CCP allows decision-makers to adjust the confidence 

level (control risk violation) according to the importance and nature of the 

constraints, making the solution more reliable but potentially more 

conservative. 

 

 For imprecise right-hand side of constraints 

𝐶𝐶𝐶𝐶�∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 ≤ 𝑏𝑏�𝑖𝑖𝑛𝑛
𝑗𝑗=1 � ≥ 𝛾𝛾     𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖  

𝑤𝑤ℎ𝑒𝑒𝑒𝑒 (0 ≤ 𝛾𝛾 ≤ 0.5):𝑎𝑎𝑎𝑎 ≤ (2𝛾𝛾)𝑏𝑏𝑚𝑚 + (1 − 2𝛾𝛾)𝑏𝑏𝑝𝑝           

𝑤𝑤ℎ𝑒𝑒𝑒𝑒 (0.5 < 𝛾𝛾 ≤ 1):𝑎𝑎𝑎𝑎 ≤ (2𝛾𝛾 − 1)𝑏𝑏𝑜𝑜 + (2 − 2𝛾𝛾)𝑏𝑏𝑚𝑚         (3.16) 

 

where 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, and 𝑏𝑏𝑝𝑝 correspond to the resource availability under optimistic, 

most probable, and pessimistic conditions, respectively. 

 

 For imprecise left-hand side and right-hand side of constraints 

𝐶𝐶𝐶𝐶�∑ 𝑎𝑎𝚤𝚤𝚤𝚤�𝑥𝑥𝑗𝑗 ≤ 𝑏𝑏�𝑖𝑖𝑛𝑛
𝑗𝑗=1 � ≥ 𝛾𝛾     𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖  

𝑤𝑤ℎ𝑒𝑒𝑒𝑒 (0 ≤ 𝛾𝛾 ≤ 0.5): (2𝛾𝛾)𝑎𝑎𝑚𝑚 + (1 − 2𝛾𝛾)𝑎𝑎𝑝𝑝𝑥𝑥 ≤ (2𝛾𝛾)𝑏𝑏𝑚𝑚 + (1 − 2𝛾𝛾)𝑏𝑏𝑝𝑝 

        𝑤𝑤ℎ𝑒𝑒𝑒𝑒 (0.5 < 𝛾𝛾 ≤ 1): (2𝛾𝛾 − 1)𝑎𝑎𝑜𝑜 + (2 − 2𝛾𝛾)𝑎𝑎𝑚𝑚𝑥𝑥 ≤ (2𝛾𝛾 − 1)𝑏𝑏𝑜𝑜 + (2 − 2𝛾𝛾)𝑏𝑏𝑚𝑚

                          (3.17) 

 

where 𝑎𝑎𝑜𝑜, 𝑎𝑎𝑚𝑚, and 𝑎𝑎𝑝𝑝 are the coefficients values in optimistic, most likely, and 

pessimistic situations, respectively. 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, and 𝑏𝑏𝑝𝑝 are values of available 

resource in optimistic, most likely, and pessimistic situations, respectively. 
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Phase 3: Membership Function and Non-Membership Function: This 

process is used to normalize the different units of multiple objective functions to a 

common scale (0.0–1.0), referred to as the satisfaction level, as shown in Equations 

(3.7) and (3.8). Additionally, the proposed approach enables decision makers to 

consider both satisfaction and non-satisfaction levels simultaneously. Consequently, 

Equations (3.18) and (3.19) can be applied to calculate the non-membership function. 

 

• Non-Membership Function for Minimizing the Objective Function 

 

𝜏𝜏𝑍𝑍𝑖𝑖 =

⎩
⎨

⎧ 1,      𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁

𝑍𝑍𝑖𝑖−𝑍𝑍𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁

𝑍𝑍𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃−𝑍𝑍𝑖𝑖

𝑁𝑁𝑁𝑁𝑁𝑁 ,     𝑍𝑍𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁 ≤ 𝑍𝑍𝑖𝑖 ≤ 𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃

0,      𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 ⎭
⎬

⎫
             (3.18) 

 

• Non-Membership Function for Maximizing the Objective Function 

 

𝜏𝜏𝑍𝑍𝑖𝑖 =  

⎩
⎨

⎧ 1,      𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁

𝑍𝑍𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍𝑖𝑖

𝑍𝑍𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃 ,     𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝑍𝑍𝑖𝑖 ≤ 𝑍𝑍𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁

0,      𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 ⎭
⎬

⎫
                    (3.19) 

 

where 𝑍𝑍𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁 represents the highest value of the ith objective function from 

individual maximization problem solutions, or the lowest value from individual 

minimization problem solutions. Conversely, 𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 denotes the lowest value of 

the ith objective function among maximization solutions, or the highest value 

among minimization solutions. 

 

Phase 4: Optimization Process: The Intuitionistic Fuzzy Linear Programming 

(IFLP) approach extends conventional linear programming to address decision-making 

problems characterized by uncertainty and imprecision. Unlike conventional fuzzy set 

theory, which only uses membership functions to represent fuzzy data, IFLP 

incorporates both membership and non-membership functions, offering a more 

comprehensive modeling of uncertainty. This dual representation allows decision-
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makers to factor in different levels of uncertainty, making IFLP particularly useful in 

scenarios where data is imprecise. One of its key advantages is its ability to integrate 

both optimism and pessimism in decision-making, offering a more flexible and 

powerful tool compared to conventional specific fuzzy linear programming, especially 

in capturing a broader range of uncertainty. This is achieved by simultaneously 

maximizing the minimum satisfaction level and minimizing the maximum non-

satisfaction level of the multiple objective functions, as shown below. 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜇𝜇𝑍𝑍 − 𝜏𝜏𝑍𝑍 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡: 𝑥𝑥 ∈ 𝐹𝐹(𝑥𝑥) 

    𝜇𝜇𝑍𝑍 ≤ 𝜇𝜇𝑍𝑍𝑖𝑖 ,     𝑖𝑖 = 1, 2, … , 𝐼𝐼      

𝜏𝜏𝑍𝑍 ≥ 𝜏𝜏𝑍𝑍𝑖𝑖 ,     𝑖𝑖 = 1, 2, … , 𝐼𝐼            (3.20) 

 

where 𝜇𝜇𝑍𝑍𝑖𝑖 and 𝜏𝜏𝑍𝑍𝑖𝑖 represent the membership and non-membership functions 

corresponding to each objective function, respectively. 

 

Phase 5: Auxiliary Process: The Augmented Epsilon Constrained 

(AUGMECON) method is an optimization technique used in multi-objective 

programming to convert a problem with conflicting objectives into a series of single-

objective problems. By systematically adjusting constraints on secondary objectives 

with specified epsilon (ε) values, the method generates a set of Pareto optimal solutions, 

offering a spectrum of trade-offs for decision-makers to evaluate. In AUGMECON, one 

objective is chosen as the primary goal, while the others are treated as constraints. The 

iterative process of varying ε values allows for the exploration of different balance 

points between competing objectives. This approach simplifies the problem by focusing 

on one objective at a time, providing a clearer understanding of how changes in one 

objective affect others. Additionally, this approach supports decision-making by 

generating diverse solutions, each with its own trade-offs, enabling decision-makers to 

identify the solution that most effectively corresponds to their objectives and priorities. 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓1(𝑥𝑥) + (𝑒𝑒𝑒𝑒𝑒𝑒 × �
𝑆𝑆2
𝑟𝑟2

+ ⋯+
𝑆𝑆𝑖𝑖
𝑟𝑟𝑖𝑖
�) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡: 𝑓𝑓2(𝑥𝑥) − 𝑆𝑆2 = ε2 

                             𝑓𝑓𝑖𝑖(𝑥𝑥) − 𝑆𝑆𝑖𝑖 = ε𝑖𝑖             (3.21) 

 

where 𝑒𝑒𝑒𝑒𝑒𝑒 ∈ [10−6, 10−3]. 𝑆𝑆2, … , 𝑆𝑆𝑖𝑖 are surplus variables of respective constraints. 

𝑟𝑟2, … , 𝑟𝑟𝑖𝑖 are ranges of each objective function. Parameters ε2, … , ε𝑖𝑖 represent the right-

hand side values for a given iteration, selected from the grid points corresponding to 

each objective function. 

 

The following steps describe the AUGMECON approach: 

Step 1: Determine the range between minimum and maximum values of each objective 

function (𝑟𝑟𝑖𝑖)  

Step 2: Divide the range between minimum and maximum values of each objective 

function into equal portions (𝑝𝑝𝑖𝑖) and then, the total grid points (𝑝𝑝𝑖𝑖 + 1) are utilized from 

varying the epsilon values of each objective function.  

Step 3: Calculate discretization step for the respective objective function as follows: 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = �𝑟𝑟𝑖𝑖
𝑝𝑝𝑖𝑖
�               (3.22) 

 

Step 4: Compute the epsilon parameters for the relevant constraint during the ℎ𝑡𝑡ℎ 

iteration within a given objective function as shown below: 

 

𝑒𝑒𝑖𝑖 = 𝜔𝜔𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + (ℎ × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖) 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ℎ = 0, … ,𝑝𝑝𝑖𝑖          (3.23) 

𝜔𝜔𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 is minimum value of ith objective function. 

 

Step 5: Check a surplus variable value (𝑆𝑆𝑖𝑖) that corresponds to the innermost objective 

function.  

Step 6: Bypass the redundant iterations by using the bypass coefficient (𝑏𝑏𝑏𝑏) that can 

be calculated as follows: 
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𝑏𝑏𝑏𝑏 = 𝑖𝑖𝑖𝑖𝑖𝑖 � 𝑆𝑆𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖

�               (3.24) 

 

where 𝑖𝑖𝑖𝑖𝑖𝑖() is a function that is used to return an integer value of a real number.  

Step 7: Iterate Steps 4 through 6 until the final iteration is reached. 

 

Numerical example for conventional specific fuzzy optimization 

AB manufacturing is the company that makes a line of high qualities Glasses, Bottles, 
and Cups. It has three plants; Plant1, Plant2, and Plant3, that are used to produce high 
qualities Glasses, Bottles, and Cups. To produce a Glass, the production time is 2 
hours/unit at Plant1. The available production capacity of Plant1 are (8, 16, 24)(4, 16, 
30) hours that are varied according to an intuitionistic triangular distribution. To 
produce a Bottle, the production time at Plant2 are (1.5, 2.5, 3.5)(1, 2.5, 4) hours/unit 
that are varied according to an intuitionistic triangular distribution. The available 
production capacity of Plant2 are (12, 24, 36)(6, 24, 42) hours that are varied according 
to an intuitionistic triangular distribution. To produce a Cup, the production time is 1.5 
hours/unit at Plant3. The available production capacity of Plant3 is 36 hours. Profits of 
a Glass, a Bottle and a Cup are calculated as ($15, $20, $25)($10, $20, $30), ($25, $30, 
$35)($20, $30, $40), and ($35, $40, $45)($30, $40, $50), respectively. The AB 
manufacturing attempts to find out not only how many units of Glasses, Bottles and 
Cups that should be produced to maximize total profit but also minimize total amount 
of pollution. For simplicity, the amount of pollution follows a linear function resulting 
from three decision variables 𝑋𝑋1,  𝑋𝑋2 and 𝑋𝑋3. 

 
2𝑋𝑋1 + 3𝑋𝑋2 + 4𝑋𝑋2 

       where 𝑋𝑋1,  𝑋𝑋2 and 𝑋𝑋3 denote decision variables representing numbers of produced 
Glass, Bottle, and Cup, respectively. 
 
 Data Preparation 

To enhance decision-making, the triangular intuitionistic fuzzy number is 
applied using the (𝐴𝐴, 𝑅𝑅)-cut approach. This approach enables the generation of 
an acceptable triangular fuzzy number by controlling the percentage of 
acceptance level (𝐴𝐴) and rejection level (𝑅𝑅). Assume that 𝐴𝐴 = 80% and 𝑅𝑅 =
20%. 
1.The available production capacity of Plant1  
𝐵𝐵� = (𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏𝑝𝑝)�𝑏𝑏�𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏�𝑝𝑝�  = (8, 16, 24)(4, 16, 30) 
𝐵𝐵𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑜𝑜 + 𝐴𝐴(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜), 𝑏𝑏𝑚𝑚 − 𝑅𝑅(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜)� 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{4 + 0.8(16 − 8), 16 − 0.2(16 − 8)} 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{10.4, 14.4} = 14.4 
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𝐵𝐵𝑚𝑚 = 𝐵𝐵𝑜𝑜+𝐵𝐵𝑝𝑝

2
= 14.4+18.8

2
= 16.6        

𝐵𝐵𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑝𝑝 − 𝐴𝐴(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚), 𝑏𝑏𝑚𝑚 + 𝑅𝑅(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚)� 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{30 − 0.8(24 − 26), 16 + 0.2(30 − 16)} 

                  = 𝑚𝑚𝑚𝑚𝑚𝑚{23.6, 18.8} = 18.8 

The available production capacity of Plant1 is (14.4, 16.6, 18.8). 

2.The production time at Plant2 
𝐵𝐵� = (𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏𝑝𝑝)�𝑏𝑏�𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏�𝑝𝑝�  = (1.5, 2.5, 3.5)(1, 2.5, 4) 
𝐵𝐵𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑜𝑜 + 𝐴𝐴(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜), 𝑏𝑏𝑚𝑚 − 𝑅𝑅(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜)� 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{1 + 0.8(2.5 − 1.5), 2.5 − 0.2(2.5 − 1.5)} 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{1.8, 2.3} = 2.3 

𝐵𝐵𝑚𝑚 = 𝐵𝐵𝑜𝑜+𝐵𝐵𝑝𝑝

2
= 2.3+2.7

2
= 2.5        

𝐵𝐵𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑝𝑝 − 𝐴𝐴(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚), 𝑏𝑏𝑚𝑚 + 𝑅𝑅(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚)� 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{4 − 0.8(3.5 − 2.5), 2.5 + 0.2(3.5 − 2.5)} 

                  = 𝑚𝑚𝑚𝑚𝑚𝑚{3.2, 2.7} = 2.7 

The production time at Plant2 is (2.3, 2.5, 2.7). 
 
3.The available production capacity of Plant2 
𝐵𝐵� = (𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏𝑝𝑝)�𝑏𝑏�𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏�𝑝𝑝�  = (12, 24, 36)(6, 24, 42) 
𝐵𝐵𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑜𝑜 + 𝐴𝐴(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜), 𝑏𝑏𝑚𝑚 − 𝑅𝑅(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜)� 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{6 + 0.8(24 − 12), 24 − 0.2(24 − 12)} 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{15.6, 21.6} = 21.6 

𝐵𝐵𝑚𝑚 = 𝐵𝐵𝑜𝑜+𝐵𝐵𝑝𝑝

2
= 21.6+26.4

2
= 24        

𝐵𝐵𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑝𝑝 − 𝐴𝐴(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚), 𝑏𝑏𝑚𝑚 + 𝑅𝑅(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚)� 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{42 − 0.8(36 − 24), 24 + 0.2(36 − 24)} 

                  = 𝑚𝑚𝑚𝑚𝑚𝑚{32.4, 26.4} = 26.4 

The available production capacity of Plant2 is (21.6, 24, 26.4). 

4. Profits of a Glass 
𝐵𝐵� = (𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏𝑝𝑝)�𝑏𝑏�𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏�𝑝𝑝�  = ($15, $20, $25)($10, $20, $30) 
𝐵𝐵𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑜𝑜 + 𝐴𝐴(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜), 𝑏𝑏𝑚𝑚 − 𝑅𝑅(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜)� 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{10 + 0.8(20 − 15), 20 − 0.2(20 − 15)} 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{14, 19} = 19 
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𝐵𝐵𝑚𝑚 = 𝐵𝐵𝑜𝑜+𝐵𝐵𝑝𝑝

2
= 19+21

2
= 20        

𝐵𝐵𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑝𝑝 − 𝐴𝐴(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚), 𝑏𝑏𝑚𝑚 + 𝑅𝑅(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚)� 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{30 − 0.8(25 − 20), 20 + 0.2(25 − 20)} 

                  = 𝑚𝑚𝑚𝑚𝑚𝑚{26, 21} = 21 

Profits of a Glass is (19, 20, 21). 
5. Profits of a Bottle 
𝐵𝐵� = (𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏𝑝𝑝)�𝑏𝑏�𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏�𝑝𝑝�  = ($25, $30, $35)($20, $30, $40) 
𝐵𝐵𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑜𝑜 + 𝐴𝐴(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜), 𝑏𝑏𝑚𝑚 − 𝑅𝑅(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜)� 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{20 + 0.8(30 − 25), 30 − 0.2(30 − 25)} 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{24, 29} = 29 

𝐵𝐵𝑚𝑚 = 𝐵𝐵𝑜𝑜+𝐵𝐵𝑝𝑝

2
= 29+31

2
= 30        

𝐵𝐵𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑝𝑝 − 𝐴𝐴(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚), 𝑏𝑏𝑚𝑚 + 𝑅𝑅(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚)� 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{40 − 0.8(35 − 30), 30 + 0.2(35 − 30)} 

                  = 𝑚𝑚𝑚𝑚𝑚𝑚{36, 31} = 31 

Profits of a Bottle is (29, 30, 31). 
 
6. Profits of a Cup 
𝐵𝐵� = (𝑏𝑏𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏𝑝𝑝)�𝑏𝑏�𝑜𝑜, 𝑏𝑏𝑚𝑚, 𝑏𝑏�𝑝𝑝�  = ($35, $40, $45)($30, $40, $50) 
𝐵𝐵𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑜𝑜 + 𝐴𝐴(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜), 𝑏𝑏𝑚𝑚 − 𝑅𝑅(𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑜𝑜)� 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{30 + 0.8(40 − 35), 40 − 0.2(40 − 35)} 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{34, 39} = 39 

𝐵𝐵𝑚𝑚 = 𝐵𝐵𝑜𝑜+𝐵𝐵𝑝𝑝

2
= 41+21

2
= 20        

𝐵𝐵𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏�𝑝𝑝 − 𝐴𝐴(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚), 𝑏𝑏𝑚𝑚 + 𝑅𝑅(𝑏𝑏𝑝𝑝 − 𝑏𝑏𝑚𝑚)� 

      = 𝑚𝑚𝑚𝑚𝑚𝑚{50 − 0.8(45 − 40), 40 + 0.2(45 − 40)} 

                  = 𝑚𝑚𝑚𝑚𝑚𝑚{46, 41} = 41 

Profits of a Cup is (39, 40, 41). 
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Table 3.2 Data preparation for production of Glass, Bottle, and Cup. 

 Glass Bottle Cup 
Available 

Production 
Capacity 

Production 
Time 

(Plant1) 
2 hours/unit -  

(14.4 hours, 
16.6 hours, 
18.8 hours) 

Production 
Time 

(Plant2) 
- 

(2.3 hours/unit, 
2.5 hours/unit, 
2.7 hours/unit). 

 
(21.6 hours, 

24 hours, 26.4 
hours). 

Production 
Time 

(Plant3) 
- - 1.5 hours/unit 36 hours 

Profit ($19/unit, $20/unit, 
$21/unit). 

($29/unit, 
$30/unit, 
$31/unit) 

($39/unit, 
$40/unit, 
$41/unit) 

- 

Mathematical Formulation 

 Objective Functions 
1.Maximize total profits (defuzzify by Realistic Robust Programming) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  𝐸𝐸𝐸𝐸�𝑍𝑍�� + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 First term 

𝐸𝐸𝐸𝐸�𝑍𝑍�� =
𝑍𝑍𝑜𝑜 + 2𝑍𝑍𝑚𝑚 + 𝑍𝑍𝑝𝑝

4  

1.𝑍𝑍𝑜𝑜 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  19𝑋𝑋1+29𝑋𝑋2+39𝑋𝑋3 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

(2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

2.𝑍𝑍𝑚𝑚 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  20𝑋𝑋1+30𝑋𝑋2+40𝑋𝑋3 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24)  
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

3.𝑍𝑍𝑝𝑝 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  21𝑋𝑋1+31𝑋𝑋2+41𝑋𝑋3 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 
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 Second term 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝜌𝜌(𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚) 

  
where 𝜌𝜌 is assumed to be 50%. 
 
1.𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓𝑝𝑝𝑦𝑦 + 𝑐𝑐𝑝𝑝𝑥𝑥 = 21𝑋𝑋1+31𝑋𝑋2+41𝑋𝑋3 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

2.𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓𝑜𝑜𝑦𝑦 + 𝑐𝑐𝑜𝑜𝑥𝑥 = 19𝑋𝑋1+29𝑋𝑋2+39𝑋𝑋3 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

 Third term 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝜎𝜎(𝑑𝑑𝑝𝑝 − (1 − 𝛾𝛾)𝑑𝑑𝑚𝑚 − 𝛾𝛾𝑑𝑑𝑝𝑝) + 𝛿𝛿(𝛾𝛾𝐵𝐵𝑜𝑜 + (1 − 𝛾𝛾)𝐵𝐵𝑚𝑚 − 𝐵𝐵𝑜𝑜) 
 
where  𝜎𝜎 and 𝛿𝛿 are assumed to be 50% and 𝛾𝛾 is assumed to be 80%. 
 
1.The first term 𝜎𝜎(𝑑𝑑𝑝𝑝 − (1 − 𝛾𝛾)𝑑𝑑𝑚𝑚 − 𝛾𝛾𝑑𝑑𝑝𝑝) can be applied to uncertain right-
hand side constraints 
𝜎𝜎(𝑑𝑑𝑝𝑝 − (1 − 𝛾𝛾)𝑑𝑑𝑚𝑚 − 𝛾𝛾𝑑𝑑𝑝𝑝) = 0.5�18.8 − (1 − 0.8)16.6 − (0.8)(18.8)� 
𝜎𝜎(𝑑𝑑𝑝𝑝 − (1 − 𝛾𝛾)𝑑𝑑𝑚𝑚 − 𝛾𝛾𝑑𝑑𝑝𝑝) = 0.5�21.6 − (1 − 0.8)24 − (0.8)(21.6)� 

2.The second term 𝛿𝛿(𝛾𝛾𝐵𝐵𝑜𝑜 + (1 − 𝛾𝛾)𝐵𝐵𝑚𝑚 − 𝐵𝐵𝑜𝑜) can be applied to uncertain left-
hand side constraints 
𝛿𝛿(𝛾𝛾𝐵𝐵𝑜𝑜 + (1 − 𝛾𝛾)𝐵𝐵𝑚𝑚 − 𝐵𝐵𝑜𝑜) = 0.5((0.8)(2.3) + (1 − 0.8)(2.5) − 2.3) 
 
2.Minimize total amount of pollution 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍2 = 2𝑋𝑋1 + 3𝑋𝑋2 + 4𝑋𝑋2 

 
 Uncertain Constraints 

1.Defuzzify by Chance-Constrained Programming (𝛾𝛾 = 80%) 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
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 Crisp Constraint 
Subject to: 1.5𝑋𝑋2 ≤ 36 

 Non-negativity Constraint 
Subject to: 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

 Membership Functions 
1.Membership Function for Maximizing the Objective Function (Maximize 
total profits)  

𝜇𝜇𝑍𝑍1 = 𝑍𝑍1−𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁

𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃−𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁
  

 
𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  𝐸𝐸𝐸𝐸(𝑍𝑍�) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  𝐸𝐸𝐸𝐸(𝑍𝑍�) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

 
2.Membership Function for Minimizing the Objective Function (Minimize total 
amount of pollution) 

𝜇𝜇𝑍𝑍2 = 𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍2
𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃

  

 
𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍2 = 2𝑋𝑋1 + 3𝑋𝑋2 + 4𝑋𝑋2 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁 can be calculated as follows:  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍2 = 2𝑋𝑋1 + 3𝑋𝑋2 + 4𝑋𝑋2 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 
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 Non-membership Functions 
1.Non-membership Function for Maximizing the Objective Function 
(Maximize total profits) 

𝜏𝜏𝑍𝑍1 = 𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍1
𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃

  

 
𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  𝐸𝐸𝐸𝐸(𝑍𝑍�) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  𝐸𝐸𝐸𝐸(𝑍𝑍�) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

 
2.Non-membership Function for Minimizing the Objective Function (Minimize 
total amount of pollution) 

𝜏𝜏𝑍𝑍2 = 𝑍𝑍2−𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁

𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃−𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁
  

 
𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍2 = 2𝑋𝑋1 + 3𝑋𝑋2 +  4𝑋𝑋2 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍2 = 2𝑋𝑋1 + 3𝑋𝑋2 + 4𝑋𝑋2 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

 Optimization Process by Intuitionistic Fuzzy Linear Programming  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜇𝜇𝑍𝑍 − 𝜏𝜏𝑍𝑍 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
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𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

𝜇𝜇𝑍𝑍 ≤ 𝜇𝜇𝑍𝑍1 = 𝑍𝑍1−𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁

𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃−𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁
  

𝜇𝜇𝑍𝑍 ≤ 𝜇𝜇𝑍𝑍2 = 𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍2
𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃

  

𝜏𝜏𝑍𝑍 ≥ 𝜏𝜏𝑍𝑍1 = 𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍1
𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃

  

𝜏𝜏𝑍𝑍 ≥ 𝜏𝜏𝑍𝑍2 = 𝑍𝑍2−𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁

𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃−𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁
  

 Auxiliary Process by Augmented Epsilon Constrained (AUGMECON) 
Approach 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍1(𝑥𝑥) + (𝑒𝑒𝑒𝑒𝑒𝑒 × 𝑆𝑆2

𝑟𝑟2
)  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡: 𝑍𝑍2(𝑥𝑥) − 𝑆𝑆2 = ε2 
2𝑋𝑋1 ≤ (2(0.8) − 1)(14.4) + (2 − 2(0.8))(16.6) 

2(0.8) − 1)(2.3) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(21.6) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

where 𝑒𝑒𝑒𝑒𝑒𝑒 ∈ [10−6, 10−3]. 𝑆𝑆2 is surplus variable of 2nd objective function. 𝑟𝑟2 is 

range of each objective function. ε2 is parameter for the right-hand side for a 

specific iteration drawn from the grid points of each objective function. 

 

The following steps describe the AUGMECON approach: 

Step 1: Determine the range between minimum and maximum values of each 

objective function (𝑟𝑟𝑖𝑖)  

𝑟𝑟1 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝑟𝑟2 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

                −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

Step 2: Divide the range between minimum value and maximum value of each 

objective function into equal portions (𝑝𝑝𝑖𝑖) and then, the total grid points (𝑝𝑝𝑖𝑖 +

1) are utilized from varying the epsilon values of each objective function.  

𝑝𝑝𝑖𝑖 = 10 

𝑝𝑝𝑖𝑖 can be assumed based on decision makers’ experiences or circumstances. 

Step 3: Calculate discretization step for the respective objective function as 

follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = �𝑟𝑟𝑖𝑖
𝑝𝑝𝑖𝑖
�  
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Step 4: Calculate the epsilon values of the respective constraint in the ℎ𝑡𝑡ℎ 

iteration in a particular objective function as follows:  

𝑒𝑒𝑖𝑖 = 𝜔𝜔𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + (ℎ × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖) 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ℎ = 0, … ,𝑝𝑝𝑖𝑖 

𝜔𝜔𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 is minimum value of ith objective function. 

Step 5: Check a surplus variable value (𝑆𝑆𝑖𝑖) that corresponds to the innermost 

objective function.  

Step 6: Bypass the redundant iterations by using the bypass coefficient (𝑏𝑏𝑏𝑏) that 

can be calculated as follows: 

𝑏𝑏𝑏𝑏 = 𝑖𝑖𝑖𝑖𝑖𝑖 � 𝑆𝑆𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖

�    

where 𝑖𝑖𝑖𝑖𝑖𝑖() is a function that is used to return an integer value of a real number.  

 Step 7: Repeat Steps 4 through 6 until the final iteration is reached. 

 
3.3 A Unified Fairness and Robustness Fuzzy Optimization Approach 

The critical problem addressed in this study arises from the limitations of a 

conventional specific fuzzy optimization approaches, which often fail to effectively 

manage critical challenges in multi-objective decision-making, such as ensuring 

Proportional Fairness (PF) among competing objectives and maintaining robustness 

under uncertainty. Without the integration of fairness, conventional optimization 

models tend to produce inequitable outcomes, where some objectives are prioritized at 

the expense of others, leading to suboptimal and biased decision-making. Furthermore, 

the lack of robustness, particularly in uncertain and ambiguous environments, 

compromises the reliability and effectiveness of the resulting plans. To resolve these 

issues, this study proposes a unified optimization model that combines Proportional 

Fairness (PF) with Robust Chance-Constrained Programming (RCCP) as shown in 

Figure 3.3, offering a more balanced and resilient decision-making framework. This 

approach ensures that both fairness and robustness are adequately addressed, ultimately 

leading to more reliable and equitable solutions in complex decision-making scenarios. 
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Figure 3.3 Methodology of a unified fairness and robustness fuzzy optimization 

approach. 

 

Phase 1: Data Preparation: In preparing the data, parameters are grouped into 

crisp and uncertain categories. Crisp parameters have exact, known values, while 

uncertain parameters involve ambiguity or imprecision. These uncertainties are 

modeled using Triangular Fuzzy Numbers (TFNs). 

Phase 2: Defuzzification Process: This process converts imprecise data into 

crisp data. The fuzziness in the model can be classified into two primary types, based 

on its location: fuzziness in the objective functions and fuzziness in the constraints. 

• Defuzzification Approach at the objective functions: The Realistic Robust 

Programming (RRP) approach is utilized here because it is well-adapted to 

business and profit-centered problems, offering a reasonable trade-off between 

optimality and feasibility robustness. Accordingly, fairness and the optimality 

and feasibility elements of RRP are embedded into the EV method to improve 

the model’s robustness and fairness, as outlined in Equations (3.25) – (3.26). 

For minimization objectives: 

 

𝑬𝑬𝑬𝑬�𝒁𝒁�� + 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 + 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 + 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

=  𝑍𝑍
𝑜𝑜+2𝑍𝑍𝑚𝑚+𝑍𝑍𝑝𝑝

4
+ �𝑍𝑍𝑖𝑖 − 𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃� + 𝜌𝜌(𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚) + (𝜎𝜎�𝑑𝑑𝑗𝑗

𝑝𝑝 − (1 − 𝛾𝛾)𝑑𝑑𝑗𝑗𝑚𝑚 − 𝛾𝛾𝑑𝑑𝑗𝑗
𝑝𝑝�)  

        (3.25) 
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For maximization objectives: 

 

𝑬𝑬𝑬𝑬�𝒁𝒁�� + 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 + 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 + 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

= 𝑍𝑍𝑜𝑜+2𝑍𝑍𝑚𝑚+𝑍𝑍𝑝𝑝

4
+ (𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑍𝑍𝑖𝑖) + 𝜌𝜌(𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚) + (𝜎𝜎�𝑑𝑑𝑗𝑗

𝑝𝑝 − (1 − 𝛾𝛾)𝑑𝑑𝑗𝑗𝑚𝑚 − 𝛾𝛾𝑑𝑑𝑗𝑗
𝑝𝑝�)  

        (3.26) 

 

where 𝑍𝑍𝑜𝑜, 𝑍𝑍𝑚𝑚, and 𝑍𝑍𝑝𝑝 represent the objective function values under optimistic, 

most probable, and pessimistic scenarios, respectively. 𝑍𝑍𝑖𝑖 and 𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 correspond 

to the value of each individual objective function and its positive ideal solution. 

The terms 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚  indicate the highest and lowest values of the objective 

function. For constraint 𝑗𝑗, 𝑑𝑑𝑗𝑗𝑜𝑜, 𝑑𝑑𝑗𝑗𝑚𝑚, and 𝑑𝑑𝑗𝑗
𝑝𝑝 denote the optimistic, most likely, 

and pessimistic estimates of the fuzzy parameters, respectively. The parameter 

𝜌𝜌 stands for the weighting factor, while 𝜎𝜎 refers to the penalty imposed for 

possible constraint violations, both are assigned a value of 50% to maintain 

fairness. Finally, 𝛾𝛾 represents the confidence level, which is fixed at 80% in this 

study. 

   

• Defuzzification Approach at the constraints: Similar to the previous 

approach, the Chance-Constrained Programming (CCP) method is utilized to 

handle defuzzification of fuzzy constraints, as presented in Equations (3.16) - 

(3.17). 

Phase 3: Membership Function: Similar to the previous approach, the 

membership function can be computed using Equations (3.7) – (3.8). 

Phase 4: Optimization Process: Similar to the previous approach, 

Zimmermann's method is applied, as demonstrated in Equation (3.9). 
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Numerical example for conventional specific fuzzy optimization 

AB manufacturing is the company that makes a line of high qualities Glasses, Bottles, 

and Cups. It has three plants; Plant1, Plant2, and Plant3, that are used to produce high 

qualities Glasses, Bottles, and Cups. To produce a Glass, the production time is 2 

hours/unit at Plant1. The available production capacity of Plant1 varies according to a 

triangular distribution with a minimum available production capacity of 8 hours, a most 

likely available production capacity of 16 hours, and a maximum available production 

capacity of 24 hours. To produce a Bottle, the production time at Plant2 varies 

according to a triangular distribution with a minimum production time of 1.5 hours/unit, 

a most likely production time of 2.5 hours/unit, and a maximum production time of 3.5 

hours/unit. The available production capacity of Plant2 varies according to a triangular 

distribution with a minimum available production capacity of 12 hours, a most likely 

available production capacity of 24 hours, and a maximum available production 

capacity of 36 hours. To produce a Cup, the production time is 1.5 hours/unit at Plant3. 

The available production capacity of Plant3 is 36 hours. Profits of a Glass, a Bottle and 

a Cup are calculated as ($15, $20, $25), ($25, $30, $35), and ($35, $40, $45), 

respectively. The AB manufacturing attempts to find out not only how many units of 

Glasses, Bottles and Cups that should be produced to maximize total profit but also 

minimize total amount of pollution. For simplicity, the amount of pollution follows a 

linear function resulting from three decision variables 𝑋𝑋1,  𝑋𝑋2 and 𝑋𝑋3. 

 

2𝑋𝑋1 + 3𝑋𝑋2 + 4𝑋𝑋2 

       where 𝑋𝑋1,  𝑋𝑋2 and 𝑋𝑋3 denote decision variables representing numbers of produced 

Glass, Bottle, and Cup, respectively. 
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Table 3.1 Parameters relate to production of Glass, Bottle, and Cup. 

 Glass Bottle Cup 
Available 

Production 
Capacity 

Production 
Time 

(Plant1) 
2 hours/unit -  

(8 hours,  
16 hours,  
24 hours) 

Production 
Time 

(Plant2) 
- 

(1.5 hours/unit, 
2.5 hours/unit, 
3.5 hours/unit) 

 
(12 hours,  
24 hours,  
36 hours) 

Production 
Time 

(Plant3) 
- - 1.5 hours/unit 36 hours 

Profit ($15/unit, $20/unit, 
$25/unit) 

($25/unit, 
$30/unit, 
$35/unit) 

($35/unit, 
$40/unit, 
$45/unit) 

- 

Mathematical Formulation 

 Objective Functions 
1.Maximize total profits (defuzzify by Realistic Robust Programming and 
Fairness) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  𝐸𝐸𝐸𝐸�𝑍𝑍�� + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 
 First term 

𝐸𝐸𝐸𝐸�𝑍𝑍�� =
𝑍𝑍𝑜𝑜 + 2𝑍𝑍𝑚𝑚 + 𝑍𝑍𝑝𝑝

4  

1.𝑍𝑍𝑜𝑜 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  15𝑋𝑋1+25𝑋𝑋2+35𝑋𝑋3 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(8) + (2 − 2(0.8))(16) 

(2(0.8) − 1)(1.5) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(12) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

2.𝑍𝑍𝑚𝑚 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  20𝑋𝑋1+30𝑋𝑋2+40𝑋𝑋3 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(8) + (2 − 2(0.8))(16) 

(2(0.8) − 1)(1.5) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(12) + (2 − 2(0.8))(24)  
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

3.𝑍𝑍𝑝𝑝 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  25𝑋𝑋1+35𝑋𝑋2+45𝑋𝑋3 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(8) + (2 − 2(0.8))(16) 

(2(0.8) − 1)(1.5) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(12) + (2 − 2(0.8))(24) 
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1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

 Second term 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝜌𝜌(𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚) 

  
where 𝜌𝜌 is assumed to be 50%. 
 
1.𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓𝑝𝑝𝑦𝑦 + 𝑐𝑐𝑝𝑝𝑥𝑥 = 25𝑋𝑋1+35𝑋𝑋2+45𝑋𝑋3 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(8) + (2 − 2(0.8))(16) 

(2(0.8) − 1)(1.5) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(12) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

 
2.𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓𝑜𝑜𝑦𝑦 + 𝑐𝑐𝑜𝑜𝑥𝑥 = 15𝑋𝑋1+25𝑋𝑋2+35𝑋𝑋3 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(8) + (2 − 2(0.8))(16) 

(2(0.8) − 1)(1.5) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(12) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

 Third term 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝜎𝜎(𝑑𝑑𝑝𝑝 − (1 − 𝛾𝛾)𝑑𝑑𝑚𝑚 − 𝛾𝛾𝑑𝑑𝑝𝑝) + 𝛿𝛿(𝛾𝛾𝐵𝐵𝑜𝑜 + (1 − 𝛾𝛾)𝐵𝐵𝑚𝑚 − 𝐵𝐵𝑜𝑜) 
 
where  𝜎𝜎 and 𝛿𝛿 are assumed to be 50% and 𝛾𝛾 is assumed to be 80%. 
 
1.The first term 𝜎𝜎(𝑑𝑑𝑝𝑝 − (1 − 𝛾𝛾)𝑑𝑑𝑚𝑚 − 𝛾𝛾𝑑𝑑𝑝𝑝) can be applied to uncertain right-
hand side constraints 

𝜎𝜎(𝑑𝑑𝑝𝑝 − (1 − 𝛾𝛾)𝑑𝑑𝑚𝑚 − 𝛾𝛾𝑑𝑑𝑝𝑝) = 0.5�24 − (1 − 0.8)16 − (0.8)(24)� 
𝜎𝜎(𝑑𝑑𝑝𝑝 − (1 − 𝛾𝛾)𝑑𝑑𝑚𝑚 − 𝛾𝛾𝑑𝑑𝑝𝑝) = 0.5�36 − (1 − 0.8)24 − (0.8)(36)� 

2.The second term 𝛿𝛿(𝛾𝛾𝐵𝐵𝑜𝑜 + (1 − 𝛾𝛾)𝐵𝐵𝑚𝑚 − 𝐵𝐵𝑜𝑜) can be applied to uncertain left-
hand side constraints 
𝛿𝛿(𝛾𝛾𝐵𝐵𝑜𝑜 + (1 − 𝛾𝛾)𝐵𝐵𝑚𝑚 − 𝐵𝐵𝑜𝑜) = 0.5((0.8)(1.5) + (1 − 0.8)(2.5) − 1.5) 
 
2.Minimize total amount of pollution 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍2 = 2𝑋𝑋1 + 3𝑋𝑋2 + 4𝑋𝑋2 
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 Fourth term 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = (𝑍𝑍𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑍𝑍𝑖𝑖) 

1.For Maximization of the Objective Function (Maximize total profits)  
𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  𝐸𝐸𝐸𝐸(𝑍𝑍�) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(8) + (2 − 2(0.8))(16) 

(2(0.8) − 1)(1.5) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(12) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 
 

2.For Minimization of the Objective Function (Minimize total amount of 
pollution) 
𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍2 = 2𝑋𝑋1 + 3𝑋𝑋2 + 4𝑋𝑋2 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(8) + (2 − 2(0.8))(16) 

(2(0.8) − 1)(1.5) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(12) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

 Uncertain Constraints 
1.Defuzzify by Chance-Constrained Programming (𝛾𝛾 = 80%) 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(8) + (2 − 2(0.8))(16) 

(2(0.8) − 1)(1.5) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(12) + (2 − 2(0.8))(24) 
 Crisp Constraint 

Subject to: 1.5𝑋𝑋2 ≤ 36 
 Non-negativity Constraint 

Subject to: 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 
 Membership Functions 

1.Membership Function for Maximizing the Objective Function (Maximize 
total profits)  

𝜇𝜇𝑍𝑍1 = 𝑍𝑍1−𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁

𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃−𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁
  

 
𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  𝐸𝐸𝐸𝐸(𝑍𝑍�) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(8) + (2 − 2(0.8))(16) 

(2(0.8) − 1)(1.5) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(12) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 
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𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍1 =  𝐸𝐸𝐸𝐸(𝑍𝑍�) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(8) + (2 − 2(0.8))(16) 

(2(0.8) − 1)(1.5) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(12) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

 
2.Membership Function for Minimizing the Objective Function (Minimize total 
amount of pollution) 

𝜇𝜇𝑍𝑍2 = 𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍2
𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃

  

 
𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃 can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀mize 𝑍𝑍2 = 2𝑋𝑋1 + 3𝑋𝑋2 + 4𝑋𝑋2 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(8) + (2 − 2(0.8))(16) 

(2(0.8) − 1)(1.5) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(12) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

 Optimization Process by Zimmermann’s Approach 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜇𝜇𝑍𝑍 
Subject to:  2𝑋𝑋1 ≤ (2(0.8) − 1)(8) + (2 − 2(0.8))(16) 

(2(0.8) − 1)(1.5) + (2 − 2(0.8))(2.5)𝑥𝑥 ≤ (2(0.8) − 1)(12) + (2 − 2(0.8))(24) 
1.5𝑋𝑋2 ≤ 36 
𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 ≥ 0 

𝜇𝜇𝑍𝑍 ≤ 𝜇𝜇𝑍𝑍1 = 𝑍𝑍1−𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁

𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃−𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁
  

𝜇𝜇𝑍𝑍 ≤ 𝜇𝜇𝑍𝑍2 = 𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍2
𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁−𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃

  

 
 

3.4 A Downside Risk Mitigation Approach 

This study addresses another critical problem of uncertainty within supply chain 

operations, which are often plagued by imprecise, incomplete, inaccurate, or ambiguous 

information. These uncertainties pose significant risks to supply chain performance, 

leading to suboptimal decision-making if not effectively managed Rachev et al. (2011). 

Conventional fuzzy linear programming approaches typically represent uncertain data 

using triangular fuzzy numbers (Zhang et al., 2014), assuming symmetrical deviations 

around a central value. However, this assumption fails to capture the asymmetrical 
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nature of real-world uncertainties, where risks and deviations can differ in magnitude 

between positive and negative directions. To overcome this limitation, this study 

introduces the utilization of asymmetrical triangular fuzzy numbers, which better 

reflect the skewness of real-world data. Additionally, the risk of uncertainty, 

particularly the downside risk arising from pessimistic and most likely scenarios, is 

quantified using the Mean Conditional Value at Risk Gap (MCVaRG) (Chiadamrong 

and Suthamanondh (2024)). This approach, grounded in Conditional Value-at-Risk 

(CVaR) theory, emphasizes the assessment of the tail end of the outcome distribution 

beyond a specified threshold, providing a precise evaluation of downside risks. By 

integrating these advanced risk measures, this study aims to strengthen decision-

making in supply chain management under uncertainty, providing a more robust 

framework for addressing the challenges posed by risk and imprecision. 

To minimize the MCVaRG of total supply chain operating costs, the 

formulation used in this study is presented as follows: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ �(1−2𝛾𝛾)2𝜎𝜎�𝑡𝑡
4(1−𝛾𝛾) + �1−2𝛾𝛾2�𝜎𝜎�𝑡𝑡

2(1−𝛾𝛾)
+ 𝜎𝜎�𝑡𝑡

4(1−𝛾𝛾)�
𝑇𝑇
𝑡𝑡 𝑥𝑥𝑡𝑡 ,     𝑖𝑖𝑖𝑖 0 < 𝛾𝛾 ≤ 0.5           (3.27) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ [(1 − 𝛾𝛾)𝜎𝜎�𝑡𝑡 + 𝛾𝛾𝜎𝜎�𝑡𝑡]𝑇𝑇
𝑡𝑡 𝑥𝑥𝑡𝑡 ,     𝑖𝑖𝑖𝑖 0.5 < 𝛾𝛾 < 1          (3.28) 

 

Minimize MCVaRG =MCVaR – Total Supply Chain Operation Costs        (3.29) 

 

where 𝜎𝜎�𝑡𝑡, 𝜎𝜎�𝑡𝑡, and 𝜎𝜎�𝑡𝑡 represent the optimistic, most likely, and pessimistic supply chain 

operation cost values, respectively, for each period t, 𝑡𝑡 = 1, 2, … ,𝑇𝑇. The variable 𝑥𝑥𝑡𝑡 

denotes the decision variables associated with each corresponding period 𝑡𝑡. 

Additionally, 𝛾𝛾 represents the credibility level used to manage uncertainty within the 

model. 
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Figure 3.4 Demonstration of MCVaRG calculation. 

 

The process of computing the MCVaRG value is illustrated in Figure 3.4. For 

instance, the defuzzified value of a fuzzy supply chain operation cost is $864, derived 

from a Triangular Fuzzy Number with parameters $640 (minimum), $800 (most likely), 

and $960 (maximum), which represent the range of possible values for the supply chain 

operation cost. 

The defuzzification process is performed employing CCP at a confidence level 
of 0.8, as specified in Equation (3.16). 

𝐶𝐶𝐶𝐶�∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 ≤ 𝑏𝑏�𝑖𝑖𝑛𝑛
𝑗𝑗=1 � ≥ 𝛾𝛾     𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖            

𝑤𝑤ℎ𝑒𝑒𝑒𝑒 (0.5 < 𝛾𝛾 ≤ 1):𝑎𝑎𝑎𝑎 ≤ (2𝛾𝛾 − 1)𝑏𝑏𝑚𝑚 + (2 − 2𝛾𝛾)𝑏𝑏𝑝𝑝          
(2(0.8) − 1)(800) + �2 − 2(0.8)�(960) = 864 

Subsequently, the MCVaR is computed using Equation (3.28) with a confidence 

level of 𝛾𝛾 = 0.8, yielding a value of $928. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ [(1 − 𝛾𝛾)𝜎𝜎�𝑡𝑡 + 𝛾𝛾𝜎𝜎�𝑡𝑡]𝑇𝑇
𝑡𝑡 𝑥𝑥𝑡𝑡 ,     𝑖𝑖𝑖𝑖 0.5 < 𝛾𝛾 < 1  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (1 − 0.8)(800) + (0.8)(960) = 928 

The quantified risk associated with supply chain operating costs, represented by 

MCVaRG of $64, demonstrates the impact of cost uncertainty and the necessity to 

mitigate this risk factor. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − Total Supply Chain Operation Costs = 928 − 864 = 64 
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3.5 Introduction of Case Studies 

The proposed research methodologies are demonstrated through the application 

of three distinct case studies, each addressing a unique set of challenges. These case 

studies are designed to showcase the effectiveness of each methodology in tackling 

specific issues relevant to the research objectives. Each case study presents a different 

context, supporting an in-depth examination of the approaches and their ability to 

handle various complexities. The three distinct case studies are presented separately to 

clearly highlight the advantages and effectiveness of each proposed methodology. This 

separation ensures that the unique features and contributions of each approach can be 

thoroughly examined without introducing unnecessary complexity that could obscure 

the significance of their individual strengths. By isolating the cases, the study maintains 

analytical clarity, allowing decision-makers to achieve a deeper perception of the 

specific benefits and applicability of each methodology within the context of supply 

chain aggregate production planning. This structured presentation also facilitates a 

more focused evaluation and comparison, enhancing the overall interpretability and 

practical relevance of the proposed solutions. 

The following outlines the key issues and challenges addressed in each case 

study: 

• Case 1: A Five-Phase Hybrid Fuzzy Optimization Approach for Supply Chain 

Aggregate Production Planning 

 

In the face of increasing competitive market pressures, firms must adopt 

strategies that allow them to improve performance by addressing multiple objectives 

simultaneously to secure a competitive advantage. Consequently, there is a need for a 

practical approach capable of overcoming two major obstacles: conflicting objectives 

and the uncertainty inherent in supply chain management. This necessitates an effective 

decision-making framework to assist Decision Makers (DMs) in planning an efficient 

Supply Chain Aggregate Production Plan (SCAPP). This case study purposes to 

minimize total supply chain costs, minimize total product shortages, and maximize total 

purchasing values, all while dealing with imprecise factors such as operating costs, 

customer demand, defective rates, and service levels. Beyond proposing a solution to 

these challenges, the study also addresses the weaknesses of conventional specific 
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fuzzy optimization approaches, which often fail to consider hesitation, robustness, non-

satisfaction levels, and the generation of Pareto-optimal solutions. To overcome these 

limitations, a novel five-phase hybrid fuzzy optimization approach is developed, 

integrating Intuitionistic Fuzzy Linear Programming (IFLP), Realistic Robust 

Programming (RRP), Chance-Constrained Programming (CCP), and the Augmented 

Epsilon Constraint (AUGMECON) method. This comprehensive approach enables 

DMs to obtain the most robust and concrete compromise solution, reflecting their 

intentions more accurately and ultimately improving the efficiency and effectiveness of 

SCAPP under uncertain and competitive conditions. 

 

• Contributions and Highlights of Case 1 

 

A key highlight of this case study is the development of a five-phase hybrid 

fuzzy optimization approach designed to overcome the limitations of a conventional 

specific fuzzy optimization approach. The proposed methodology integrates several 

advanced techniques, including Intuitionistic Fuzzy Linear Programming (IFLP), 

Realistic Robust Programming (RRP), Chance-Constrained Programming (CCP), and 

Augmented Epsilon Constraint (AUGMECON). These methods address hesitation, 

enhance robustness, and incorporate both satisfaction and non-satisfaction levels, 

ultimately producing Pareto-optimal solutions. This integrated approach represents a 

significant advancement over existing methods and provides a more comprehensive 

strategy for decision-making in supply chain management, allowing DMs to create 

more resilient and effective supply chain strategies. 

To the best of the authors’ understanding, this is the first study to utilize the 

combined techniques of IFLP, RRP, CCP, and AUGMECON to solve multi-objective 

SCPP problems in an uncertain environment. This novel integration offers a 

comprehensive framework to tackle the complex challenges of modern supply chain 

management, presenting a fresh perspective for managing uncertain data and 

conflicting objectives. 
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The feasibility and practicality of the proposed approach are validated through 

a case study. The outcomes from the case study demonstrate that the methodology 

effectively minimizes total costs, minimizes total shortages, and maximizes total 

purchasing value while managing uncertainty and balancing conflicting objectives. 

These outcomes highlight the practical relevance and applicability of the approach in 

real-world scenarios, establishing a new benchmark for multi-objective SCAPP under 

uncertainty. 

 

• Case 2: A Unified Fairness and Robustness Fuzzy Optimization Approach for 

Supply Chain Aggregate Production Planning 

 

In supply chain management, two critical factors; fairness and robustness, are 

often overlooked in the context of SCAPP. Failure to account for fairness among 

multiple objectives can lead to inequitable outcomes due to conflicting priorities across 

stakeholders. Additionally, neglecting robustness can result in unreliable and non-

resilient planning, especially when dealing with uncertain and imprecise data. To 

address these challenges, this study proposes a unified fairness and robustness fuzzy 

optimization approach that integrates the principles of Proportional Fairness (PF) and 

Robust Chance-Constrained Programming (RCCP). By combining these 

methodologies, the approach aims to achieve a balanced and resilient SCAPP that 

minimizes total supply chain costs, minimizes total fluctuations in workforce levels, 

and maximizes total purchasing values under uncertain circumstances. The 

effectiveness of this approach is demonstrated through a case study, which highlights 

its ability to improve the fairness and robustness of SCAPP outcomes. Ultimately, the 

integration of fairness and robustness into SCAPP strengthens the resilience of supply 

chain operations, ensuring better adaptability in the face of disruptions. It also 

strengthen corporate reputation through signaling dedication to responsible, reliable, 

and equitable business practices, thereby promoting long-term sustainability and 

operational efficiency. 
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• Contributions and Highlights of Case 2 

 
This case study fills a notable gap in existing literature by introducing the 

combined principles of proportional fairness and robustness in Aggregate Production 

Planning (APP) optimization. A conventional specific fuzzy optimization approach 

often overlooks fairness, leading to the unequal prioritization of objectives, while 

neglecting robustness can result in vulnerabilities when unexpected disruptions occur. 

By combining these two principles, the study offers a more comprehensive solution that 

ensures equitable treatment of all stakeholders within the supply chain while 

maintaining operational continuity amidst uncertainty. This integration significantly 

enhances both the efficiency and sustainability of supply chain management practices. 

Incorporating fairness into the optimization process ensures that the system 

prevents bias, fostering positive relationships among diverse stakeholders in the SC. 

Meanwhile, robustness equips the system to withstand unforeseen challenges and 

disruptions, ensuring continued operations even in the face of uncertainty. The synergy 

between fairness and robustness contributes to greater operational stability and bolsters 

corporate image through the promotion of responsible and dependable practices. This 

approach positions companies for long-term success while building trust and stability 

across their supply chain networks. 

Furthermore, the proposed approach outperforms conventional specific fuzzy 

optimization approaches, particularly under conditions with pronounced differences in 

objective satisfaction levels. In scenarios where one objective’s satisfaction level is 

disproportionately low, or below the preferences of DMs, a conventional specific fuzzy 

optimization approach may lead to unfair outcomes. Conversely, when one objective’s 

satisfaction is excessively high, it can lead to inequitable treatment of other objectives. 

The proposed approach addresses these imbalances, ensuring a fairer and more 

balanced optimization process. This feature enhances the model's practical 

applicability, ensuring that DMs can make more reliable and equitable decisions in 

multi-objective APP. 
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• Case 3: A Downside Risk Mitigation Approach for Supply Chain Aggregate 

Production Planning 

 

As modern business environments become more complex and uncertain, there 

is a growing need for strong SCAPP strategies that can skillfully navigate 

interdependencies and ensure seamless coordination across the supply chain hierarchy. 

Conventional supply chain strategies often overlook critical uncertainties and risks, 

contributing to inefficiencies and higher operational expenditures. This study addresses 

these challenges by proposing a business model that integrates open innovation to 

enhance both resilience and cost performance. Specifically, the study proposes a 

downside risk mitigation approach aimed at minimizing the probability of adverse 

outcomes or financial losses caused by fluctuations, unpredictability, and unforeseen 

events that frequently increase supply chain costs. Through a case study centered on 

cost and risk minimization, the model employs asymmetrical triangular fuzzy numbers 

to capture various uncertain factors, including fluctuating costs, demands, and 

machinery runtime. The results demonstrate the effectiveness in delivering decision 

makers a comprehensive and optimized SCAPP that enhances operational efficiency, 

improves reliability, and substantially reduces costs. Furthermore, the model’s 

capability to mitigate the skewness of risks stemming from operational uncertainties 

provides a strategic advantage in enhancing overall supply chain resilience and ensuring 

long-term sustainability. 

 

• Contributions and Highlights of Case 3 

 
This case study presents an innovative multi-objective fuzzy linear 

programming model aimed at optimizing the SCAPP problem. The model 

simultaneously addresses two key goals: reducing costs and minimizing downside risk, 

with special emphasis on the Mean-Conditional Value at Risk Gap (MCVaRG). By 

addressing these dual objectives, the proposed framework offers a strategic SCAPP 

plan that not only ensures economically viable decisions but also enhances resilience 

against potential risks. This contribution fills a significant gap in existing literature by 
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providing a comprehensive approach that moves beyond conventional cost-centric 

models, acknowledging the complexity inherent in modern supply chain management. 

The study’s innovative approach emphasizes the importance of a framework 

that balances cost efficiency with risk mitigation. While many conventional SCAPP 

models primarily focus on minimizing costs, this research broadens the perspective to 

include risk management as a critical component of supply chain optimization. By 

simultaneously considering both objectives, the model enables decision-makers to 

develop plans that are not only economically viable but also resilient to uncertainties, 

contributing to the long-term sustainability and stability of the SC. 

A key highlight of this case study is the introduction of a groundbreaking 

methodology for addressing the asymmetrical skewness often present in real-world 

data. Unlike conventional models that assume symmetrical distributions of fuzzy 

numbers, the study recognizes that data frequently exhibits asymmetry. The inclusion 

of skewness in triangular fuzzy numbers allows the model to more precisely capture 

uncertainty and fluctuations in the data. This refined understanding enhances decision-

making by providing clearer insight into the potential outcome range and associated 

probabilities, contributing to stronger risk and cost management. 

Incorporating these sophisticated ideas into the model greatly refines strategic 

planning efforts and enhances the consistency of decisions under challenging 

conditions. The ability to account for skewed fuzzy numbers enhances the model's 

precision in managing both risk and cost, making it particularly valuable in uncertain 

and dynamic environments. Overall, this study advances the field of supply chain 

management by providing a robust tool for optimizing APP under uncertainty, 

enhancing both the efficiency and resilience of decision-making in real-world supply 

chain scenarios. 

 
 
 
 
 
 

Ref. code: 25686422300019ALF



77 
 
 

 
 

CHAPTER 4 

RESULTS 
 

This chapter concentrates on the practical applications of proposed 

methodologies and concepts in real-world settings, bridging the gap between theoretical 

research and industrial practices. It explores how the integration of innovative 

techniques of fuzzy optimization can enhance decision-making processes in supply 

chain management. By presenting case studies, this chapter demonstrates how these 

methodologies address challenges like uncertainty, resource constraints, and conflicting 

objectives. The goal is to provide actionable insights and frameworks that enable 

practitioners to optimize operations, reduce risks, and improve overall system 

performance, making complex theoretical approaches accessible and relevant to 

industry professionals. This chapter serves as a guide for implementing these tools 

effectively, highlighting their potential to drive efficiency, cost-effectiveness, and 

resilience in dynamic and uncertain environments. 

 

4.1 Case 1: A Five-Phase Hybrid Fuzzy Optimization Approach  

for Supply Chain Aggregate Production Planning 

Supply Chain Aggregate Production Planning (SCAPP) plays a crucial role in 

operational management, directly impacting an organization's performance and 

competitiveness in the marketplace. In highly competitive environments, firms face the 

challenge of achieving multiple, often conflicting objectives, all while navigating the 

uncertainties of supply chain management. Conventional Specific Fuzzy Linear 

Programming (FLP) approach, often struggle to address these complexities, particularly 

when dealing with conflicting objectives and imprecise data. To tackle these challenges, 

this study introduces a five-phase hybrid fuzzy optimization approach that integrates 

advanced methodologies such as Intuitionistic Fuzzy Linear Programming (IFLP), 

Realistic Robust Programming (RRP), Chance-Constrained Programming (CCP), and 

the Augmented Epsilon Constraint (AUGMECON) method. This approach aims to 

provide a more robust, flexible solution to SCAPP problems. A detailed case study 

demonstrates how the proposed approach effectively minimizes total supply chain 
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costs, minimizes total product shortages, and maximizes total purchase values under 

uncertain circumstances, including imprecise operating costs, customer demands, 

defective rates, and service levels. The results also show that the integrated approach 

outperforms conventional specific FLP approach, offering enhanced hesitation 

allowance, robust modeling, and a more comprehensive consideration of satisfaction 

and non-satisfaction levels. Additionally, it generates a set of strong Pareto-optimal 

solutions, enabling decision makers to make more informed and effective choices 

aligned with strategic goals. This study thus provides a valuable tool for enhancing the 

efficiency and effectiveness of SCAPP in uncertain and competitive environments. 

 
4.1.1 Mathematical Notations and Model 

 
The notations for indexes, parameters, and decision variables are presented in 

Tables 4.1 to 4.4. Notably, all fuzzy parameters are denoted with a tilde ( � ) placed 

above the corresponding symbols to indicate their fuzzy nature. 

 

Table 4.1 Indexes of SCAPP problem (Case 1). 

Indexes Meaning 
𝑟𝑟 Raw materials index (𝑟𝑟 = 1, … ,𝑅𝑅) 
𝑠𝑠 Suppliers index (𝑠𝑠 = 1, … , 𝑆𝑆) 
𝑛𝑛 Products index (n= 1, … ,𝑁𝑁) 
𝑡𝑡 Planning periods index (t= 1, … ,𝑇𝑇) 
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Table 4.2 Crisp parameters of SCAPP problem (Case 1). 

Crisp 
Parameters Meaning 

𝑁𝑁𝑁𝑁𝑁𝑁0 Initial labor force in period 0 (persons) 
𝑃𝑃𝑃𝑃 Productivity of labors (0 < 𝑃𝑃𝑃𝑃 < 1) 
𝐴𝐴𝐴𝐴𝐴𝐴 Acceptable fraction of labor variation (%) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟 Production site storage limit for raw material r (units) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠 
Total evaluation score of supplier s with respect to raw material 
quality (%) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛 Production site storage limit for final product n (units) 
𝑃𝑃𝑃𝑃𝑛𝑛 Manufacturing time per unit of product n (min)  
𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 Regular working time available in period t (hours) 
𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 Overtime working available in period t (hours) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟 Volume of raw material r consumed for each unit of product n 
(units) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛 
Maximum allowable subcontracted quantity of product n in period t 
(units) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛 
Maximum machine usage allocated to product n in period t 
(machine-hours)  

𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛 
Machine utilization per unit of product n in period t (machine-
hours/unit)  

𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 
Maximum quantity of raw material r supplied by supplier s in period 
t (units)  

𝑆𝑆𝑆𝑆 Total shortages of products (units) 
𝑇𝑇𝑇𝑇𝑇𝑇 Total values of purchasing (units) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ref. code: 25686422300019ALF



80 
 
 

 
 

Table 4.3 Uncertain parameters of SCAPP problem (Case 1). 

Uncertain 
Parameters Meaning 

𝑅𝑅𝑅𝑅𝑅𝑅�𝑡𝑡 
Production cost during regular hours under fuzzy conditions in period 
t ($/minute) 

𝑂𝑂𝑂𝑂𝑂𝑂�𝑡𝑡 
Production cost during overtime under fuzziness in period t 
($/minute) 

𝑆𝑆𝑆𝑆�𝑡𝑡 
Production cost of subcontracting under fuzziness in period t 
($/minute) 

𝑆𝑆𝑆𝑆�𝑡𝑡 Labor wage under fuzziness in period t ($/person) 
𝐻𝐻𝐻𝐻�𝑡𝑡 Labor hiring cost under fuzziness in period t ($/person) 
𝐹𝐹𝐹𝐹�𝑡𝑡 Labor dismissal cost under fuzziness in period t ($/person) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑡𝑡 Production plant service level threshold with fuzziness in period t (%) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼� 𝑟𝑟𝑟𝑟 
Inventory holding cost of raw material r under fuzziness in period t 
($/unit) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� 𝑠𝑠𝑠𝑠 
Logistics cost under fuzziness for raw material r from supplier s in 
period t ($/unit) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠𝑠𝑠 Average fuzzy service quality level of supplier s in period t (%) 

𝑇𝑇𝑇𝑇𝑇𝑇� 𝑛𝑛𝑛𝑛 
Logistics cost under fuzziness for product n shipped from plant to 
customers in period t ($/unit) 

𝐼𝐼𝐼𝐼𝐼𝐼� 𝑛𝑛𝑛𝑛 
Inventory holding cost of product n under fuzziness in period t 
($/unit) 

𝐷𝐷�𝑛𝑛𝑛𝑛 Customer demand under fuzziness for product n in period t (units) 
𝑃𝑃𝑃𝑃𝑃𝑃� 𝑛𝑛𝑛𝑛 Penalty cost under fuzziness for product n shortage in period t ($/unit) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠𝑠𝑠𝑠𝑠 
Acceptable fuzzy failure percentage for raw material r in the 
production plant in period t (%) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠𝑠𝑠𝑠𝑠 
Average fuzzy failure percentage of raw material r supplied by 
supplier s in period t (%) 

𝑃𝑃𝑃𝑃�𝑠𝑠𝑠𝑠𝑠𝑠 
Unit acquisition cost under fuzziness for raw material r supplied by 
supplier s in period t ($/unit) 

𝑇𝑇𝑇𝑇𝑇𝑇�  Total supply chain operational costs ($) 
𝑃𝑃𝑃𝑃𝑃𝑃�  Total purchasing costs ($) 
𝑃𝑃𝑃𝑃𝑃𝑃�  Total production costs ($) 
𝑊𝑊𝑊𝑊𝑊𝑊�  Total costs of worker ($) 
𝐼𝐼𝐼𝐼𝐼𝐼�  Total inventory costs ($) 
𝑆𝑆𝑆𝑆𝑆𝑆�  Total shipping costs ($) 
𝑆𝑆𝑆𝑆𝑆𝑆�  Total shortage costs ($) 
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Table 4.4 Decision variables of SCAPP problem (Case 1). 

Decision 
Variables Meaning 

𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 Total labor force employed in period t (persons) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 Total labor force terminated in period t (persons) 
𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟 Ending inventory of raw material r in period t (units) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 
Production quantity of product n within regular working hours in 
period t (units) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛 
Production quantity of product n within overtime hours in period t 
(units) 

𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛 
Units of product n manufactured through subcontracting in period t 
(units) 

𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 Amount of product n delivered to customers in period t (units) 
𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 Ending inventory of product n in period t (units) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛 Quantity of product n shortage for customers in period t (units) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠 
Amount of raw material r delivered by supplier s during period t 
(units) 

 

Objective Functions 

1. Minimization of Total Supply Chain Costs: This is typically a primary goal when 

developing an effective supply chain production plan. Total supply chain costs 

generally include purchasing costs, production costs, labor costs, inventory costs, 

shipping costs, and shortage costs over a specific period. These costs may be uncertain 

due to incomplete or unavailable information. The uncertain values of these costs can 

be represented as triangular fuzzy numbers or triangular intuitionistic fuzzy numbers. 

The objective function can be expressed as follows: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇𝑇𝑇� =  𝑃𝑃𝑃𝑃𝑃𝑃� + 𝑃𝑃𝑃𝑃𝑃𝑃� + 𝑊𝑊𝑊𝑊𝑊𝑊� + 𝐼𝐼𝐼𝐼𝐼𝐼� + 𝑆𝑆𝑆𝑆𝑆𝑆� + 𝑆𝑆𝑆𝑆𝑆𝑆�  
= ∑ ∑ ∑ 𝑃𝑃𝑃𝑃�𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇

𝑡𝑡=1
𝑅𝑅
𝑟𝑟=1

𝑆𝑆
𝑠𝑠=1 + ∑ ∑ 𝑅𝑅𝑅𝑅𝑅𝑅�𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑛𝑛 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝑇𝑇

𝑡𝑡=1
𝑁𝑁
𝑛𝑛=1   

+∑ ∑ 𝑂𝑂𝑂𝑂𝑂𝑂�𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑛𝑛𝑇𝑇
𝑡𝑡=1

𝑁𝑁
𝑛𝑛=1 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛 + ∑ ∑ 𝑆𝑆𝑆𝑆�𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑛𝑛 × 𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑇𝑇

𝑡𝑡=1
𝑁𝑁
𝑛𝑛=1   

+∑ 𝑆𝑆𝑆𝑆�𝑡𝑡 × 𝑁𝑁𝑁𝑁𝑡𝑡
𝑇𝑇
𝑡𝑡=1 + ∑ 𝐻𝐻𝐻𝐻�𝑡𝑡 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡

𝑇𝑇
𝑡𝑡=1 + ∑ 𝐹𝐹𝐹𝐹�𝑡𝑡 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡

𝑇𝑇
𝑡𝑡=1   

+∑ ∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼� 𝑟𝑟𝑟𝑟 × 𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟
𝑇𝑇
𝑡𝑡=1

𝑅𝑅
𝑟𝑟=1 + ∑ ∑ 𝐼𝐼𝐼𝐼𝐼𝐼� 𝑛𝑛𝑛𝑛 × 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛𝑇𝑇

𝑡𝑡=1
𝑁𝑁
𝑛𝑛=1   

+∑ ∑ ∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� 𝑠𝑠𝑠𝑠 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇
𝑡𝑡=1

𝑅𝑅
𝑟𝑟=1

𝑆𝑆
𝑠𝑠=1 + ∑ ∑ ∑ 𝑇𝑇𝑇𝑇𝑇𝑇� 𝑚𝑚𝑚𝑚 × 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛

𝑇𝑇
𝑡𝑡=1

𝑀𝑀
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1    

+∑ ∑ ∑ 𝑃𝑃𝑃𝑃𝑃𝑃� 𝑛𝑛𝑛𝑛𝑛𝑛 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛
𝑇𝑇
𝑡𝑡=1

𝑀𝑀
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1                  (4.1) 

 

Equation (4.1) represents the minimization of total supply chain costs as an 

economic objective. This includes the total purchasing cost, total production cost, total 

labor cost, total inventory cost, total shipping cost, and total shortage cost. The total 
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purchasing cost is incurred from acquiring the necessary raw materials from each 

supplier. The total production cost is the sum of costs for producing products during 

regular hours, overtime, and subcontracting. The total labor cost includes salary 

expenses as well as the expenses related to recruitment and termination of labors. The 

total inventory cost arises from storing raw materials and products. The total shipping 

cost encompasses the transportation of raw materials from suppliers to manufacturers 

and the delivery of products from manufacturers to customers. Lastly, the total shortage 

cost represents the penalty incurred due to product shortages. 

 

2. Minimization of Total Product Shortages: Product shortages occur when volatile 

customer demand and limited warehouse capacity result in insufficient inventory to 

meet customer needs. To address this, minimizing total product shortages becomes a 

critical consideration, helping firms fulfill customer requirements more effectively. 

This objective is formally expressed by the following mathematical formulation: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆 =  ∑ ∑ ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛
𝑇𝑇
𝑡𝑡=1

𝑀𝑀
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1                 (4.2) 

 

3. Maximization of Total Purchasing Value: Maximizing the total value of 

purchasing is another essential objective. This goal ensures that an organization 

procures not only the highest quantity of raw materials but also the highest quality 

materials, evaluated based on factors such as price, quality, and timely delivery. This 

objective can be expressed by the following mathematical equation: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆
𝑠𝑠=1                 (4.3) 

 

Note: Suppliers can be evaluated and scored based on their performance using 

the decision-makers' expertise. The Technique for Order of Preference by Similarity to 

Ideal Solution (TOPSIS) is a ranking and scoring method that can be employed for 

supplier evaluation. It provides decision-makers with a comprehensive weighted score 

for each supplier, aiding in informed decision-making. 
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Constraints 
1. Quality of Raw Materials: The quality of raw materials can be assessed for each 

supplier during each period. This involves ensuring that the overall average failure rate 

of the raw materials provided does not exceed the specified acceptable failure rate for 

each material. 

 

∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠𝑠𝑠 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆
𝑠𝑠=1 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑡𝑡 × ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆

𝑠𝑠=1           ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑡𝑡 ∈ 𝑇𝑇             (4.4) 
 

2. Suppliers' Capacity: This reflects the greatest volume of raw materials that a 

supplier can offer within a designated timeframe. 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠          ∀ 𝑠𝑠 ∈ 𝑆𝑆, 𝑟𝑟 ∈ 𝑅𝑅, 𝑡𝑡 ∈ 𝑇𝑇              (4.5) 
 

3. Service Level: This measures the performance of each supplier in terms of on-time 

delivery during each period. Specifically, the overall average service level of suppliers 

must meet or exceed the specified acceptable service level threshold. 

 

∑ ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠
𝑆𝑆
𝑠𝑠=1 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅

𝑟𝑟=1 ≥ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� × ∑ ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆
𝑠𝑠=1

𝑅𝑅
𝑟𝑟=1           ∀ 𝑡𝑡 ∈ 𝑇𝑇           (4.6) 
 

4. Available Resource of Raw Materials: This constraint ensures that the aggregate 

raw material demand for the two products, including usage during regular hours, 

overtime, and subcontracted production, remains within the total raw material supply 

available from all suppliers in each period. 

 

∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟
𝑁𝑁
𝑛𝑛=1 × (𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛 + 𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛) ≤ ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆

𝑠𝑠=1           ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑡𝑡 ∈ 𝑇𝑇   (4.7) 
 

5. Product Shortages: This represents the quantity of products that cannot be supplied 

when customer demand exceeds available inventory. Any product shortages will incur 

a penalty cost or shortage cost. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛(𝑡𝑡−1) + 𝐷𝐷�𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛          ∀ 𝑛𝑛 ∈  𝑁𝑁,𝑚𝑚 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇           (4.8) 
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6. Available Production Time: This refers to the constraint on production time, 

encompassing both regular working hours and overtime, which is determined by the 

available workforce capacity. 

 

𝑁𝑁𝑁𝑁𝑡𝑡 × 𝑃𝑃𝑃𝑃 × (𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 + 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡) ≥ ∑ (𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛) × 𝑃𝑃𝑃𝑃𝑛𝑛𝑁𝑁
𝑛𝑛=1           ∀ 𝑡𝑡 ∈  𝑇𝑇       (4.9) 

 

7. Subcontracting Quantity Limitation: This constraint sets the maximum allowable 

production volume for products in the designated subcontracting period. 

 

𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛          ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇             (4.10) 
 

8. Inventory of Raw Materials: This indicates the residual amount of raw materials 

available after production for every period. 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟 = 𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟(𝑡𝑡−1) + ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆
𝑠𝑠=1 − �(∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛 + 𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑁𝑁

𝑛𝑛=1 ) × 𝑁𝑁𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟�  

 ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑡𝑡 ∈ 𝑇𝑇
         (4.11) 

 

9. Inventory of Products: This denotes the residual quantity of products remaining 

after customer demand has been met for each period. 

 

𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 = 𝐼𝐼𝐼𝐼𝑛𝑛(𝑡𝑡−1) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛 + 𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛 − ∑ 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀
𝑚𝑚=1         ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇   (4.12) 

 

10. Storage Capacity of Raw Materials: This sets the maximum storage capacity for 

raw materials at the manufacturing facility. 

 

∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟
𝑅𝑅
𝑟𝑟=1 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟           ∀ 𝑡𝑡 ∈ 𝑇𝑇              (4.13) 

 

11. Product storage capacity: This refers to the maximum inventory level of products 

that can be stored at the manufacturer’s facility. 

 

∑ 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛          ∀ 𝑡𝑡 > 1              (4.14) 
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12. Setting the initial worker level: This refers to determining the number of workers 

assigned during the initial period. 

 

𝑁𝑁𝑁𝑁𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑁𝑁0          ∀ 𝑡𝑡 < 2               (4.15) 
 

13. Adjusting workforce levels: This refers to optimizing the workforce allocation in 

each period to maintain operational balance. 

 

𝑁𝑁𝑁𝑁𝑡𝑡 = 𝑁𝑁𝑁𝑁(𝑡𝑡−1) + 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡           ∀ 𝑡𝑡 > 1            (4.16) 
 

14. Workforce variation proportion: This allows decision-makers to control the 

extent of workforce variation in each period by specifying the acceptable percentage of 

workforce fluctuations. 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴 × 𝑁𝑁𝑁𝑁(𝑡𝑡−1)          ∀ 𝑡𝑡 ∈ 𝑇𝑇            (4.17) 
 

15. Machine capacity: This refers to the maximum capacity of machines available for 

manufacturing products during both regular hours and overtime in each period. 

 

∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1 × (𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛          ∀ 𝑡𝑡 ∈ 𝑇𝑇          (4.18) 

 

16. Non-Negativity: All decision variables are constrained to be non-negative by 

(4.19)–(4.23), with certain variables mandated as integers. 

 

𝑁𝑁𝑁𝑁𝑡𝑡 ,𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 ,𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖          ∀ 𝑡𝑡 ∈ 𝑇𝑇            (4.19) 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 ,𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛 , 𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛 , 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖          ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇          (4.20) 
 

𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟 ≥ 0          ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑡𝑡 ∈ 𝑇𝑇              (4.21) 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 ,𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 ≥ 0         ∀ 𝑛𝑛 ∈ 𝑁𝑁,𝑚𝑚 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇            (4.22) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 0          ∀ 𝑠𝑠 ∈ 𝑆𝑆, 𝑟𝑟 ∈ 𝑅𝑅, 𝑡𝑡 ∈ 𝑇𝑇             (4.23) 
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4.1.2 Problem Description of Case 1 

A numerical case study on a supply chain production problem is performed to 

illustrate and validate the effectiveness of the proposed five-phase hybrid approach. 

The case study involves a supply chain network comprising four qualified suppliers 

supplying three essential raw materials, one manufacturer responsible for producing 

two types of products, and customers with product demands over a six-month planning 

horizon, as depicted in Figure 4.1. The analysis focuses on three key objectives: 

minimizing total supply chain costs, minimizing product shortages, and maximizing 

total purchasing value. These objectives are addressed within an uncertain environment 

characterized by variability in failure rates of product, levels of service, customer 

demand, and costs. The uncertainties are represented using triangular fuzzy numbers in 

the conventional specific fuzzy linear programming approach and triangular 

intuitionistic fuzzy numbers in the proposed hybrid approach, highlighting the latter’s 

enhanced capability to handle uncertainty and achieve more robust results. 

 

 
Figure 4.1 The structure of SCAPP. 

 

Ref. code: 25686422300019ALF



87 
 
 

 
 

The assumptions for the SCAPP plan are as follows: 

• A list of qualified suppliers is identified, evaluated, and scored according to 

price, raw material quality, and level of service, as detailed in Table 4.5. 

Fluctuations in raw material failure rates derives from defects, while variations 

in the manufacturer’s service level are influenced by the timeliness of deliveries. 

• Customers are assigned dynamic demand for each product throughout the six-

month planning horizon. Demand for each product may be satisfied in full or 

result in a shortage, with any shortages incurring associated penalty costs. 

• All costs related to the supply chain are considered uncertain throughout the 

planning horizon. 

• Delivery lead time is assumed to have no significant impact. 

• The initial inventory quantities and worker levels are predefined at the start of 

the planning horizon.  

• Maximum machine capacity and warehouse space at the manufacturer are 

defined. 

• The number of subcontracted product quantities is limited. 

 

To demonstrate the effectiveness of the hybrid methods, the problem is 

formulated to simultaneously optimize three objectives (total supply chain costs, total 

product shortages, and total purchasing value) with equal importance (weightless). 

However, the model can easily accommodate different weight assignments if required 

by decision makers. 

 

Table 4.5 Performance of suppliers. 

Criteria 
Supplier (s) 

𝑆𝑆1 𝑆𝑆2 𝑆𝑆3 𝑆𝑆4 

Price Expensive Affordable Affordable Reasonable 

Quality of Raw Material Premium Low Low Fair 

Service Level of Supplier Intensive Reliable Poor Poor 

Weighted Score (𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡) 0.44 0.20 0.14 0.22 
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Table 4.6 The crisp value of input parameters of SCAPP problem. 

Parameters Values 
t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 

𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 144 160 168 176 120 192 
𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 50 50 50 60 40 60 
𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 
n = 1 0.3 0.3 0.3 0.3 0.3 0.3 
n = 2 0.5 0.5 0.5 0.5 0.5 0.5 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 
n = 1 150 150 150 150 150 150 
n = 2 170 170 170 170 170 170 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 
n = 1 264 264 264 264 264 264 
n = 2 288 288 288 288 288 288 

 n = 1 n = 2 
𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛 3,000 3,000 
𝑃𝑃𝑃𝑃𝑛𝑛 0.2 0.4 

 r = 1 r = 2 r = 3 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟 10,000 10,000 10,000 
𝑁𝑁𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟 r = 1 r = 2 r = 3 
n = 1 2 3 0 
n = 2 2 3 1 
𝑁𝑁𝑁𝑁𝑁𝑁0 5 
𝑃𝑃𝑃𝑃 80 
𝐴𝐴𝐴𝐴𝐴𝐴 20 
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Table 4.7 The fuzzy value of input parameters of SCAPP problem. 

Parameters Values Parameters Values 

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� 𝑠𝑠𝑠𝑠  (*10−4) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 
𝑅𝑅𝑅𝑅𝑅𝑅�𝑡𝑡 0.6 0.6 0.6 0.6 0.6 0.6 s = 1 1 1 1 1 1 1 
𝑂𝑂𝑂𝑂𝑂𝑂�𝑡𝑡 1 1 1 1 1 1 s = 2 0.6 0.6 0.6 0.6 0.6 0.6 
𝑆𝑆𝑆𝑆�𝑡𝑡 1.4 1.4 1.4 1.4 1.4 1.4 s = 3 0.3 0.3 0.3 0.3 0.3 0.3 
𝑆𝑆𝑆𝑆�𝑡𝑡 150 150 150 150 150 150 s = 4 0.6 0.6 0.6 0.6 0.6 0.6 
𝐻𝐻𝐻𝐻�𝑡𝑡 50 50 50 50 50 50 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠𝑠𝑠𝑠𝑠  (*10−3) r = 1 r = 2 r = 3 
𝐹𝐹𝐹𝐹�𝑡𝑡 70 70 70 70 70 70 s = 1 0.9 1 1.1 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑡𝑡 0.7 0.7 0.7 0.7 0.7 0.7 s = 2 1.5 1.7 1.6 
𝐷𝐷�𝑛𝑛𝑛𝑛 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 s = 3 1.5 1.7 1.6 

n = 1 2,420 1,210 3,440 1,630 4,360 2,550 s = 4 1.2 1.4 1.3 
n = 2 2,510 4,320 1,630 3,440 1,250 2,460 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠𝑠𝑠𝑠𝑠  (*10−3) r = 1 r = 2 r = 3 

𝑇𝑇𝑇𝑇𝑇𝑇� 𝑛𝑛 (*10−3) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 s = 1 0.009 0.01 0.0088 
n = 1 5 5 5 5 5 5 s = 2 0.015 0.017 0.0128 
n = 2 7 7 7 7 7 7 s = 3 0.015 0.017 0.0128 
𝑃𝑃𝑃𝑃𝑃𝑃� 𝑛𝑛𝑛𝑛 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 s = 4 0.012 0.014 0.0104 
n = 1 2.5 2.5 2.5 2.5 2.5 2.5 𝑃𝑃𝑃𝑃�𝑠𝑠𝑠𝑠𝑠𝑠  (*10−3) r = 1 r = 2 r = 3 
n = 2 2.8 2.8 2.8 2.8 2.8 2.8 s = 1 2 3 1 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼� 𝑟𝑟𝑟𝑟 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 s = 2 1 2 0.5 

r = 1 1.8 1.8 1.8 1.8 1.8 1.8 s = 3 0.5 1 0.3 
r = 2 1.9 1.9 1.9 1.9 1.9 1.9 s = 4 1 2 0.5 
r = 3 1.7 1.7 1.7 1.7 1.7 1.7 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠  (*10−3) r = 1 r = 2 r = 3 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠𝑠𝑠  (*10−3) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 s = 1 3.5 3.5 3.5 
s = 1 0.8 0.8 0.8 0.8 0.8 0.8 s = 2 3 3 3 
s = 2 0.75 0.75 0.75 0.75 0.75 0.75 s = 3 3.5 3 4.5 
s = 3 0.7 0.7 0.7 0.7 0.7 0.7 s = 4 3 3.5 3.5 
s = 4 0.7 0.7 0.7 0.7 0.7 0.7        
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Tables 4.6 and 4.7 present the input parameters for the supply chain production 

planning model, including both crisp and fuzzy values. For this demonstration, three 

key points of a triangular fuzzy number are generated by adding and subtracting 20% 

from the most likely value. Similarly, six key points of a triangular intuitionistic fuzzy 

number are generated by adding and subtracting 20% from the most likely value for the 

membership function and adding and subtracting 40% from the most likely value for 

the non-membership function. 

 

4.1.3 Results of Case 1 

This section highlights the effectiveness and strengths of the proposed five-

phase hybrid fuzzy optimization approach by comparing its results with those of the 

conventional specific fuzzy optimization approach. 

 

• Result of A Conventional Specific Fuzzy Optimization Approach 
 

Table 4.8 Result of a conventional specific fuzzy optimization approach. 

 Conventional Specific Fuzzy Optimization 
Approach 

Minimize Total Supply Chain Costs $268,520 
Minimize Total Shortage of Products 85,871 units 
Maximize Total Values of Purchasing 12,644 units 
Satisfaction Level of 1st objective 50.004% 
Satisfaction Level of 2nd objective 82.959% 
Satisfaction Level of 3rd objective 50.000% 
Maximize minimum satisfaction value 50.000% 

 

The conventional specific fuzzy optimization approach effectively generates a 

supply chain production plan with a minimum total cost of $268,520, a minimum total 

product shortage of 85,871 units, and a maximum total purchasing value of 12,644 

units. The overall satisfaction level achieved is 50%, with the minimum satisfaction 

level among the objective functions being maximized. The satisfaction levels for the 

first, second, and third objectives are 50.004%, 82.959%, and 50%, respectively. 
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• Result of Five-Phase Hybrid Fuzzy Optimization Approach 
A set of Pareto optimal solutions generated by this approach, allowing decision-

makers to select the most preferred solution. In cases where the preference for 

objectives is not clearly defined, various methods are proposed to assist DMs in making 

informed decisions. One such method is the linear normalization max method, initially 

introduced by Jafaryeganeh et al. (2020) and applied in this study. Performance is 

normalized by scaling each attribute value relative to the maximum value within its 

criterion, with the overall score derived from the sum of these scaled ratios for all 

objectives. The linear normalization max method is computed through distinct 

equations depending on whether the goal is maximization or minimization. 

 

• Normalized ratio of a maximization objective 
 

𝑁𝑁𝑁𝑁𝑍𝑍𝑗𝑗 = 𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃               (4.24) 

 

• Normalized ratio of a minimization objective 
 

𝑁𝑁𝑁𝑁𝑍𝑍𝑗𝑗 = (1 – 𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗
𝑁𝑁𝐼𝐼𝐼𝐼)            (4.25) 

 

where 𝑍𝑍𝑗𝑗, 𝑍𝑍𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑍𝑍𝑗𝑗𝑁𝑁𝐼𝐼𝐼𝐼 are objective value and Positive Ideal Solution (PIS) and 

Negative Ideal Solutions (NIS) values of each objective function. 

Then, these aggregated normalized ratios quantify the total deviation from ideal 

solutions, whereby a greater score signifies a more optimal solution relative to others. 

 

Aggregated score = ∑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝐽𝐽
𝑗𝑗=1 𝑍𝑍𝑗𝑗          (4.26) 
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Table 4.9 A set of pareto optimal solutions of the proposed five-phase hybrid fuzzy optimization approach. 

No. 

Of 
grid 

points 
(GP) 

e2 e3 

Objective Function Satisfaction Level Non-Satisfaction Level Maximize 
minimum 

satisfaction 
level and 
Minimize 
maximum 

non-
satisfaction 
level (%) 

Normalized Ratio 

Aggregated 
Score 

Minimize 
Total 

Supply 
Chain 
Costs 

($) 

Minimize 
Total 

Shortage 
of 

Products 
(units) 

Maximize 
Total 

Values of 
Purchasing 

(units) 

μZ1 
(%) 

μZ2 
(%) 

μZ3 
(%) 

τZ1 
(%) 

τZ2 
(%) 

τZ3 
(%) 

NRZ1 
 

NRZ2 
 

NRZ3 
 

0 78,326 7,784 222,460 76,750 7,784 84.104 100 84.102 15.876 0 15.898 68.2049 0.0332 0.0000 0.6921 0.7254 
1 78,248 8,660 222,460 76,829 8,660 84.104 100 84.102 15.876 0 15.898 68.2049 0.0332 0.0010 0.6575 0.6918 
2 78,169 9,535 222,460 76,908 9,535 84.104 100 84.102 15.876 0 15.898 68.2049 0.0332 0.0020 0.6229 0.6582 
3 78,090 10,410 222,460 76,987 10,410 84.104 100 84.102 15.876 0 15.898 68.2049 0.0332 0.0030 0.5883 0.6246 
4 78,011 11,285 222,460 77,066 11,285 84.104 100 84.102 15.876 0 15.898 68.2053 0.0332 0.0041 0.5537 0.5910 
5 77,932 12,160 222,460 77,144 12,160 84.104 100 84.102 15.876 0 15.898 68.2053 0.0332 0.0051 0.5191 0.5575 
6 77,854 13,035 222,460 77,223 13,035 84.104 100 84.102 15.876 0 15.898 68.2056 0.0332 0.0061 0.4845 0.5239 
7 77,775 13,911 222,460 77,302 13,911 84.104 100 84.102 15.876 0 15.898 68.2056 0.0332 0.0071 0.4498 0.4903 
8 77,696 14,786 222,460 77,381 14,786 84.104 100 84.102 15.876 0 15.898 68.2056 0.0332 0.0082 0.4152 0.4567 
9 77,617 15,661 222,460 77,460 15,661 84.104 100 84.102 15.876 0 15.898 68.2056 0.0332 0.0092 0.3806 0.4231 
10 77,538 16,536 222,460 77,538 16,536 84.104 100 84.102 15.876 0 15.898 68.2056 0.0332 0.0102 0.3460 0.3895 
11 77,460 17,411 222,460 77,617 17,411 84.104 100 84.102 15.876 0 15.898 68.2056 0.0332 0.0113 0.3114 0.3560 
12 77,381 18,286 222,460 77,969 18,286 84.104 100 84.102 15.876 0 15.898 68.2056 0.0332 0.0123 0.2768 0.3224 
13 77,302 19,161 222,480 77,775 19,161 84.104 100 84.064 15.915 0 15.936 68.1271 0.0333 0.0133 0.2422 0.2889 
14 77,223 20,037 222,480 77,854 20,037 84.065 100 84.064 15.915 0 15.936 68.1271 0.0333 0.0143 0.2076 0.2553 
15 77,144 20,912 222,480 77,932 20,912 84.065 100 84.064 15.915 0 15.936 68.1271 0.0333 0.0154 0.1730 0.2217 
16 77,066 21,787 222,481 78,011 21,787 84.065 100 84.064 15.915 0 15.936 68.1271 0.0333 0.0164 0.1384 0.1881 
17 76,987 22,662 223,680 78,090 22,662 81.399 100 85.004 18.581 0 14.996 62.8181 0.0389 0.0174 0.1038 0.1601 
18 76,908 23,537 230,440 78,169 23,537 66.386 100 90.003 33.594 0 9.997 32.7924 0.0703 0.0184 0.6921 0.1580 
19 76,829 24,412 237,250 78,248 24,412 51.279 100 95.001 48.701 0 4.999 2.5781 0.1019 0.0195 0.3460 0.1560 
20 76,750 25,287 237,800 78,326 25,287 50.059 100 100 49.921 0 0 0.1380 0.1045 0.0205 0.0000 0.1250 
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4.1.3.1 Case 1’s Comparison of the Results 

This section presents a comparison of the optimal results from the conventional 

specific fuzzy optimization approach and the proposed five-phase hybrid fuzzy 

optimization approach, emphasizing the key contributions. 

 

Table 4.10 Results comparison of Case 1. 

 
Conventional Specific 
Fuzzy Optimization 

Approach 

Five-Phase Hybrid 
Fuzzy Optimization 

Approach 
Minimize Total Supply Chain 
Costs $268,520 $223,680 

Minimize Total Shortage of 
Products 85,871 units 78,090 units 

Maximize Total Values of 
Purchasing 12,644 units 22,662 units 

Satisfaction Level of 1st 
objective 50.004% 81.399% 

Satisfaction Level of 2nd 
objective 82.959% 100% 

Satisfaction Level of 3rd 
objective 50.000% 85.004% 

Non-Satisfaction Level of 1st 
objective - 18.581% 

Non-Satisfaction Level of 2nd 
objective - 0% 

Non-Satisfaction Level of 3rd 
objective - 14.996% 

Maximize minimum 
satisfaction value 50.000% - 

Maximize Minimum 
Satisfaction Value and 
Minimize Maximum Non-
Satisfaction Value  

- 62.818% 

 

According to Table 4.10, the efficient supply chain production plan derived 

from the five-phase hybrid fuzzy optimization approach, which simultaneously 

maximizes the minimum satisfaction value and minimizes the maximum non-

satisfaction value, demonstrates clear advantages over the plan based on the 

conventional specific fuzzy optimization approach, which focuses solely on 

maximizing the minimum satisfaction value. The superior performance of the hybrid 
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approach is evident not only in the aggregated results but also in the stability of 

objective function values. Specifically, the hybrid model achieves a minimum total 

supply chain cost of $223,680, with observed cost fluctuations ranging between 

$223,680 and $256,310, indicating a more controlled and predictable cost behavior. It 

also results in a minimum total product shortage of 78,090 units, fluctuating within a 

narrower band of 78,090 to 82,450 units, demonstrating improved reliability in meeting 

customer demand. Furthermore, the maximum total purchasing value reaches 22,662 

units, varying between 20,310 and 22,662 units, which reflects more consistent 

procurement planning. In contrast, the conventional approach exhibits wider and more 

erratic fluctuations, with total supply chain costs ranging from $268,520 up to 

$301,240, product shortages vary from 85,871 to 93,500 units and purchasing values 

ranging from as low as 10,020 to a maximum of only 12,644 units. These wider 

fluctuations indicate less robustness under uncertainty. Therefore, the hybrid approach 

not only delivers better nominal performance but also improves the stability and 

resilience of the SC against fluctuating conditions. 

 

4.1.3.2 Case 1’s Validation of the Results 

Validating the results is a critical step in confirming the robustness and 

reliability of the proposed five-phase hybrid fuzzy optimization approach. This includes 

assessing its ability to handle data fuzziness and hesitation, manage data fuzziness by 

adjusting the confidence level of constraints, and evaluate the model's overall 

robustness. 

• Test Ability to Handle Data Fuzziness and Data Hesitation 

To assess its ability to handle data fuzziness and hesitation, the model based on 

the proposed five-phase hybrid fuzzy optimization approach is tested with 

different acceptable sets of Triangular Intuitionistic Fuzzy Numbers (TIFN). 

This is done by varying the acceptable level percentage (𝐴𝐴 = 50%, 60%, 70%, 

80%, 90%) and the rejection level percentage (𝑅𝑅 = 50%, 40%, 30%, 20%, 10%) 

to identify the most efficient data set. 

 

 

Ref. code: 25686422300019ALF



95 
 
 

 
 

Table 4.11 Results of testing ability to handle data fuzziness and data hesitation. 

𝐴𝐴 

(%) 

𝑅𝑅 

(%) 

Objective Function 
Minimize 

Total 

Supply 

Chain Costs 

($) 

Minimize 

Total 

Shortage of 

Products 

(units) 

Maximize 

Total 

Values of 

Purchasing 

(units) 

Deviation 

(%) 

50 50 262,720 80,262 12,647 0.02598 
60 40 261,580 78,272 12,647 0.02261 
70 30 260,410 77,834 12,650 0.04748 
80 20 259,240 77,375 12,651 0.05215 
90 10 257,990 76,960 12,673 2.29106 

 

 
Figure 4.2 Objective function values of testing ability to handle data fuzziness 

and data hesitation. 

 

As shown in the outcomes in Table 4.11 and Figure 4.2, increasing the 

acceptable level percentage or decreasing the rejection level percentage leads to 

improved values for the objective functions. Consequently, this approach enables the 
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generation of efficient outputs, allowing decision-makers to adjust the acceptable level 

(α) and rejection level (β) percentages according to their experiences or preferences. 

This flexibility supports the development of effective operational and strategic plans to 

address future uncertainties. 

 

• Test Ability to Handle Data Fuzziness by Setting the Confident Level of 

Constraints 

To evaluate its capability to handle data fuzziness by adjusting the confidence 

level of constraints, the model based on the proposed five-phase hybrid fuzzy 

optimization approach is tested using various confidence level percentages (𝛾𝛾= 

50%, 60%, 70%, 80%, 90%, and 100%). 

 

Table 4.12 Result of testing ability to handle data fuzziness by setting the 

confident level of constraints. 

% confident level 

(𝛾𝛾) 

Objective Function 
Minimize Total 

Supply Chain 

Costs 

($) 

Minimize Total 

Shortage of 

Products 

(units) 

Maximize 

Total Values 

of Purchasing 

(units) 
50 222,140 75,854 22,775 
60 224,550 76,750 21,879 
70 226,910 77,626 21,003 
80 229,250 78,497 20,132 
90 231,610 79,373 19,256 
100 233,930 80,231 18,398 
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Figure 4.3 Objective function values of testing ability to handle data fuzziness by 

setting the confident level of constraints. 

 

As shown in Table 4.12 and Figure 4.3, increasing the confidence level 

percentage results in higher values for all objective functions. This indicates that the 

objective functions become less desirable due to the trade-off between the confidence 

level for risk violations and the optimal value of the objective function. Therefore, when 

the confidence level for risk violation is high (indicating a lower risk of constraint 

violations), the feasible solution set is reduced, leading to less favorable optimal 

objective function values. 

 

• Test Ability of Model Robustness 

To evaluate the robustness of the model, the outcomes obtained from the RRP 

approach are compared with those of the conventional approach, which utilizes 

the EV and CCP methods without incorporating RRP. The comparison is based 

on two performance metrics: the average value and standard deviation, which 

reflect the efficiency and reliability of the optimal solution. This evaluation is 

conducted across 10 scenarios, each generated using a uniform distribution 

between the pessimistic value and optimistic value of the fuzzy parameters. 
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Accordingly, only the minimization of total supply chain costs; fuzzy objective 

function, is tested under these scenarios, as presented in Table 4.13. 

 

Table 4.13 Result of testing ability of model robustness. 

No. of Scenarios EV and CCP Approaches 

(𝛾𝛾 = 0.8) 

RRP Approach 

(𝛾𝛾 = 0.8) 

1 $207,903.433 $208,213.495 
2 $209,885.950 $209,934.020 
3 $211,606.324 $211,654.546 
4 $213,326.704 $213,375.070 
5 $215,047.079 $215,077.055 
6 $216,767.454 $216,798.344 
7 $218,487.833 $218,517.705 
8 $220,208.207 $220,238.185 
9 $221,928.585 $221,958.562 
10 $223,648.962 $223,678.938 

Average $215,881.053 $215,844.592 
Standard Deviation $5,252.465 $5,042.711 

 

As shown in Table 4.13, the average values of both approaches are similar, but 

the Standard Deviation (SD) value for the RRP approach is smaller. This clearly 

indicates that the RRP approach is more effective in handling information distribution. 

Therefore, the robustness of the model can be confirmed. 

 

4.1.4 Summary 

Creating an effective and realistic supply chain production plan requires 

addressing two critical challenges: data uncertainty and conflicting objectives. This 

study offers a range of valuable insights and implications to support managerial 

decision-making in practice. 

In real-world applications, it is difficult for companies to separate supply chain 

operations from production planning. This study provides a valuable example of how 

these operations can be integrated and optimized simultaneously. Moreover, collected 

data can be imprecise due to factors such as unavailability, incompleteness, estimation 

errors, time variation, and DMs' hesitation. An effective approach is essential to manage 
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these uncertainties, enabling companies to develop more robust operational and 

strategic plans to handle future uncertainties effectively. 

A significant challenge in practical applications is the difficulty DMs face in 

controlling the fuzziness levels of constraints. However, knowing the optimal fuzziness 

levels can assist DMs in making better decisions for their operations. By employing a 

credibility level to indicate the likelihood of a fuzzy event, the uncertain parameters can 

be transformed into crisp values. Adjusting these credibility levels leads to a range of 

optimal results, from optimistic to pessimistic, providing planners and managers with 

flexible inputs. This enables them to develop operational and strategic plans that 

account for different scenarios, allowing them to select the most appropriate plan based 

on their specific situation. 

Another issue in supply chain operations and production planning is the 

presence of data noise, which cannot be fully controlled. Data noise arises from both 

the data collection process and calculations. The model robustness addressed in this 

study helps generate reliable optimal solutions, even in the presence of data noise, 

enhancing the overall reliability of the decision-making process. 

When multiple conflicting objectives are considered simultaneously, this study 

demonstrates that a set of strong Pareto optimal solutions can be generated. These 

solutions reflect different compromises between satisfaction and non-satisfaction 

levels, offering DMs valuable choices in alignment with their policies, where no 

objectives are drastically worsened or overly sacrificed. 

The five-phase hybrid approach proposed in this study outperforms the 

conventional fuzzy linear programming approach in several ways. It was demonstrated 

and validated through a multiple-objective SCPP problem that incorporates uncertainty 

in customer demand and related costs. The SCPP problem integrated procurement, 

production, and distribution plans, optimizing the minimization of total supply chain 

costs, the minimization of product shortages, and the maximization of total purchasing 

values simultaneously. 

The proposed approach effectively addresses the weaknesses of the 

conventional specific FLP model. It uses Triangular Intuitionistic Fuzzy Numbers 

(TIFN) to represent both imprecise data and data hesitation. The (𝛼𝛼,𝛽𝛽)-cut approach 

filters out unacceptable data, while the Realistic Robust Programming (RRP) manages 
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uncertainty in fuzzy objective functions and enhances model robustness. The Chance-

Constrained Programming (CCP) approach deals with uncertainty in fuzzy constraints 

and sets credibility levels. The Intuitionistic Fuzzy Linear Programming (IFLP) 

approach optimizes multi-objective problems with respect to both satisfaction and non-

satisfaction levels. Finally, The AUGMECON approach concludes by generating 

multiple Pareto optimal solutions, offering flexibility for decision-makers to select an 

alternative that best fits their objectives or constraints. 

In summary, the optimal solutions obtained from the proposed five-phase 

hybrid approach demonstrate its effectiveness in providing efficient and consistent 

solutions. It also provides flexibility by generating different efficient solutions, 

allowing DMs to select the preferred satisfactory solution. Despite these strengths, the 

study has some limitations. First, there are no restrictions on the amount of fuzziness 

parameters, which could impact the final solution. Second, all fuzzy parameters were 

represented by triangular distributions, but other distribution types could also be used. 

Third, the study could be expanded to include more realistic conditions, such as 

multiple manufacturers, customers, and distributors, which would increase the 

complexity and realism of the model. As the model becomes more complex, exploring 

the use of meta-heuristic algorithms, such as Genetic Algorithms (GA), could offer a 

near optimal results or approximately optimal results. Additionally, incorporating 

alternative transportation routes and addressing vehicle routing and lateral 

transshipment problems could further enhance the model’s applicability. 

4.2 Case 2: A Unified Fairness and Robustness Fuzzy Optimization Approach 

for Supply Chain Aggregate Production Planning 

Aggregate Production Planning (APP) in Supply Chain (SC) management is 

essential for aligning production activities with organizational goals. However, 

conventional specific fuzzy optimization approach to APP often fails to address two 

critical challenges: Proportional Fairness (PF) among competing objectives and 

robustness under uncertainty. The lack of fairness in multi-objective optimization can 

lead to inequitable outcomes, where certain objectives are prioritized over others based 

on differing priorities. Similarly, neglecting robustness in APP optimization can result 

in unreliable and non-resilient plans, particularly when dealing with uncertain or 
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imprecise information. These challenges underscore the need for an innovative 

approach that integrates both fairness and robustness into the APP process. To address 

this gap, this study proposes a unified fairness and robustness optimization model that 

combines Proportional Fairness (PF) and Robust Chance-Constrained Programming 

(RCCP). This study aims to address the complexities of managing multi-objective APP 

in uncertain environments. The effectiveness of the proposed approach is demonstrated 

through a case study that focuses on minimizing total costs, minimizing total workforce 

level fluctuations, and maximizing total value of purchasing. Comparative analysis 

shows that the proposed approach outperforms conventional specific fuzzy 

optimization approach by enhancing both fairness and robustness in APP outcomes. 

This study provides decision-makers with a comprehensive framework to achieve 

equitable and resilient APP solutions, contributing to the long-term sustainability and 

efficiency of supply chain operations. 

 
4.2.1 Mathematical Notations and Model 

The notations for indexes, parameters, and decision variables are provided in 

Tables 4.14 to 4.17. Notably, all fuzzy parameters are represented with a tilde ( � ) 

above the corresponding symbols to indicate their fuzzy nature. 

 

Table 4.14 Indexes of SCAPP problem (Case 2). 

Indexes Meaning 
𝑠𝑠 List of suppliers (𝑠𝑠 = 1, … , 𝑆𝑆) 
𝑡𝑡 List of planning horizons (t= 1, … ,𝑇𝑇) 
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Table 4.15 Crisp parameters of SCAPP problem (Case 2). 

Crisp Parameters Meaning 
𝐼𝐼𝐼𝐼0 Initial staffing level (persons) 
𝑃𝑃 Worker output efficiency (%) (0 < 𝑃𝑃𝑃𝑃 < 1) 

𝐴𝐴𝐴𝐴𝐴𝐴 Allowed variation in staffing (%) 
𝑇𝑇𝑇𝑇𝑠𝑠 Total score of supplier s (%) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Processing time per product at the plant (minutes) 
𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 Regular time availability in period t (hours) 
𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 Overtime availability in period t (hours) 
𝑅𝑅𝑅𝑅𝑅𝑅 Quantity of raw materials required per product (units) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 Maximum operational capacity of machines in period t (m/c-hours) 
𝑀𝑀𝑀𝑀𝑡𝑡 Machine operating time per unit in period t (m/c-hours/unit) 

𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡 
The amount of warehouse capacity reserved for raw materials at the factory in 
period t (𝑚𝑚2/unit) 

𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡 
The amount of warehouse capacity reserved for final products at the factory in 
period t (𝑚𝑚2/unit) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 The upper limit of storage space usable at the factory in period t (𝑚𝑚2) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 
The upper limit of raw material available from supplier s in period in period t 
(units) 
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Table 4.16 Uncertain parameters of SCAPP problem (Case 2). 

Uncertain Parameters Meaning 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑡𝑡 Production cost under fuzziness for regular hours in period t ($/minute) 
𝐶𝐶𝐶𝐶𝐶𝐶�𝑡𝑡 Production cost under fuzziness for overtime hours in period t ($/minute) 
𝑊𝑊𝑊𝑊� 𝑡𝑡 Wage cost under fuzziness for workers in period t ($/person) 
𝐻𝐻𝐻𝐻�𝑡𝑡 Recruitment cost under fuzziness in period t ($/person) 
𝐹𝐹𝐹𝐹�𝑡𝑡 Termination cost under fuzziness in period t ($/person) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑡𝑡 Service level threshold under fuzziness for the production plant during period t (%) 
𝐼𝐼𝐼𝐼𝐼𝐼� 𝑡𝑡 Raw material inventory cost under fuzziness in period t ($/unit) 
𝑇𝑇𝑇𝑇𝑇𝑇�𝑠𝑠𝑠𝑠 Transportation expenses under fuzziness for raw materials from supplier s in period t ($/unit) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠𝑠𝑠 Average service performance under fuzziness from supplier s in period t (%) 

𝑇𝑇𝑇𝑇𝑇𝑇�𝑡𝑡 
Delivery expenses under fuzziness for shipments from the production plant to customers in period t 
($/unit) 

𝐼𝐼𝐼𝐼𝐼𝐼� 𝑡𝑡 Product inventory carrying cost under fuzziness in period t ($/unit) 
𝑃𝑃𝑃𝑃𝑃𝑃� 𝑡𝑡 Penalty cost under fuzziness for product stockouts affecting customers in period t ($/unit) 
𝐷𝐷𝐷𝐷�𝑡𝑡 Product demand under fuzziness from customers in period t (units) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�  Tolerable raw material failure rate under fuzziness in the production facility (%) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠 Average fuzzy defect rate for raw materials delivered by supplier s (%) 
𝑃𝑃𝑃𝑃𝑃𝑃� 𝑠𝑠𝑠𝑠 Acquisition expenses under fuzziness for raw materials from supplier s in period t ($/unit) 
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Table 4.17 Decision variables of SCAPP problem (Case 2). 

Decision 
Variables Meaning 

𝑁𝑁𝑁𝑁𝑡𝑡 Workforce headcount in period t (persons) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 Total recruited workforce in period t (persons) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 Total terminated workforce in period t (persons) 
𝐼𝐼𝐼𝐼𝑡𝑡 Ending raw material stock for period t (units) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 Production volume within regular time in period t (units) 
𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 Production volume within overtime in period t (units) 
𝑃𝑃𝑃𝑃𝑡𝑡 Product volume allocated to customers in period t (units) 
𝐼𝐼𝐼𝐼𝑡𝑡 Ending product stock for period t (units) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 Insufficient product availability for customers in period t (units) 
𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠 Raw material volume delivered by supplier s in period t (units) 

 

Objective Functions 

1. Minimizing total costs is a fundamental objective in formulating an effective APP 

strategy within a SC. This objective underscores the importance of cost efficiency in 

ensuring the overall competitiveness and sustainability of supply chain operations. 

Typically, the total costs (denoted as 𝑇𝑇𝑇𝑇� ) in such models are subject to uncertainty, 

reflecting the inherent variability in supply chain processes. These costs are aggregated 

as the sum of several critical components, including purchasing costs (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� ), 

production costs (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� ), workers’ costs (𝑇𝑇𝑇𝑇𝑇𝑇� ), inventory costs (𝑇𝑇𝑇𝑇𝑇𝑇� ), transportation 

costs (𝑇𝑇𝑇𝑇𝑇𝑇� ), and shortage costs (𝑇𝑇𝑇𝑇𝑇𝑇� ), each of which contributes to the total financial 

expenditure over a specified planning horizon. 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇𝑇𝑇� =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� + 𝑇𝑇𝑇𝑇𝑇𝑇� + 𝑇𝑇𝑇𝑇𝑇𝑇� + 𝑇𝑇𝑇𝑇𝑇𝑇�  
= �∑ ∑ 𝑃𝑃𝑃𝑃𝑃𝑃� 𝑠𝑠𝑠𝑠

𝑇𝑇
𝑡𝑡=1

𝑆𝑆
𝑠𝑠=1 × 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠� + �∑ 𝐶𝐶𝐶𝐶𝐶𝐶�𝑡𝑡

𝑇𝑇
𝑡𝑡=1 × 𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡�  

+�∑ 𝐶𝐶𝐶𝐶𝐶𝐶�𝑡𝑡
𝑇𝑇
𝑡𝑡=1 × 𝑃𝑃𝑃𝑃 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡� + �∑ 𝑊𝑊𝑊𝑊� 𝑡𝑡 × 𝑁𝑁𝑁𝑁𝑡𝑡

𝑇𝑇
𝑡𝑡=1 � + �∑ 𝐻𝐻𝐻𝐻�𝑡𝑡 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡

𝑇𝑇
𝑡𝑡=1 �  

+�∑ 𝐹𝐹𝐹𝐹�𝑡𝑡 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡
𝑇𝑇
𝑡𝑡=1 � + �∑ 𝐼𝐼𝐼𝐼𝐼𝐼� 𝑡𝑡 × 𝐼𝐼𝐼𝐼𝑡𝑡𝑇𝑇

𝑡𝑡=1 � + �∑ 𝐼𝐼𝐼𝐼𝐼𝐼� 𝑡𝑡 × 𝐼𝐼𝐼𝐼𝑡𝑡𝑇𝑇
𝑡𝑡=1 �  

+�∑ ∑ 𝑇𝑇𝑇𝑇𝑇𝑇�𝑠𝑠𝑠𝑠 × 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑇𝑇
𝑡𝑡=1

𝑆𝑆
𝑠𝑠=1 � + �∑ 𝑇𝑇𝑇𝑇𝑇𝑇�𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑡𝑡𝑇𝑇

𝑡𝑡=1 � + �∑ 𝑃𝑃𝑃𝑃𝑃𝑃� 𝑡𝑡 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑇𝑇
𝑡𝑡=1 �          (4.27) 
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2. Minimizing fluctuations in workforce levels is a vital aspect of effective supply 

chain and production planning, as maintaining a stable workforce is crucial for 

operational efficiency and long-term sustainability. Workforce fluctuations, often 

caused by seasonal demand variations or production uncertainties, pose significant 

challenges for organizations. Excessive changes in workforce levels can lead to the loss 

of experienced and skilled workers, whose expertise is vital for maintaining 

productivity and quality. Furthermore, these fluctuations often result in substantial 

costs, including recruitment, training, severance, and overtime compensation, which 

can strain financial resources and reduce overall profitability. 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ (𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡)𝑇𝑇
𝑡𝑡=1              (4.28) 

 

3. Maximizing the total value of purchasing is a critical objective in supply chain 

production planning, ensuring the company obtains the ideal number of raw materials 

from top-quality suppliers. This objective emphasizes strategic procurement practices 

that prioritize suppliers based on their performance in key criteria such as competitive 

pricing, superior quality, and timely delivery. By focusing on total value of purchasing, 

organizations can strengthen their supply chain resilience, reduce costs, and enhance 

the overall efficiency of their production processes. 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝑇𝑇𝑇𝑇𝑠𝑠 × 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑆𝑆
𝑠𝑠=1               (4.29) 

 

Constraints 
1. Raw Material Quality Assessment: This criterion plays a vital role in ensuring the 

efficiency and reliability of supply chain operations. It serves as a systematic method 

for assessing the raw materials quality provided by suppliers in each specific period. 

High-quality raw materials are critical for maintaining product standards, reducing 

defects, and ensuring efficient production processes. By assessing raw material quality 

regularly, organizations can ensure that the supplied inputs meet predefined 

specifications and performance requirements. 

 

∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠 × 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑆𝑆
𝑠𝑠=1 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑡𝑡 × ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆

𝑠𝑠=1           ∀ 𝑡𝑡 ∈ 𝑇𝑇                    (4.30) 
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2. Supplier Capacity: Supplier capacity denotes the highest quantity of raw materials 

that a supplier can consistently provide within a designated time frame. This metric is 

critical for effective supply chain planning, as it directly impacts the ability of the 

organization to meet production schedules and customer demand. Understanding 

supplier capacity enables companies to allocate resources more effectively, balance 

supply with demand, and avoid potential bottlenecks in the production process. 

 

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠          ∀ 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇                      (4.31) 
 

3. Supplier Service Level: The supplier service level is an important measure that 

evaluates suppliers’ reliability and effectiveness, especially regarding their punctuality 

in delivering raw materials within each designated period. This metric is essential for 

maintaining a smooth and uninterrupted supply chain, as timely deliveries are crucial 

for meeting production schedules, fulfilling customer demands, and avoiding costly 

delays. 

 

∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠 × 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑆𝑆
𝑠𝑠=1 ≥ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� × ∑ 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑆𝑆

𝑠𝑠=1           ∀ 𝑡𝑡 ∈ 𝑇𝑇                   (4.32) 
 

4. Raw Material Availability: Ensuring raw material availability is a cornerstone of 

effective supply chain and production planning. This criterion represents the combined 

total resources supplied by all vendors within a given period, ensuring that the overall 

raw material demand for production during that time is fully satisfied. 

 

𝑅𝑅𝑅𝑅𝑅𝑅 × (𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛) ≤ ∑ 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑆𝑆
𝑠𝑠=1           ∀ 𝑡𝑡 ∈ 𝑇𝑇            (4.33) 

 

5. Raw Material Inventory: Raw material inventory represents the leftover quantity 

of raw materials available at the close of each production period, following the 

fulfillment of manufacturing needs for that timeframe. This remaining stock is crucial 

for maintaining smooth operations and reducing the risks linked to supply chain 

interruptions. 

 

𝐼𝐼𝐼𝐼𝑡𝑡 = 𝐼𝐼𝐼𝐼(𝑡𝑡−1) + ∑ 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑆𝑆
𝑠𝑠=1 − (𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡) × 𝑅𝑅𝑅𝑅𝑅𝑅          ∀ 𝑡𝑡 ∈ 𝑇𝑇                  (4.34) 
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6. Product Shortages: Product shortages occur when the available quantity of products 

is insufficient to meet customer demand within a specified period. This metric 

highlights the gap between the required quantity of products and the actual amount that 

can be supplied to customers, indicating instances where demand exceeds production 

capacity or supply availability. A product shortage may occur due to various factors, 

such as production delays, supply chain disruptions, insufficient raw materials, or 

inaccurate demand forecasting. 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡−1) + 𝐷𝐷𝐷𝐷�𝑡𝑡 − 𝑃𝑃𝑃𝑃𝑡𝑡          ∀ 𝑡𝑡 ∈ 𝑇𝑇                             (4.35) 
 

7. Production Time Availability: Production time availability is a critical constraint 

that governs the total hours available for production activities within a given period. It 

includes both regular working hours and overtime hours, which are subject to 

limitations based on workforce levels and operational capacities. This constraint is 

essential for ensuring that the production process aligns with the required output to meet 

customer demand while adhering to workforce availability and scheduling restrictions. 

𝑁𝑁𝑁𝑁𝑡𝑡 × 𝑃𝑃 × (𝑅𝑅𝑅𝑅𝑡𝑡 + 𝑂𝑂𝑂𝑂𝑡𝑡) ≥ (𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛) × 𝑃𝑃𝑃𝑃          ∀ 𝑡𝑡 ∈  𝑇𝑇              (4.36) 
 

8. Product Inventory: Product inventory refers to the remaining stock of finished 

products after fulfilling customer demand within a specific period. It functions as a key 

measure of the company’s effectiveness in overseeing production and distribution 

operations, ensuring that customer orders are fulfilled promptly. The level of product 

inventory directly reflects the balance between production output, customer demand, 

and the effectiveness of inventory management strategies. 

 

𝐼𝐼𝐼𝐼𝑡𝑡 = 𝐼𝐼𝐼𝐼(𝑡𝑡−1) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 − 𝑃𝑃𝑃𝑃𝑡𝑡         ∀ 𝑡𝑡 ∈ 𝑇𝑇                            (4.37) 
 

9. Warehouse Space Limitation: Warehouse space limitation refers to the confined 

storage capacity at the manufacturing facility available for storing raw materials and 

products within each period. It is a critical operational constraint that directly impacts 

the efficiency of both production processes and inventory management. The limited 

availability of warehouse space forces companies to optimize the storage and 
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movement of materials and goods, ensuring that space is utilized efficiently to avoid 

bottlenecks, storage inefficiencies, and potential disruptions in production schedules. 

 

(𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡 × 𝐼𝐼𝐼𝐼𝑡𝑡) + (𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡 × 𝐼𝐼𝐼𝐼𝑡𝑡) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑊𝑊𝑡𝑡          ∀ 𝑡𝑡 ∈ 𝑇𝑇         (4.38) 
 

10. Workforce Balancing: Workforce balancing is a critical operational strategy used 

to allocate the number of workers across various periods in a way that ensures equitable 

distribution based on production needs, skill requirements, and other operational 

factors. This equation helps to achieve a workforce allocation that supports optimal 

productivity while minimizing disruptions caused by fluctuations in workforce levels. 

Proper workforce balancing enables companies to maintain an optimal number of 

employees at the appropriate times, leading to more streamlined production, lower labor 

expenses, and enhanced overall productivity. 

 

𝑁𝑁𝑁𝑁𝑡𝑡 = 𝑁𝑁𝑁𝑁(𝑡𝑡−1) + 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡           ∀ 𝑡𝑡 > 1                  (4.39) 
 

11. Workforce Level Variation Proportion: The concept of workforce level variation 

proportion is crucial in managing the fluctuations in workforce size over time, ensuring 

that these variations are controlled within acceptable limits. This equation is used to 

control the extent of changes or fluctuations in workforce levels between consecutive 

periods. By effectively controlling workforce variation, organizations can mitigate the 

risks associated with extreme fluctuations, such as labor shortages or excesses, which 

could adversely impact production efficiency, labor costs, and employee morale. 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴 × 𝑁𝑁𝑁𝑁(𝑡𝑡−1)          ∀ 𝑡𝑡 ∈ 𝑇𝑇                  (4.40) 
 

12. Machine Capacity: Machine capacity is defined as the highest volume of output a 

machine can produce within a given period, usually measured in units per hour, day, or 

shift. This value is a critical parameter in manufacturing planning and optimization, as 

it directly influences production efficiency, throughput, and the overall capacity of the 

production facility to meet demand. Machine capacity plays a significant role in 

determining how well a company can balance supply with demand, as any limitation in 
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machine capacity can lead to production delays, inefficiencies, or even an inability to 

meet customer expectations. 

 

𝑀𝑀𝑀𝑀𝑡𝑡 × (𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡          ∀ 𝑡𝑡 ∈ 𝑇𝑇                  (4.41) 
 

13. Non-Negativity: Constraints (4.42) – (4.45) ensure that all decision variable values 

are non-negative, with certain values required to be integers. 

 

𝑁𝑁𝑁𝑁𝑡𝑡 ,𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 ,𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖          ∀ 𝑡𝑡 ∈ 𝑇𝑇          (4.42) 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 ,𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 , 𝑆𝑆𝑆𝑆𝑡𝑡 , 𝐼𝐼𝐼𝐼𝑡𝑡 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖          ∀ 𝑡𝑡 ∈ 𝑇𝑇                 (4.43) 
 

𝐼𝐼𝐼𝐼𝑡𝑡 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 ,𝑃𝑃𝑃𝑃𝑡𝑡 ≥ 0          ∀ 𝑡𝑡 ∈ 𝑇𝑇            (4.44) 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 ≥ 0          ∀ 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇                 (4.45) 
 

4.2.2 Problem Description of Case 2 

The supply chain optimization for the APP problem includes four authorized 

suppliers supplying raw materials, one manufacturing facility managing production, 

and the customer, as illustrated in Figure 4.4. The planning period covers six months. 

This optimization model focuses on three main objectives: (1) minimizing total costs, 

which include expenses related to raw material procurement, production, and other 

associated costs; (2) minimizing workforce variability to ensure stable and efficient 

labor management; and (3) maximizing the total purchasing value to enhance raw 

material acquisition. The optimization takes place in an uncertain setting, where key 

elements such as customer demand, product failure rates, service quality, and costs vary 

and are modeled using Triangular Fuzzy Numbers (TFNs). Given the problem’s 

inherent complexity, a thorough methodology is necessary to effectively manage the 

multiple objectives and uncertainties present in supply chain operations. 
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Figure 4.4 The structure of supply chain. 

 

The evaluation involved a group of certified suppliers whose performance was 

rated according to price, quality of raw materials, and supplier service levels, as 

summarized in Table 4.18. 

 

Table 4.18 Performance of suppliers. 

Criteria 
Supplier (s) 

𝑆𝑆1 𝑆𝑆2 𝑆𝑆3 𝑆𝑆4 

Price of Raw Material Expensive Standard Cheap Standard 

Quality of Raw Material Top-tier Weak Weak Good 

Service Level of Supplier Superior Satisfactory Substandard Substandard 

Weighted Score (𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡) 0.44 0.20 0.14 0.22 

 

The assumptions for the SCPP plan are as follows: 

• The uncertainty in raw material failure rates arises from possible material 

defects, while variability in the manufacturer's service level is linked to 

inconsistencies in delivery punctuality. 

• Customer demand for products fluctuates over the six-month planning horizon, 

and all associated supply chain costs are affected by uncertainty. 
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• Meeting customer demand can result in either full fulfillment or shortages. 

• Any shortage results in a penalty, represented by associated shortage costs. 

• Lead time is considered insignificant. 

 

Tables 4.19 and 4.20 display the input parameters for the APP in the SC model, 

including both precise and fuzzy data. In this case, the three points defining the 

Triangular Fuzzy Numbers (TFNs) are calculated by applying a ±20% deviation from 

the most likely value. 

 

Table 4.19 Precise parameters. 

Parameters Values Parameters Values 

𝐼𝐼𝐼𝐼0 10 persons 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3,000 units 

𝑃𝑃 65% 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 0.4 minutes 

𝐴𝐴𝐴𝐴𝐴𝐴 15% 𝑅𝑅𝑅𝑅𝑅𝑅 5 units 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 10,000 units   

 t=1 t=2 t=3 t=4 t=5 t=6 

𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 (hours) 144 160 168 176 120 192 

𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 (hours) 50 50 50 60 40 60 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 

(m/c-hours) 
250 250 250 250 250 250 

𝑀𝑀𝑀𝑀𝑡𝑡 

(m/c-hours/unit) 
0.5 0.5 0.5 0.5 0.5 0.5 

𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡 (𝑚𝑚2/unit) 7 7 7 7 7 7 

𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡 (𝑚𝑚2/unit) 3.5 3.5 3.5 3.5 3.5 3.5 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 (𝑚𝑚2) 5,000 5,000 5,000 5,000 5,000 5,000 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 

(units) 

s=1 3,500 3,500 3,500 3,500 3,500 3,500 

s=2 3,000 3,000 3,000 3,000 3,000 3,000 

s=3 3,500 3,500 3,500 3,500 3,500 3,500 

s=4 3,000 3,000 3,000 3,000 3,000 3,000 
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Table 4.20 Fuzzy Parameters (most likely value). 

Parameters Values 

𝐴𝐴𝐴𝐴𝐴𝐴� 1.2% 

 t=1 t=2 t=3 t=4 t=5 t=6 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡�  ($) 0.6 0.6 0.6 0.6 0.6 0.6 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡�  ($) 1.2 1.2 1.2 1.2 1.2 1.2 

𝑊𝑊𝑊𝑊𝑡𝑡� ($) 150 150 150 150 150 150 

𝐻𝐻𝐻𝐻𝑡𝑡�  ($) 50 50 50 50 50 50 

𝐹𝐹𝐹𝐹𝑡𝑡�  ($) 70 70 70 70 70 70 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡�  (%) 0.7 0.7 0.7 0.7 0.7 0.7 

𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡�  ($) 1.8 1.8 1.8 1.8 1.8 1.8 

𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡� ($) 4.59 4.59 4.59 4.59 4.59 4.59 

𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡�  ($) 8.4 8.4 8.4 8.4 8.4 8.4 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡�  ($) 2.8 2.8 2.8 2.8 2.8 2.8 

𝐷𝐷𝐷𝐷𝑡𝑡�  (units) 2,510 4,320 1,630 3,440 1,250 2,460 

𝑇𝑇𝑇𝑇𝑇𝑇�𝑠𝑠𝑠𝑠 

($) 

s=1 1 1 1 1 1 1 

s=2 0.6 0.6 0.6 0.6 0.6 0.6 

s=3 0.3 0.3 0.3 0.3 0.3 0.3 

s=4 0.6 0.6 0.6 0.6 0.6 0.6 

𝑃𝑃𝑃𝑃𝑃𝑃� 𝑠𝑠𝑠𝑠 

($) 

s=1 2 2 2 2 2 2 

s=2 1 1 1 1 1 1 

s=3 0.5 0.5 0.5 0.5 0.5 0.5 

s=4 1 1 1 1 1 1 

 s=1 s=2 s=3 s=4 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠 (%) 0.8 0.75 0.7 0.7 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑠𝑠 (%) 0.009 0.015 0.015 0.015 
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4.2.3 Results of Case 2 

The obtained results from conventional specific fuzzy optimization approach 

and a unified fairness and robustness fuzzy optimization approach are presented and 

compared to evaluate their effectiveness and advantages. By comparing the 

performance of both approaches, this study provides insights into which methodology 

best aligns with the objectives of minimizing total costs, minimizing total workforce 

levels, and maximizing the total value of purchasing while maintaining a robust and 

fair solution in the face of uncertainty. 

 

• Result of Conventional Specific Fuzzy Optimization Approach 

 

Table 4.21 Result of conventional specific fuzzy optimization approach. 

 Minimize 

Total Supply 

Chain Costs 

Minimize 

Fluctuation in 

Workforce Levels 

Maximize 

Total Values 

of Purchasing 

Conventional Specific Fuzzy 

Optimization Approach 
$129,640 4 persons 1,202 units 

Satisfaction Level 
(Membership Function) 39.997% 42.857% 85.007% 

It should be noted that 39.997% represents the lowest satisfaction level achieved when maximizing the minimum satisfaction level. 

 

According to Table 4.21, the conventional specific fuzzy optimization approach 

delivers optimal results, achieving a minimum total cost of $129,640, a minimal total 

workforce fluctuation of 4 persons, and a maximum total purchasing value of 1,202 

units. The overall satisfaction level is calculated at 39.997%, reflecting the focus on 

maximizing the minimum satisfaction level across the objective functions. However, it 

is important to highlight that the highest satisfaction level in the purchasing 

maximization objective could introduce fairness concerns. Specifically, this emphasis 

may lead to an imbalance in how stakeholders' objectives are prioritized, creating 

challenges in ensuring an equitable distribution of benefits across all parties involved. 
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• Result of Fuzzy Optimization with Proportional Fairness Approach 

Table 4.22 Result of fuzzy optimization with proportional fairness approach. 

 Minimize 

Total Supply 

Chain Costs 

Minimize 

Fluctuation in 

Workforce Levels 

Maximize 

Total Values 

of Purchasing 

Fuzzy Optimization with 

Proportional Fairness 

Approach 

$121,740 4 persons 849 units 

Satisfaction Level 
(Membership Function) 49.997% 42.857% 49.975% 

    
It should be noted that 42.857% represents the lowest satisfaction level achieved when maximizing the minimum satisfaction level. 

 

As illustrated in Table 4.22, the fuzzy optimization using the proportional 

fairness method achieves a minimum total cost of $121,740, a workforce fluctuation as 

low as 4 employees, and a maximum purchasing quantity of 849 units. The overall 

satisfaction level reaches 42.857%, highlighting the focus on maximizing the lowest 

satisfaction level across the objective functions. 

 

• Result of Unified Fairness and Robustness Fuzzy Optimization Approach 

 

Table 4.23 Result of unified fairness and robustness fuzzy optimization approach. 

 Minimize 

Total Supply 

Chain Costs 

Minimize 

Fluctuation in 

Workforce Levels 

Maximize 

Total Values 

of Purchasing 

Unified Proportional Fairness 

and Robustness Fuzzy 

Optimization Approach 

$118,650 5 persons 768 units 

Satisfaction Level 
(Membership Function) 54.868% 35.143% 42.561% 

It should be noted that 35.143% represents the lowest satisfaction level achieved when maximizing the minimum satisfaction level. 
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As detailed in Table 4.23, the unified fairness and robustness fuzzy optimization 

method achieves the lowest total cost of $118,650, the smallest workforce fluctuation 

of 5 employees, and the greatest total purchasing volume of 768 units. The overall 

satisfaction level stands at 35.143%, indicating a focus on maximizing the minimum 

satisfaction level among the objectives. Specifically, the satisfaction levels for 

minimizing total supply chain costs, reducing workforce fluctuations, and maximizing 

purchasing values are 54.868%, 35.143%, and 42.561%, respectively. 

 

4.2.3.1 Case 2’s Comparison of the Results 

• Result Comparison between Conventional Specific Fuzzy Optimization 

Approach and Fuzzy Optimization with Proportional Fairness Approach 

 

Table 4.24 Result comparison between conventional specific fuzzy optimization 

approach and fuzzy optimization with proportional fairness approach. 

  Minimize 

Total Supply 

Chain Costs 

Minimize 

Fluctuation in 

Workforce 

Levels 

Maximize 

Total Values 

of Purchasing 

Conventional Specific 

Fuzzy Optimization 

Approach 

Objective Values $129,640 4 persons 1,202 units 
Satisfaction Level 
(Membership Function) 39.997% 42.857% 85.007% 

% Fairness 14.398% 42.857% 15.053% 
Fuzzy Optimization 

with Proportional 

Fairness Approach 

Objective Values $121,740 4 persons 849 units 
Satisfaction Level 
(Membership Function) 49.997% 42.857% 49.975% 

% Fairness 39.653% 42.857% 40.000% 
It is important to note that the minimum satisfaction levels are 39.997% for the Conventional Specific Fuzzy Optimization 

Approach and 42.857% for the Fuzzy Optimization Approach with Proportional Fairness, both achieved by maximizing the 

minimum satisfaction level. 

 

Table 4.24 provides a comparative analysis of the outcomes obtained from the 

fuzzy optimization with the proportional fairness approach and the conventional 

specific fuzzy optimization approach, with emphasis on two key dimensions: 

satisfaction level and fairness level. 
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• Comparing in terms of satisfaction levels and objective values 

 

 
Figure 4.5 The satisfaction level and objective value comparison. 

 

As illustrated in Figure 4.5, introducing the fairness term into the model results 

in notable changes. The minimum total cost drops from $129,640 to $121,740, while 

the minimum workforce fluctuation stays steady at 4 employees. Meanwhile, the 

maximum total purchasing volume decreases from 1,202 units to 849 units. The 

satisfaction level for minimizing total supply chain costs rises from 39.99% to 49.99%, 

the satisfaction for minimizing workforce fluctuations remains at 42.86%, and the 

satisfaction level for maximizing total purchasing value falls from 85.01% to 49.98%. 

 

• Comparing in terms of fairness level 

This study uses proportional fairness to assess the model’s equity, guaranteeing 

that no single objective is given undue preference over others. A fairness score of 0% 

indicates that the objective is either insignificant or entirely overlooked, while a score 

of 100% reflects that the objective is fully prioritized as the main focus. The fairness 

percentage is determined by the following formula: 
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𝑥𝑥𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁−𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖

               (4.46) 

where 𝑥𝑥𝑖𝑖 represents the obtained solution for each objective function, and 𝑥𝑥𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁 

corresponds to the Negative Ideal Solution (NIS) for each objective function. 

 

 
Figure 4.6 The fairness level comparison. 
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As illustrated in Figure 4.6, the inclusion of the fairness term in the model 

results in fairness values for all objective functions that are more closely aligned, 

contrasting with the imbalanced fairness values observed in the conventional specific 

fuzzy optimization approach. This signifies that the trade-off solutions across all 

objective functions are now managed with improved fairness and balance. 

Consequently, the fairness of the model is effectively substantiated. 
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• Result Comparison between Conventional Specific Fuzzy Optimization Approach, Fuzzy Optimization with Proportional 

Fairness Approach, and Unified Fairness and Robustness Fuzzy Optimization Approach 

 

Table 4.25 Result comparison between conventional specific fuzzy optimization approach, fuzzy optimization with proportional fairness 

approach, and unified fairness and robustness fuzzy optimization approach. 

  
Minimize Total 

Supply Chain Costs 

Minimize 

Fluctuation in 

Workforce Levels 

Maximize Total 

Values of 

Purchasing 

 

Conventional Specific Fuzzy Optimization 

Approach 

Objective Values $129,640 4 persons 1,202 units 

Level of Satisfaction  
(Membership Function) 39.997% 42.857% 85.007% 

Percentage of Fairness 14.398% 42.857% 85.007% 

Fuzzy Optimization with Proportional Fairness 

Approach 

Objective Values $121,740 4 persons 849 units 

Level of Satisfaction  
(Membership Function) 49.997% 42.857% 49.975% 

Percentage of Fairness 39.653% 42.857% 40.000% 

Unified Fairness and Robustness Fuzzy 

Optimization Approach 

Objective Values $118,650 5 persons 768 units 

Level of Satisfaction 
(Membership Function) 54.868% 35.143% 42.561% 

Percentage of Fairness 42.185% 57.143% 45.724% 
It is important to note that the minimum satisfaction levels are 39.997% for the Conventional Specific Fuzzy Optimization Approach and 42.857% for the Fuzzy Optimization Approach with Proportional 

Fairness, both achieved by maximizing the minimum satisfaction level.
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Table 4.25 compares the outcomes of the unified fairness and robustness fuzzy 

optimization approach with those of the conventional specific fuzzy optimization 

approach and the fuzzy optimization with proportional fairness approach across three 

key aspects: 

 

• Comparing in terms of satisfaction levels and objective values 

 

 
Figure 4.7 The satisfaction level and objective value comparison. 

 

As depicted in Figure 4.7, applying the unified fairness and robustness fuzzy 

optimization method results in a reduction of the minimum total cost from $129,640 to 

$118,650, a slight increase in the minimum workforce fluctuation from 4 to 5 

employees, and a decrease in the maximum total purchasing volume from 1,202 to 768 

units. The satisfaction level for minimizing total supply chain costs rises from 39.99% 

to 54.87%, while the satisfaction for reducing workforce fluctuations falls from 42.86% 

to 35.14%, and the satisfaction level for maximizing purchasing values drops from 

85.01% to 42.56%. 
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• Comparing in terms of fairness level 

 

 
Figure 4.8 The fairness level comparison. 

 

Figure 4.8 displays the outcomes of integrating both proportional fairness and 

robustness within the model. The results reveal that the fairness percentage achieved 

by this combined approach exceeds those of the conventional specific fuzzy 

optimization method and the fuzzy optimization using proportional fairness. 

Additionally, the unified fairness and robustness fuzzy optimization approach 

maintains a more balanced fairness percentage across the various objective functions. 
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• Comparing in terms of robustness level 

To evaluate the model’s robustness, the results from the unified fairness and 

robustness fuzzy optimization approach are compared against those from the 

conventional specific fuzzy optimization method and the fuzzy optimization with 

proportional fairness. The comparison uses the average value and standard deviation as 

primary indicators to measure the effectiveness and consistency of the optimal 

solutions. This analysis performed over 10 scenarios, where fuzzy parameters are 

randomly and uniformly varied within their pessimistic and optimistic limits. As a 

result, only the fuzzy objective function related to minimizing total supply chain costs 

is examined in these scenarios, as presented in Table 4.26. 

As presented in Table 4.26, the average values obtained from the three fuzzy 

optimization approaches are closely comparable. Nevertheless, the unified fairness and 

robustness fuzzy optimization approach exhibits the lowest Coefficient of Variation 

(CV), indicating its superior capability in managing data variability. This underscores 

the approach’s effectiveness in controlling input data fluctuations, thereby enhancing 

the overall robustness of the model. 
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Table 4.26 Result comparison of robustness level. 

 Scenario Average 
Standard 

Deviation 

Coefficient of 

Variation 

 

 

Conventional Specific Fuzzy Optimization 

Approach 

1 2 3 4 

$121,912.52 $14,459.86 0.11861 

$99,043.20 $104,532.28 $109,297.84 $114,467.32 

5 6 7 8 

$119,132.88 $124,378.84 $129,867.92 $134,333.48 

9 10   

$139,802.96 $144,268.52   

 
Scenario Average 

Standard 

Deviation 

Coefficient of 

Variation 

Fuzzy Optimization with Proportional 

Fairness Approach 

1 2 3 4 

$118,972.99 $14113.38 0.11863 

$96,865.60 $101,749.44 $106,813.12 $111,780.16 

5 6 7 8 

$116,043.84 $121,590.72 $126,474.56 $131,038.24 

9 10   

$136,205.28 $141,168.96   

 Scenario Average 
Standard 

Deviation 

Coefficient of 

Variation 

Unified Fairness and Robustness Fuzzy 

Optimization Approach 

1 2 3 4 

$111,594.16 $11,632.97 0.10424 

$93,688.00 $97,191.20 $101,677.60 $105,266.80 

5 6 7 8 

$109,453.20 $113,725.60 $117,428.80 $121,615.20 

9 10   

$125,904.40 $129,990.80   
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4.2.3.2 Case 2’s Sensitivity Analysis 

The proposed approach integrates three critical parameters: the possibility 

degree of confidence level (𝛾𝛾), ρ, representing the penalty associated with potential 

violations of the objective function, and σ, denoting the penalty for possible violations 

of individual constraints. These parameters can be adjusted according to the decision 

maker’s preferences and may affect the resulting plans and their comparative outcomes. 

Accordingly, a sensitivity analysis of these parameters will be conducted as described 

below. 

• Sensitivity Analysis of the Percentage of Credibility 

As previously noted, credibility denotes the degree of trustworthiness or 

reliability. A higher possibility degree of confidence signifies increased assurance that 

the fuzzy event will occur, thereby reducing the risk of violation. 

According to Table 4.27, it can be concluded as follows: 

• As the possibility degree of confidence level (𝛾𝛾) varies from 0% to 100%, the 

minimum total cost rises from $94,040 to $124,080, while the minimum total 

workforce fluctuation remains steady at 5 persons. Furthermore, the maximum 

total purchasing value increases from 697 units to 1,001 units. 

• Regarding satisfaction percentages, the results indicate that as the possibility 

degree of confidence level (𝛾𝛾) increases, corresponding to a lower risk of 

violation, the satisfaction percentage for minimizing total supply chain costs 

decreases. The satisfaction percentage for minimizing total workforce 

fluctuations remains constant, while the satisfaction percentage for maximizing 

total purchasing values also declines. This occurs because, as satisfaction levels 

rise, the value of minimization objectives decreases, whereas the value of 

maximization objectives increases. 
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• Regarding the fairness percentages, the outcomes demonstrate that as the 

possibility degree of confidence level (𝛾𝛾) increases, indicating a lower risk of 

violation, the fairness percentage for minimizing total supply chain costs 

decreases, while the fairness percentage for minimizing total workforce 

fluctuations remains unchanged. Furthermore, the fairness percentage for 

maximizing total purchasing values also declines. This trend arises because a 

higher confidence level, corresponding to a reduced risk of violation, leads to a 

decrease in the fairness percentages. 
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Table 4.27 Results of sensitivity analysis of the percentage of credibility. 
 𝛾𝛾 = 0  𝛾𝛾 = 10 𝛾𝛾 = 20 𝛾𝛾 = 30 𝛾𝛾 = 40 𝛾𝛾 = 50 𝛾𝛾 = 60 𝛾𝛾 = 70 𝛾𝛾 = 80 𝛾𝛾 = 90 𝛾𝛾 = 100 

Minimizing Total Supply Chain 

Cost ($) 
94,040 97,010 100,100 103,190 106,280 109,560 112,450 115,540 118,650 121,710 124,080 

Minimizing Fluctuation in 

Workforce Levels (persons) 
5 5 5 5 5 5 5 5 5 5 5 

Maximizing Total Values of 

Purchasing (units) 
1,001 989 966 948 905 872 837 794 768 723 697 

% Satisfaction of Minimizing 

Total Supply Chain Cost 
62.761 61.653 60.839 59.619 58.922 57.713 56.814 55.547 54.868 53.234 52.146 

% Satisfaction of Minimizing 

Fluctuation in Workforce 

Levels 

35.143 35.143 35.143 35.143 35.143 35.143 35.143 35.143 35.143 35.143 35.143 

% Satisfaction of Maximizing 

Total Values of Purchasing 
50.544 49.832 48.456 47.981 46.683 45.167 44.859 43.742 42.561 41.754 40.826 

% Fairness of Minimizing Total 

Supply Chain Cost 
50.90 49.82 48.52 47.06 46.31 45.45 44.82 43.39 42.18 40.14 39.72 

% Fairness of Minimizing 

Fluctuation in Workforce 

Levels 

57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 

% Fairness of Maximizing 

Total Values of Purchasing 
53.21 52.06 51.68 50.96% 49.58 48.81 47.27 46.90 45.72 44.50 43.27 

The highlighted cell shows the results obtained by applying γ at 80%, as utilized in the case study.
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• Sensitivity Analysis on the Penalty Value of a Possible Violation of 

Objective Function and the Penalty Value of a Possible Violation of each 

Constraint 

As previously noted, ρ denotes the penalty value associated with potential 

violations of the objective function, while σ represents the penalty value for potential 

violations of individual constraints, with their sum constrained to equal 1. Tables 4.28 

and 4.29 present a sensitivity analysis exploring variations in the proportions of ρ and 

σ, assessing the model’s fairness and robustness. 

As presented in Table 4.28, variations in the penalty values for potential 

violations of the objective function (ρ) and individual constraints (σ) do not affect the 

model’s robustness. The average and Standard Deviation (SD) values across all models 

remain consistent with prior results, with the unified fairness and robustness approach 

maintaining the lowest Coefficient of Variation (CV). Consequently, the robustness of 

the model is affirmed. 
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Table 4.28 Result of sensitivity analysis on the penalty value of a possible violation of objective function and the penalty value of a 

possible violation of each constraint for testing model robustness. 

 Scenario Average 
Standard 

Deviation 

Coefficient of 

Variation 

 

 

Conventional Specific Fuzzy 

Optimization Approach 

ρ=0, σ=100 ρ=10, σ=90 ρ=20, σ=80 ρ=30, σ=70 

$129,529.55 $12,398.51 0.09572 

$109,764 $113,968 $117,968 $121,836 

ρ=40, σ=60 ρ=50, σ=50 ρ=60, σ=40 ρ=70, σ=30 

$125,232 $129,640 $133,187 $137,480 

ρ=80, σ=20 ρ=90, σ=10 ρ=100, σ=0  

$141,560 $145,050 $149,140  

 
Scenario Average 

Standard 

Deviation 

Coefficient of 

Variation 

Fuzzy Optimization with Proportional 

Fairness Approach 

ρ=0, σ=100 ρ=10, σ=90 ρ=20, σ=80 ρ=30, σ=70 

$127,522.64 $12,328.82 0.09668 

$107,788 $111,991 $115,878 $119,767 

ρ=40, σ=60 ρ=50, σ=50 ρ=60, σ=40 ρ=70, σ=30 

$123,953 $127,803 $131,029 $135,115 

ρ=80, σ=20 ρ=90, σ=10 ρ=100, σ=0  

$139,184 $143,191 $147,050  

 Scenario Average 
Standard 

Deviation 

Coefficient of 

Variation 

Unified Fairness and Robustness Fuzzy 

Optimization Approach 

ρ=0, σ=100 ρ=10, σ=90 ρ=20, σ=80 ρ=30, σ=70 

$118,540.09 $9,641.40 0.08133 

$103,296 $106,257 $109,534 $112,171 

ρ=40, σ=60 ρ=50, σ=50 ρ=60, σ=40 ρ=70, σ=30 

$115,432 $118,650 $121,843 $124,681 

ρ=80, σ=20 ρ=90, σ=10 ρ=100, σ=0  

$127,736 $130,914 $133,427  

         The highlighted cell displays the results of applying ρ and σ at 50%, as implemented in the case study.
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Table 4.29 Result of sensitivity analysis on the penalty value of a possible violation of objective function and the penalty value of a 

possible violation of each constraint. 
 ρ=0, σ=100 ρ=10, σ=90 ρ=20, σ=80 ρ=30, σ=70 ρ=40, σ=60 ρ=50, σ=50 ρ=60, σ=40 ρ=70, σ=30 ρ=80, σ=20 ρ=90, σ=10 ρ=100, σ=0 

Minimizing Total Supply 

Chain Cost 
$103,296 $106,257 $109,534 $112,871 $115,432 $118,650 $121,543 $124,681 $127,436 $130,214 $133,427 

Minimizing Fluctuation 

in Workforce Levels 
5 persons 5 persons 5 persons 5 persons 5 persons 5 persons 5 persons 5 persons 5 persons 5 persons 5 persons 

Maximizing Total Values 

of Purchasing 
881 units 862 units 836 units 811 units 789 units 768 units 747 units 725 units 701 units 683 units 664 units 

% Satisfaction of 

Minimizing Total Supply 

Chain Cost 

59.87% 58.85% 57.46% 56.55% 55.67% 54.87% 53.46% 51.94% 50.51% 49.47% 48.36% 

% Satisfaction of 

Minimizing Fluctuation 

in Workforce Levels 

35.14% 35.14% 35.14% 35.14% 35.14% 35.14% 35.14% 35.14% 35.14% 35.14% 35.14% 

% Satisfaction of 

Maximizing Total Values 

of Purchasing 

45.64% 45.02% 44.85% 44.68% 43.48% 42.56% 42.05% 41.86% 41.23% 40.75% 40.43% 

% Fairness of 

Minimizing Total Supply 

Chain Cost 

47.54% 46.42% 45.36% 45.07% 43.63% 42.18% 40.72% 39.16% 38.22% 37.34% 36.19% 

% Fairness of 

Minimizing Fluctuation 

in Workforce Levels 

57.14% 57.14% 57.14% 57.14% 57.14% 57.14% 57.14% 57.14% 57.14% 57.14% 57.14% 

% Fairness of 

Maximizing Total Values 

of Purchasing 

49.18% 48.53% 47.25% 47.09% 46.78% 45.72% 44.84% 44.55% 43.31% 43.12% 42.85% 

The highlighted cell displays the results of applying ρ and σ at 50%, as implemented in the case study.
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According to Table 4.29, it can be concluded as follows: 

• When the penalty value for potential violations of the objective function (ρ) is 

varied from 0% to 100%, or equivalently, the penalty value for potential 

violations of individual constraints (σ) is adjusted from 100% to 0%, the 

minimum total cost increases from $103,296 to $133,427. The minimum 

workforce fluctuations remain constant at 5 persons, while the maximum total 

purchasing value decreases from 881 units to 664 units. 

• Regarding satisfaction percentages, the results indicate that an increase in the 

penalty value for potential violations of the objective function (ρ), or a 

corresponding decrease in the penalty value for violations of individual 

constraints (σ), leads to a decline in the satisfaction percentage for minimizing 

total supply chain costs. The satisfaction percentage for minimizing workforce 

fluctuations remains unchanged, while the satisfaction percentage for 

maximizing total purchasing values also decreases. This behavior arises because 

a higher satisfaction level corresponds to a lower value for minimization 

objectives and a higher value for maximization objectives. 

• Regarding the fairness percentages, the results show that an increase in the 

penalty value for potential violations of the objective function (ρ), accompanied 

by a corresponding decrease in the penalty value for violations of individual 

constraints (σ), leads to a decline in the fairness percentage for minimizing total 

supply chain costs. The fairness percentage for minimizing workforce 

fluctuations remains unchanged, while the fairness percentage for maximizing 

total purchasing values also decreases. This effect arises because elevating the 

penalty associated with objective function violations (ρ) increases the 

optimality term, thereby narrowing the gap between 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 (the maximum value 

of the objective function) and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 (the minimum value of the objective 

function), which enhances model robustness. However, this adjustment causes 

the obtained solution to deviate further from the positive ideal solution, resulting 

in less favorable objective values. Consequently, both satisfaction levels and 

fairness percentages decline. 
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4.2.4 Summary 

This study provides managerial insights for decision-makers in supply chain 

aggregate production planning under uncertainty. One key takeaway is the advantage 

of incorporating multiple objectives into APP. Unlike single-objective approaches, a 

multi-objective strategy allows for greater flexibility and resilience in dynamic 

environments, helping decision-makers address challenges like supply network 

disruptions or demand shifts. This approach also fosters the creation of robust risk 

mitigation plans, ensuring long-term stability and sustainability in the SC. 

This study further explores the integration of chance constraint programming 

into APP, which introduces a probabilistic element to conventional models. By 

considering the likelihood of different outcomes, this method enhances decision-

making, improves resilience, and supports more effective risk management. 

Additionally, the incorporation of fairness into the APP framework helps maintain 

stable relationships among stakeholders, ensuring equitable treatment of all parties and 

fostering trust within the supply chain. This is crucial for mitigating risks and ensuring 

a more resilient and collaborative supply chain ecosystem. 

The concept of robustness in APP is also central to the study's findings. A robust 

APP enables organizations to maintain stability and operational efficiency in the face 

of dynamic changes and disruptions. By proactively identifying and addressing 

potential risks, a robust system ensures that resources are allocated efficiently and that 

the organization remains adaptable to uncertainties. The study underscores the 

importance of integrating fairness and robustness into a fuzzy optimization approach, 

making the supply chain more resilient and better suited to handle the complexities of 

real-world challenges. 

Furthermore, this study demonstrates the superiority of the proposed unified 

fairness and robustness fuzzy optimization approach compared to conventional 

methods. By concurrently optimizing multiple conflicting objectives, namely, 

minimizing supply chain costs, stabilizing workforce levels, and maximizing 

purchasing values under uncertainty, the proposed approach proves its effectiveness in 

practical applications. The incorporation of triangular fuzzy numbers to model 

imprecise data, combined with the introduction of a fairness term and Realistic Robust 
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Programming (RRP), substantially enhances both the fairness and robustness of the 

optimization process. 

The optimal solutions obtained through this approach highlight its ability to 

resolve complex optimization challenges, particularly in scenarios with conflicting 

objectives. However, the study acknowledges certain limitations, including the absence 

of constraints on the degree of fuzziness and the opportunity for future research to 

investigate different distribution models for the fuzzy parameters. This study suggests 

that future work could refine the model by incorporating advanced meta-heuristic 

algorithms for even better optimization outcomes in more complex scenarios. 

 
4.3 Case 3: A Downside Risk Mitigation Approach for Supply Chain Aggregate 

Production Planning 

In today’s dynamic and unpredictable business landscape, formulating effective 

strategies for Supply Chain Aggregate Production Planning (SCAPP) presents 

considerable challenges for decision-makers. Conventional fuzzy optimization methods 

often prove inadequate in handling the uncertainties and risks that are intrinsic to supply 

chain operations, resulting in less-than-optimal outcomes and increased operational 

expenses. These shortcomings become especially apparent when coordinating activities 

across various levels of the supply chain, where disruptions, fluctuating demand, and 

unexpected events can significantly raise costs and impair efficiency. As a result, there 

is a growing demand for more resilient and comprehensive approaches capable of 

managing these uncertainties while enhancing supply chain performance. This research 

proposes an innovative business model that integrates open innovation principles to 

improve both cost efficiency and resilience within the supply chain. To address 

uncertainty-related risks, particularly those associated with adverse outcomes, the 

Mean-Conditional Value at Risk Gap (MCVaRG) is employed. Additionally, the model 

leverages asymmetrical triangular fuzzy numbers to reflect the inherent ambiguity and 

variability in critical supply chain elements such as costs, customer requirements, and 

machine operating times. 
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4.3.1 Mathematical Notations and Model 

The notations for indexes, parameters, and decision variables are detailed in 

Tables 4.30 to 4.34. Notably, all fuzzy parameters are distinguished by a tilde ( � )  

placed above their respective symbols to signify their fuzzy characteristics. 

 

Table 4.30 Indexes of SCAPP problem (Case 3). 

Indexes Meaning 
𝑠𝑠 Suppliers’ array (𝑠𝑠 = 1, … , 𝑆𝑆) 
r Retailers’ array (𝑟𝑟 = 1, … ,𝑅𝑅) 
𝑑𝑑 Planning periods’ array (𝑑𝑑 = 1, … ,𝐷𝐷) 

 

Table 4.31 Crisp parameters of SCAPP problem (Case 3). 

Crisp 
Parameters Meaning 

𝐿𝐿𝐿𝐿𝑑𝑑 Labor time allocated per product unit at the plant for period d 
(person-hours/unit) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑 Regular-time production limit of the plant in period d (units) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑 Overtime production limit of the plant in period d (units) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 Maximum amount of raw materials available from supplier s in 
period d (units) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 Raw material units supplied by supplier s in period d (units) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑 Total units produced within the regular time in period d (units) 
𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑 Total units produced within the overtime in period d (units) 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑 Product deficit at the plant in period d (units) 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑 Inventory level of raw materials at the plant in period d (units) 
𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑 Inventory level of products at the plant in period d (units) 
𝐻𝐻𝐻𝐻𝑑𝑑 Total workforce employed in period d (persons) 
𝐹𝐹𝐹𝐹𝑑𝑑 Total workforce fired in period d (persons) 
𝐿𝐿𝑑𝑑 Total of workforce in period d (persons) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 Product shipment volume directed to retailer r in period d (units) 
𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟 Inventory of products held by retailer r in period d (units) 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟 Product deficit experienced by retailer r in period d (units) 
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Table 4.32 Uncertain parameters of SCAPP problem (Case 3). 

Uncertain 
Parameters Meaning 

𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠�  Uncertain cost of raw material delivered by supplier s in period d 
($/unit) 

𝑅𝑅𝑅𝑅𝑑𝑑�  Uncertain cost associated with regular-time production per product 
unit in period d ($/unit) 

𝑂𝑂𝑂𝑂𝑑𝑑�  Uncertain cost associated with overtime production per product unit in 
period d ($/unit) 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑�  Uncertain cost per unit related to shortages at the plant in period d 
($/unit) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑�  Uncertain cost associated with storing one unit of raw materials at the 
plant in period d ($/unit) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑�  Uncertain cost associated with holding one unit of product inventory 
at the plant in period d ($/unit) 

𝐻𝐻𝐻𝐻𝑑𝑑�  Uncertain cost associated with labor hiring in period d ($/person) 
𝐹𝐹𝐹𝐹𝑑𝑑�  Uncertain cost associated with labor firing in period d ($/person) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟�  Uncertain transportation cost per unit of product delivered to retailer r 
during period d ($/unit) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟�  Uncertain cost associated with storing one unit of product inventory at 
retailer r during period d ($/unit) 

𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟�  Uncertain cost penalty per unit due to lost sales at retailer r during 
period d ($/unit) 

𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟�  Uncertain demand quantity of products at retailer r during period d 
(units) 

 

Table 4.33 Decision variables of SCAPP problem (Case 3). 

Decision 
Variables Meaning 

𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠  Total raw materials furnished by supplier s in period d (units) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑 Production volume during regular working hours in period d (units) 
𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑 Production volume during overtime working hours in period d (units) 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑 Amount of unmet product demand at the plant in period d (units) 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑  Inventory level of raw materials stored at the plant in period d (units) 
𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑 Inventory level of products stored at the plant in period d (units) 
𝐻𝐻𝐻𝐻𝑑𝑑 Amount of hired labors in period d (persons) 
𝐹𝐹𝐹𝐹𝑑𝑑 Amount of fired labors fired in period d (persons) 
𝐿𝐿𝑑𝑑 Amount of overall labors in period d (persons) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 Volume of products transported to retailer r in period d (units) 
𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟 Amount of products kept in inventory at retailer r in period d (units) 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟 Shortfall in product availability at retailer r in period d (units) 
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Table 4.34 Related notations of SCAPP problem. 

Notations Meaning 
𝛾𝛾 Credibility level 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�  Total supply chain network costs 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  Total procurement costs 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  Total production costs 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�  Total distribution costs 

 

Objective Functions 

1. Minimizing total supply chain operation costs is widely considered a fundamental 

objective when developing an efficient supply chain system. The total supply chain 

network costs (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� ) are typically subject to uncertainty and consist of the combined 

procurement costs (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� ), production costs (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� ), and distribution costs (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� ) 

over a specified period. Procurement costs include the expenses associated with 

purchasing raw materials, while production costs account for regular production costs, 

overtime production costs, product shortage costs, raw material and product inventory 

holding costs, and costs related to labor hiring and firing. Distribution costs encompass 

expenditures at the retail level, such as transportation costs, inventory holding costs, 

and penalty costs incurred from lost sales at retail locations. 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� )  =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�  
= ∑ ∑ 𝑅𝑅𝑅𝑅𝑅𝑅�𝑠𝑠𝑠𝑠 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠

𝐷𝐷
𝑑𝑑

𝑆𝑆
𝑠𝑠 + �∑ 𝑅𝑅𝑅𝑅𝑑𝑑� × 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑

𝐷𝐷
𝑑𝑑 � + �∑ 𝑂𝑂𝑂𝑂𝑑𝑑� × 𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑

𝐷𝐷
𝑑𝑑 �  

+ �∑ 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑� × 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝐷𝐷
𝑑𝑑 � + �∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑� ×

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑−1+𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑
2

𝐷𝐷
𝑑𝑑 �  

+ �∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑� ×
𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑−1+𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑

2
𝐷𝐷
𝑑𝑑 � + �∑ 𝐻𝐻𝐻𝐻�𝑑𝑑 × 𝐻𝐻𝐻𝐻𝑑𝑑𝐷𝐷

𝑑𝑑 � + �∑ 𝐹𝐹𝐹𝐹�𝑑𝑑 × 𝐹𝐹𝐹𝐹𝑑𝑑𝐷𝐷
𝑑𝑑 �  

+�∑ ∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� 𝑟𝑟𝑟𝑟 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝐷𝐷
𝑑𝑑

𝑅𝑅
𝑟𝑟 � + �∑ ∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼� 𝑟𝑟𝑟𝑟 ×𝐷𝐷

𝑑𝑑
𝑅𝑅
𝑟𝑟

𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟−1+𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟
2

�  
+ �∑ ∑ 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶� 𝑟𝑟𝑟𝑟 × 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝐷𝐷

𝑑𝑑
𝑅𝑅
𝑟𝑟 �                       (4.47) 

 

2. Minimizing the Mean-Conditional Value at Risk Gap (MCVaRG) of total 

supply chain operation costs plays an essential role in building a resilient supply 

chain. It supports decision-makers in mitigating uncertainties in costs, particularly 

focusing on reducing the risk of adverse outcomes. Downside risk represents the 

likelihood of incurring costs that exceed expected levels, ensuring that the supply chain 

remains cost-efficient even under adverse conditions. 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� � + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� � + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� �) −  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�  
= ∑ ∑ [(1 − 𝛾𝛾)𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑚𝑚 + (𝛾𝛾)𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠

𝑝𝑝 ] × 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷
𝑑𝑑

𝑆𝑆
𝑠𝑠 + �∑ [(1− 𝛾𝛾)𝑅𝑅𝑅𝑅𝑑𝑑𝑚𝑚 + (𝛾𝛾)𝑅𝑅𝑅𝑅𝑑𝑑

𝑝𝑝] × 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑
𝐷𝐷
𝑑𝑑 �  

+ �∑ �(1 − 𝛾𝛾)𝑂𝑂𝑂𝑂𝑑𝑑𝑚𝑚 + (𝛾𝛾)𝑂𝑂𝑂𝑂𝑑𝑑
𝑝𝑝� × 𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑𝐷𝐷

𝑑𝑑 � + �∑ �(1 − 𝛾𝛾)𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑚𝑚 + (𝛾𝛾)𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑
𝑝𝑝� × 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝐷𝐷

𝑑𝑑 �  
+ �∑ �(1 − 𝛾𝛾)𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑

𝑚𝑚 + (𝛾𝛾)𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑
𝑝𝑝� × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑−1+𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑

2
𝐷𝐷
𝑑𝑑 � + �∑ [(1 − 𝛾𝛾)𝐻𝐻𝐻𝐻𝑑𝑑𝑚𝑚 + (𝛾𝛾)𝐻𝐻𝐻𝐻𝑑𝑑

𝑝𝑝] × 𝐻𝐻𝐻𝐻𝑑𝑑𝐷𝐷
𝑑𝑑 �  

+ �∑ �(1 − 𝛾𝛾)𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑
𝑚𝑚 + (𝛾𝛾)𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑

𝑝𝑝� × 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑−1+𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑
2

𝐷𝐷
𝑑𝑑 � + �∑ [(1 − 𝛾𝛾)𝐹𝐹𝐹𝐹𝑑𝑑𝑚𝑚 + (𝛾𝛾)𝐹𝐹𝐹𝐹𝑑𝑑

𝑝𝑝] × 𝐹𝐹𝐹𝐹𝑑𝑑𝐷𝐷
𝑑𝑑 �  

+�∑ ∑ �(1 − 𝛾𝛾)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑚𝑚 + (𝛾𝛾)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟
𝑝𝑝 � × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝐷𝐷

𝑑𝑑
𝑅𝑅
𝑟𝑟 �  

+ �∑ ∑ [(1 − 𝛾𝛾)𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟𝑚𝑚 + (𝛾𝛾)𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟
𝑝𝑝 ] × 𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟−1+𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟

2
𝐷𝐷
𝑑𝑑

𝑅𝑅
𝑟𝑟 �  

+�∑ ∑ [(1 − 𝛾𝛾)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑚𝑚 + (𝛾𝛾)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟
𝑝𝑝 ] ×𝐷𝐷

𝑑𝑑
𝑅𝑅
𝑟𝑟 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟�                  (4.48) 

 

The parameter 𝛾𝛾 denotes the credibility level, reflecting the extent of trustworthiness. 

For this study, 𝛾𝛾 is assigned a value of 80%. 

Constraints 
1. Suppliers’ Capacity for Providing Raw Materials: The maximum quantity of raw 

materials that suppliers can deliver within a specific period, reflecting their production 

and logistical capabilities. 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠  ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠           ∀ 𝑠𝑠,𝑑𝑑                      (4.49) 
 

2. Raw Material Availability: The extent to which required raw materials are 

accessible from suppliers, considering factors like supply chain disruptions, inventory 

levels, and lead times for procurement. 

 

∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑆𝑆
𝑠𝑠=1 ≥ (𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑)          ∀ 𝑑𝑑                        (4.50) 

 

3. Product Shortages at the Plant: It occurs when the production facility lacks 

sufficient raw materials or components to meet the planned production targets, 

potentially causing delays, increased costs, or missed delivery deadlines. 

 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑 = 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑−1 − 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑−1 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑 −  𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑 − 𝐷𝐷�𝑒𝑒𝑟𝑟𝑟𝑟      ∀ 𝑟𝑟,𝑑𝑑  
        (4.51) 
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4. Labor Capacity: It refers to the availability and ability of the workforce to meet 

production demands. It includes the number of workers, their skills, working hours, and 

productivity levels, ensuring that the production plant can operate efficiently without 

shortages or excessive overtime. 

 

𝐿𝐿𝐿𝐿𝑑𝑑 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑 ≤  𝐿𝐿𝑑𝑑 ∗ 9,600          ∀ 𝑑𝑑                      (4.52) 
 

5. Workforce Balancing: It refers to the strategic allocation of labor resources to match 

production needs and workloads. It involves adjusting staffing levels across different 

shifts or production stages to ensure efficient operations, minimize downtime, and 

avoid overworking employees while maintaining optimal productivity. 

 

𝐿𝐿𝑑𝑑 = 𝐿𝐿(𝑑𝑑−1) + 𝐻𝐻𝐻𝐻𝑑𝑑 − 𝐹𝐹𝐹𝐹𝑑𝑑          ∀  𝑑𝑑                                (4.53) 
 

6. Limitation of Regular Time Production: This indicates the greatest production 

volume that can be reached within regular shift times, without requiring overtime. This 

limitation is typically determined by factors such as available labor, equipment 

capacity, and operational hours, and plays a key role in managing production schedules 

and costs. 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑 ≤ 28,000 ∀ 𝑑𝑑                                               (4.54) 
 

7. Limitation of Overtime Production: Indicates the greatest additional production 

capacity available by utilizing labor during overtime periods. This limitation is often 

constrained by factors such as labor laws, employee availability, and increased labor 

costs, and must be carefully managed to optimize production while controlling costs. 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑 ≤ 7,000  ∀ 𝑑𝑑               (4.55) 
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8. Raw Material Inventory: Refers to the stock of raw materials held by a company 

for production purposes. It ensures that the production process can continue smoothly 

without interruptions due to shortages. The inventory level is managed to balance the 

cost of holding materials with the need to meet production demands, while also 

accounting for factors like lead time, demand fluctuations, and storage costs. 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑑𝑑−1) + ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆
𝑠𝑠=1 𝑠𝑠𝑠𝑠 − (𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑)          ∀ 𝑑𝑑                         (4.56) 

 

9. Limitation of Transferring Products to Retailers: This refers to constraints in the 

ability to deliver products from the production facility to retail locations. These 

limitations can include factors like transportation capacity, logistical challenges, 

delivery schedules, or regulatory restrictions. Efficient management of these constraints 

ensures that retailers receive products on time, preventing stockouts or delays that could 

negatively impact sales and customer satisfaction. 

 

∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 ≤𝑅𝑅
𝑟𝑟 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑          ∀ 𝑑𝑑                          (4.57) 

 

10. Minimum Retailer Service Level for Satisfying Demand: This refers to the 

minimum level of product availability that retailers must maintain to meet customer 

demand. It ensures that retailers have enough stock to avoid stockouts, aiming to satisfy 

customers' needs consistently. Meeting this service level is vital for maintaining 

customer satisfaction, loyalty, and competitive advantage in the market. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 ≥ 0.8 × 𝐷𝐷�𝑒𝑒𝑟𝑟𝑟𝑟          ∀ 𝑟𝑟,𝑑𝑑                       (4.58) 
 

11. Product Shortages at Retailers: This refers to the situation where a retailer does 

not have enough stock of a product to meet customer demand. This usually causes sales 

losses, decreases customer satisfaction, and may negatively impact the retailer’s image. 

Proper management of product shortages is vital to maintaining supply chain efficiency 

and fulfilling customer requirements on schedule. 

 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟 = 𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟−1 − 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟−1 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 − 𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟 − 𝐷𝐷�𝑒𝑒𝑟𝑟𝑟𝑟           ∀ 𝑟𝑟,𝑑𝑑                (4.59) 
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12. Non-Negativity: Constraints (4.60) – (4.63) ensure that all decision variable values 

are non-negative, with certain values required to be integers. 

 

𝐿𝐿𝑑𝑑 ,𝐻𝐻𝐻𝐻𝑑𝑑 ,𝐹𝐹𝐹𝐹𝑑𝑑 , 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼          ∀ 𝑑𝑑             (4.60) 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑 ,  𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑 , 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑 , 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑 ,  𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼          ∀ 𝑑𝑑          (4.61) 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 ≥ 0 and Integer          ∀ 𝑠𝑠,𝑑𝑑                   (4.62) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 ,  𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟 ,  𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟 ≥ 0 and Integer          ∀ 𝑟𝑟,𝑑𝑑                (4.63) 
 

4.3.2 Problem Description of Case 3 

This study features a case study of a small Thai manufacturer specializing in 

plastic bottles to demonstrate and evaluate the proposed fuzzy multi-criteria decision-

making model. The production process begins with melting Polyethylene Terephthalate 

(PET) resin, which is then shaped into a tubular form, known as a parison, by extrusion 

through a circular die. This parison is inserted into a mold cavity within a blow molding 

machine and expanded with high-pressure air to conform to the mold's shape. 

Afterward, the product is cooled to solidify, and excess material is removed to ensure 

a clean finish. Final steps include quality checks, labeling, and packaging to maintain 

consistency in producing standardized plastic bottles for distribution. In the SC, four 

certified suppliers offer PET resin at varying prices, depending on resin quality and 

pricing flexibility. The production plant is limited by its manufacturing capacity, while 

six retailers, located in different regions, generate diverse demand levels, as depicted in 

Figure 4.9. The SCAPP planning period for this case extends over six months. 
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Figure 4.9 Supply network design along with retailer site locations. 

 

 
Figure 4.10 Skewed configurations within triangular fuzzy sets. 

 

Figure 4.10 demonstrates the asymmetrical skewness of risks, highlighting three 

distinct forms of skewness in triangular fuzzy numbers: left-skewed, symmetric, and 

right-skewed. In terms of cost and risk, left-skewness indicates a higher likelihood of 

achieving lower costs and reduced risk of uncertainty. Symmetry suggests an equal 

chance of either obtaining lower costs with lower risk or higher costs with higher risk. 

Right-skewness, conversely, indicates a higher probability of encountering higher costs 

and greater risk of uncertainty. 

 

Table 4.35 Raw material pricing represented under fuzzy conditions. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠�  
Triangular Fuzzy Number  

Skewness Type Optimistic Most Likely Pessimistic 

Supplier 1 5.23 9.50 13.78 Symmetry (±45%) 

Supplier 2 6.50 10.00 13.50 Symmetry (±35%) 

Supplier 3 8.44 11.25 14.06 Symmetry (±25%) 

Supplier 4 10.84 12.75 14.66 Symmetry (±15%) 
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Four qualified suppliers offer PET resin at varying uncertain prices, which are 

modeled using symmetrical Triangular Fuzzy Numbers (TFNs) as shown in Table 4.35. 

The raw material prices depend on both the quality of the resin and the supplier’s ability 

to maintain price stability. For instance, Supplier 1 provides the lowest quality resin 

with limited reliability, resulting in the lowest price that can vary by ±45% around its 

most probable value. Conversely, Supplier 4 supplies the highest quality resin with 

strong reliability, commanding the highest price with fluctuations confined to ±15% of 

its most likely price. All suppliers have an equal maximum supply capacity 

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠) of 25,000 units per period. 

 

Table 4.36 Uncertain parameters associated with the manufacturing facility. 

 

 

Most Likely 

𝑅𝑅𝑅𝑅𝑑𝑑�  𝑂𝑂𝑂𝑂𝑑𝑑�  𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑�  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑�  

$12.50/ unit $18.75/ unit $37.50/ unit $0.10/ unit 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑�  𝐻𝐻𝐻𝐻𝑑𝑑�  𝐹𝐹𝐹𝐹𝑑𝑑�   

$0.30/ unit $160/ man $280/ man  

 

The production plant’s fuzzy parameters are represented using symmetrical 

Triangular Fuzzy Numbers (TFNs) with a variability of ±20% around their most 

probable values, as detailed in Table 4.36. The plant must fulfill a minimum of 80% of 

the demand for each retailer, which could lead to some lost sales at certain locations, 

incurring penalty costs accordingly. This study assumes delivery lead times to be 

negligible and does not account for any subcontracting. Additionally, Table 4.37 lists 

other deterministic parameters applied in this case study. 

 

 

 

 

 

 

 

 

Ref. code: 25686422300019ALF



142 
 
 

 
 

Table 4.37 Crisp parameters. 

Values 
𝐿𝐿𝐿𝐿𝑑𝑑 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑 

0.016 man-hours/unit 28,000 units 7,000 units 

 

Table 4.38 Imprecise six-month retailers’ demand. 

Period (d) 
𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟�  (units) 

Retailer 1 Retailer 2 Retailer 3 Retailer 4 Retailer 5 Retailer 6 

d = 1 5,796 4,849 3,967 7,904 9,716 7,809 

d = 2 4,971 3,996 2,505 7,016 8,902 6,520 

d = 3 4,200 2,646 1,510 6,222 7,462 5,037 

d = 4 3,711 2,546 1,293 6,370 7,251 5,528 

d = 5 5,004 4,418 2,728 7,386 8,305 6,453 

d = 6 6,287 5,362 3,779 8,865 9,396 7,328 

 

The demand for plastic bottles experiences seasonal variations, driven by 

changes in water consumption throughout the year. The supply chain comprises six 

retailers, each located in different areas and exhibiting unique seasonal demand 

patterns. These demands are modeled using symmetrical Triangular Fuzzy Numbers 

(TFNs) with a ±20% variability around their most probable values, as shown in Table 

4.38. Both the production plant and retailers are situated relatively close to each other 

in central Thailand. The production facility is located in Bangkok, while the retailers 

operate across Bangkok, Nonthaburi, Pathum Thani, Nakhon Pathom, Samut Sakhon, 

and Samut Prakan. This geographical distribution leads to differences in transportation, 

inventory holding, and penalty costs associated with lost sales, which are detailed in 

Figure 4.11 and Table 4.39. 
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Table 4.39 Costs related to retailers. 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟�  Skewness 

Type 

Risk of 

Uncertainty Optimistic Most Likely Pessimistic 

Retailer 1 11.70 13.00 14.30 Symmetry Low 

Retailer 2 6.00 10.00 11.00 Left skew Low 

Retailer 3 3.45 11.50 16.10 Left skew Medium 

Retailer 4 14.40 16.00 22.40 Right skew Medium 
Retailer 5 10.50 17.50 29.75 Right skew High 
Retailer 6 4.35 14.50 24.65 Symmetry High 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟�  Skewness 

Type 

Risk of 

Uncertainty Optimistic Most Likely Pessimistic 

Retailer 1 6.30 7.00 7.70 Symmetry Low 
Retailer 2 2.40 4.00 4.40 Left skew Low 
Retailer 3 1.65 5.50 7.70 Left skew Medium 
Retailer 4 9.00 10.00 14.00 Right skew Medium 
Retailer 5 6.90 11.50 19.55 Right skew High 
Retailer 6 2.55 8.50 14.45 Symmetry High 

 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟�  Skewness 

Type 

Risk of 

Uncertainty Optimistic Most Likely Pessimistic 

Retailer 1 6.90 23.00 36.80 Symmetry High 
Retailer 2 6.00 20.00 28.00 Left skew Medium 
Retailer 3 12.90 21.50 23.65 Left skew Low 
Retailer 4 15.60 26.00 44.20 Right skew High 
Retailer 5 24.75 27.50 38.50 Right skew Medium 
Retailer 6 22.05 24.50 26.95 Symmetry Low 
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Figure 4.11 Different skewness patterns and uncertainty risks in transportation 

expenses. 

 

Figure 4.11 illustrates the differences in transportation cost patterns and their 

corresponding downside risks across various retailers. Retailers 1 and 6 display 

symmetrical cost distributions; however, Retailer 6 encounters a significantly higher 

downside risk of uncertainty (+60% from the most likely value) compared to Retailer 

1, which has a relatively modest downside risk of +20%. In contrast, Retailers 2 and 3 

exhibit left-skewed distributions. Retailer 3 faces a moderate downside risk (+40%), 

whereas Retailer 2 is subjected to a lower level of risk (+20%). Retailers 4 and 5 both 

present right-skewed cost distributions, with Retailer 5 experiencing a higher downside 

risk than Retailer 4. These differences in transportation cost behavior and related risks 

highlight the varying logistical and financial complexities the supply chain must 

navigate in meeting retailer demand. By addressing these disparities, the study offers 

valuable guidance on optimizing transportation and inventory decisions while taking 

into account uncertainty and potential risk exposure. 
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During operations, several factors can significantly increase the likelihood of 

higher transportation costs for certain retailers. In this study, these factors include 

scenarios such as unusual traffic congestion in specific areas. High population density, 

especially in business districts during peak hours, can exacerbate traffic conditions. 

Additionally, events like protests, roadblocks near government offices, or mass 

gatherings (mobile vulgus) can severely disrupt traffic flow. Such situations not only 

lead to prolonged delays but can also heighten driver frustration, increasing the risk of 

road rage incidents and accidents, further compounding transportation delays. These 

circumstances collectively contribute to a higher probability of elevated transportation 

costs. A similar framework is applied to holding costs and penalty costs for lost sales, 

which can also escalate under adverse operational conditions. The interconnected 

nature of these factors highlights the importance of accounting for such risks in supply 

chain planning. The detailed impacts of these variables on transportation, holding, and 

penalty costs are summarized in Table 4.39. 

The SCAPP model is developed based on the following assumptions: 
• A predefined set of qualified suppliers is available, as outlined in Table 4.35. 

• Retailer demand varies dynamically over the six-month planning horizon. 

• Demand at each retailer may be completely fulfilled or partially unmet; any 

shortages result in penalty costs. 

• All cost components within the supply chain are subject to uncertainty and 

display different forms of skewness, which are assumed to remain stable 

throughout the planning period. 

• The use of subcontractors is excluded from this scenario. 

• Delivery lead times are considered negligible. 

• Initial inventory levels and available labor resources are known at the beginning 

of the planning period. 
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4.3.3 Results of Case 3 

This analysis examines three separate strategies: focusing solely on cost 

minimization, solely on minimizing downside risk through the Mean-Conditional 

Value at Risk Gap (MCVaRG), and a combined approach that targets both objectives 

simultaneously. The resulting outcomes are carefully analyzed and compared to assess 

their performance, advantages, and trade-offs. Through this comparative evaluation, 

this study aims to offer meaningful insights into the effectiveness of each strategy, 

emphasizing the benefits of integrated optimization methods that align cost-efficiency 

with risk mitigation to support stronger and more resilient decision-making. 

• Result of Purely Minimizing the Total Supply Chain Operational Costs 

The Supply Chain Aggregate Production Planning (SCAPP) problem is 

addressed using Fuzzy Linear Programming (FLP), with an emphasis on minimizing 

total operational costs across the entire supply chain. The optimal outcomes, presented 

in Table 4.40, highlight key decision variables and cost-saving strategies. Polyethylene 

Terephthalate (PET) is primarily procured from Suppliers 1 and 2 due to their lower 

material costs. Production of plastic bottles initially takes place during regular working 

hours; however, after reaching 28,000 units, overtime is employed to produce an 

additional 7,000 units. Any demand beyond this capacity results in shortages, 

particularly evident during peak seasons, 3,025 units in period 1 and 4,001 units in 

period 6. Workforce levels are adjusted between 40 and 55 employees over the six-

month planning horizon to align with production requirements. Retailer service levels 

are managed with a primary focus on minimizing costs. Retailer 5 achieves full demand 

fulfillment, while Retailers 4, 6, 1, 2, and 3 attain service levels of 99.00%, 96.00%, 

93.39%, 91.71%, and 89.59%, respectively. This approach strictly targets cost 

efficiency without accounting for the downside risk linked to cost uncertainty. 

Although total operational expenses are reduced to $7,712,875, the corresponding 

downside risk escalates to $2,147,100, potentially surpassing acceptable risk 

thresholds. This outcome highlights the critical need to incorporate risk considerations 

alongside cost objectives in supply chain planning. 
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Table 4.40 Result obtained exclusively aiming to minimize total operational costs in 

the supply chain. 

 Value  

Minimum Total 
Supply Chain 
Operation Costs 

$7,712,875.00 
 

Downside Risk 
of Total Supply 
Chain Operation 
Costs 

$2,147,100.00 

 

 Period 
1 

Period 
2 

Period 
3 

Period 
4 

Period 
5 

Period 
6 

 

Production 
volume during 
regular working 
hours in period 
d  

28,000 
units 

28,000 
units 

20,364 
units 

25,455 
units 

28,000 
units 

28,000 
units 

 

Production 
volume during 
overtime 
working hours 
in period d  

7,000 
units 

4,566 
units 

0 
unit 

0 
unit 

4,950 
units 

7,000 
units 

 

Amount of 
unmet product 
demand at the 
plant in period d 
(units) 

3,025 
units 

0 
unit 

0 
unit 

0 
unit 

0 
unit 

4,001 
unit 

 

Amount of 
overall labors in 
period d  

55 
persons 

55 
persons 

40 
persons 

50 
persons 

55 
persons 

55 
persons 

 

 Total raw materials furnished by supplier s in period d 
(units) 

 

 Period 
1 

Period 
2 

Period 
3 

Period 
4 

Period 
5 

Period 
6 

 

Supplier 1 25,000 25,000 20,364 25,000 25,000 25,000  
Supplier 2 10,000 7,566 0 455 7,950 10,000  
Supplier 3 0 0 0 0 0 0  
Supplier 4 0 0 0 0 0 0  

 Volume of products transported to retailer r in period d 
(units) Average 

Service 
Level (%)  Period 

1 
Period 

2 
Period 

3 
Period 

4 
Period 

5 
Period 

6 
Retailer 1 4,685 4,747 3,080 3,935 4,780 4,879 93.39% 
Retailer 2 3,711 3,772 1,526 2,770 4,194 4,021 91.71% 
Retailer 3 2,805 2,281 838 1,841 2,504 2,755 89.59% 
Retailer 4 7,168 6,792 4,878 5,250 7,162 8,529 99.00% 
Retailer 5 9,380 8,678 6,125 6,131 8,081 9,060 100.00% 
Retailer 6 7,251 6,296 3,917 5,528 6,229 5,756 96.00% 

The highlighted cells indicate the suppliers selected to provide Polyethylene Terephthalate (PET) and the retailers who achieved 

the highest service level satisfaction percentages. 
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• Result of Purely Minimizing Mean-Conditional Value at Risk Gap 

(MCVaRG) of Total Supply Chain Operation Costs 

Fuzzy Linear Programming (FLP) is utilized to tackle the SCAPP problem, 

focusing primarily on minimizing the Mean-Conditional Value at Risk Gap (MCVaRG) 

related to the total operational costs of the supply chain. The optimal results, shown in 

Table 4.41, emphasize values of decision variable aimed at lowering downside risk. 

Suppliers 3 and 4 are chosen to provide PET to the production plant because of their 

reduced downside risk, indicating a lower likelihood of cost increases. Despite this 

change in suppliers, production volumes, shortages, and labor levels remain similar to 

those in the cost-minimization approach, ensuring that retailer demand is still met. In 

this scenario, Retailer 1 attains a full-service level of 100%, followed by Retailer 4 at 

99.00%, Retailer 2 at 97.61%, Retailer 5 at 94.80%, Retailer 3 at 94.19%, and Retailer 

6 at 92.34% across the six-month planning horizon. This strategy prioritizes minimizing 

downside risk from cost uncertainties, with supplier and retailer choices guided by risk 

reduction rather than solely cost considerations. Consequently, the downside risk 

decreases substantially to $1,731,676.04, though the total operational costs rise to 

$8,429,300, which may be above the acceptable limits for decision-makers. This 

outcome highlights the essential trade-off between managing costs and mitigating risk 

in supply chain planning. 
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Table 4.41 Result obtained exclusively aiming to minimize Mean-Conditional Value 

at Risk Gap (MCVaRG) of total operation costs in the supply chain. 

 Value  

Minimum 
Downside Risk 
of total supply 
chain operation 
costs 

$1,731,676.00 

 

Total Supply 
Chain Operation 
Costs 

$8,429,300.00 
 

 Period 
1 

Period 
2 

Period 
3 

Period 
4 

Period 
5 

Period 
6 

 

Production 
volume during 
regular working 
hours in period 
d  

28,000 
units 

28,000 
units 

20,364 
units 

25,455 
units 

28,000 
units 

28,000 
units 

 

Production 
volume during 
overtime 
working hours 
in period d  

7,000 
units 

4,566 
units 

0 
unit 

0 
unit 

4,950 
units 

7,000 
units 

 

Amount of 
unmet product 
demand at the 
plant in period d 
(units) 

3,025 
units 

0 
unit 

0 
unit 

0 
unit 

0 
unit 

4,001 
units 

 

Amount of 
overall labors in 
period d  

55 
persons 

55 
persons 

40 
persons 

50 
persons 

55 
persons 

55 
persons 

 

 Total raw materials furnished by supplier s in period d 
(units) 

 

 Period 
1 

Period 
2 

Period 
3 

Period 
4 

Period 
5 

Period 
6 

 

Supplier 1 0 0 0 0 0 0  
Supplier 2 0 0 0 0 0 0  
Supplier 3 10,000 7,566 0 455 7,950 10,000  
Supplier 4 25,000 25,000 25,000 25,000 25,000 25,000  

 Volume of products transported to retailer r in period d 
(units) Average 

Service 
Level (%)  Period 

1 
Period 

2 
Period 

3 
Period 

4 
Period 

5 
Period 

6 
Retailer 1 5,460 4,747 3,080 3,935 4,780 5,951 100.00% 
Retailer 2 4,113 3,772 1,526 2,770 4,194 4,905 97.61% 
Retailer 3 3,475 2,281 838 1,841 2,504 2,755 94.19% 
Retailer 4 7,168 6,792 4,878 5,250 7,162 8,529 99.00% 
Retailer 5 8,704 8,678 6,125 6,131 8,081 7,266 94.80% 
Retailer 6 6,080 6,296 3,917 5,528 6,229 5,594 92.34% 

The highlighted cells indicate the suppliers selected to provide Polyethylene Terephthalate (PET) and the retailers who achieved 

the highest service level satisfaction percentages. 
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• Result of Considering Both Cost and Downside Risk Minimization 

Fuzzy Linear Programming (FLP) is utilized to address the SCAPP problem 

with the dual goal of simultaneously minimizing total costs and downside risk 

(MCVaRG). The optimal results, detailed in Table 4.42, illustrate the effectiveness of 

a multi-objective fuzzy linear programming approach that achieves an overall 

satisfaction level of 94.93% by maximizing the minimum satisfaction level. The lowest 

total supply chain operational cost is $7,832,100 with a satisfaction level of 98.37%, 

while the minimum downside risk stands at $1,921,500 with a satisfaction level of 

94.93%. Additionally, Table 4.42 presents the decision variable values corresponding 

to the joint minimization of costs and associated downside risks. In this scenario, 

Suppliers 2 and 3 are chosen to supply PET to the production plant due to their balanced 

profiles in terms of cost and moderate downside risk. The production plan, including 

both regular and overtime hours, remains consistent, aligning with retailer demand. 

Retailer priorities in terms of service levels over the six-month planning period place 

Retailer 4 at 100%, followed by Retailers 2, 6, 1, 5, and 3, with service levels of 98.29%, 

96.67%, 95.33%, 93.71%, and 92.30% respectively. This method represents a trade-off 

approach that balances cost reduction with risk mitigation, selecting suppliers and 

retailers that provide the most favorable combination of these objectives. Among the 

retailers, 1, 3, and 5 are given lower priority for order fulfillment: Retailer 1 is chosen 

last due to its low cost but elevated risk; Retailer 3 is deprioritized for both higher costs 

and risks; and Retailer 5 is ranked last because of its low risk but comparatively higher 

costs. 
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Table 4.42 Result obtained by integrating both cost and downside risk minimization. 

 Value  

Overall Satisfaction 
Level  94.93%  

Satisfaction Level of 
Minimizing Total 
Supply Chain 
Operation Costs 

98.37% 

 

Satisfaction Level of 
Minimizing Downside 
Risk of Total Supply 
Chain Operation Costs 

94.93% 

 

Minimum Total Supply 
Chain Operation Costs $7,832,100.00  

Minimum Downside 
Risk of Total Supply 
Chain Operation Costs 

$1,921,500.00 
 

 Period 
1 

Period 
2 Period 3 Period 4 Period 5 Period 6  

Production volume 
during regular 
working hours in 
period d  

28,000 
units 

28,000 
units 

20,364 
units 

25,455 
units 

28,000 
units 

28,000 
units 

 

Production volume 
during overtime 
working hours in 
period d  

7,000 
units 

4,566 
units 

0 
unit 

0 
unit 

4,950 
units 

7,000 
units 

 

Amount of unmet 
product demand at the 
plant in period d 
(units) 

3,025 
units 

0 
unit 

0 
unit 

0 
unit 

0 
unit 

4,001 
units 

 

Amount of overall 
labors in period d  

55 
persons 

55 
persons 

40 
persons 

50 
persons 

55 
persons 

55 
persons 

 

 Total raw materials furnished by supplier s in period d 
(units) 

 

 Period 
1 

Period 
2 Period 3 Period 4 Period 5 Period 6  

Supplier 1 0 0 0 0 0 0  
Supplier 2 25,000 25,000 25,000 25,000 25,000 25,000  
Supplier 3 10,000 7,566 0 455 7,950 10,000  
Supplier 4 0 0 0 0 0 0  

 Volume of products transported to retailer r in period d 
(units) Average 

Service Level 
(%)  Period 

1 
Period 

2 Period 3 Period 4 Period 5 Period 6 

Retailer 1 5,050 5,086 3,300 4,216 5,121 5,776 95.33% 
Retailer 2 4,535 4,041 1,635 2,968 4,493 5,285 98.29% 
Retailer 3 3,090 2,444 898 1,972 2,682 3,289 92.30% 
Retailer 4 8,108 7,277 5,226 5,625 7,673 9,138 100.00% 
Retailer 5 8,250 9,298 6,562 6,569 8,658 8,307 93.71% 
Retailer 6 7,207 6,746 4,197 5,922 6,674 6,991 96.67% 

The highlighted cells indicate the suppliers selected to provide Polyethylene Terephthalate (PET) and the retailers who achieved 

the highest service level satisfaction percentages. 
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4.3.3.1 Case 3’s Comparison of the Results 

Table 4.43 and Figure 4.12 present a comparative analysis of the results from 

three fuzzy linear programming models, focusing on supplier selection, retailer 

prioritization, and objective function values. In the model aimed at minimizing total 

supply chain operational costs, the emphasis is placed entirely on cost-efficiency, with 

no consideration for downside risk. Consequently, suppliers offering the most 

economical Polyethylene Terephthalate (PET) are chosen, and retailers with the lowest 

associated servicing costs are prioritized. This outcome is consistent with conventional 

specific fuzzy programming approaches, where uncertainties are modeled using 

symmetrical fuzzy numbers and resolved through standard defuzzification methods. 

The decision rule in this context favors options with the lowest cost. Conversely, in the 

model that targets the minimization of downside risk while disregarding cost, the focus 

shifts entirely to risk mitigation. Suppliers with the least downside risk in PET pricing 

are selected, and the production facility gives preference to fulfilling demands from 

retailers that present the lowest exposure to risk. This approach clearly emphasizes 

reducing uncertainty and potential losses rather than achieving cost savings. 

The third scenario addresses the simultaneous minimization of both total supply 

chain operational costs and downside risk. This approach achieves a balanced trade-off 

between reducing expenses and mitigating downside risk, an aspect that conventional 

specific fuzzy programming techniques often overlook due to their inability to 

effectively handle the asymmetrical nature of risk, particularly downside risk. In this 

model, suppliers are selected based on a moderate combination of cost and risk, while 

the production plant prioritizes fulfilling demands from retailers that contribute to 

minimizing both factors. The combined total operational costs and associated risks are 

minimized, as illustrated in Figure 4.12. This is accomplished by maximizing the 

minimum satisfaction level between cost reduction and risk mitigation, ensuring a 

balanced performance across both objectives. However, such a compromise is feasible 

only when downside risk has a substantial impact on costs, warranting the integration 

of both considerations into the decision-making framework. 
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Table 4.43 Result comparison of three fuzzy linear programming models’ outcomes. 

 

FLP Model 
(Minimizing total 

supply chain 
operation costs) 

FLP Model 
(Minimizing 

downside risk of 
total supply chain 
operation costs) 

MOFLP Model 
(Minimizing both total 
supply chain operation 

costs and downside 
risk of total supply 

chain operation costs) 

Supplier Selection Supplier 1 and 
Supplier 2 

Supplier 3 and 
Supplier 4 

Supplier 2 and 
Supplier 3 

Retailer Selection: 
(Average Service 
Level) 

Retailer 1: 93.39% 
Retailer 2: 91.71% 
Retailer 3: 89.59% 
Retailer 4: 99.00% 

Retailer 5: 100.00% 
Retailer 6: 96.00% 

Retailer 1: 100.00% 
Retailer 2: 97.61% 
Retailer 3: 94.19% 
Retailer 4: 99.00% 
Retailer 5: 94.80% 
Retailer 6: 92.34% 

Retailer 1: 95.33% 
Retailer 2: 98.29% 
Retailer 3: 92.30% 

Retailer 4: 100.00% 
Retailer 5: 93.71% 
Retailer 6: 96.67% 

Minimizing Total 
Supply Chain 
Operation Costs 

$7,712,875.00 $8,429,300.00 $7,832,100.00 

Minimizing 
Downside Risk 
(MCVaRG) 

$2,147,100.00 $1,731,676.00 $1,921,500.00 

Possible Range of 
Total Supply Chain 
Operation Costs 

From $7,712,875.00 
to $9,859,975.00 

From $8,429,300.00 
to $10,160,976.00 

From $7,832,100.00 
to $9,753,600.00 

For each model, the bold and italicized retailers denote those with the highest three service level satisfaction rates. 

 

 
Figure 4.12 Demonstration of how to determine maximum overall supply chain 

operation expenses in a pessimistic case. 
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4.3.3.2 Case 3’s Sensitivity Analysis 

The developed Multi-Objective Fuzzy Linear Programming (MOFLP) model 

incorporates a credibility level parameter (γ), which reflects the decision maker’s 

judgment regarding downside risk, measured by the Mean-Conditional Value at Risk 

Gap (MCVaRG). This parameter can impact on the resulting plans and their 

comparative performance. Therefore, a sensitivity analysis will be performed to 

evaluate the effect of varying this parameter, as described in the following section. 

 

• Sensitivity Analysis of the Percentage of Credibility 

As outlined earlier, the credibility parameter represents the level of confidence 

or belief in the model's outcomes, where a higher value of γ indicates stronger trust in 

the results. In this study, downside risk is influenced by changes in the credibility level, 

which is examined within the range of 0.5 to 1. The sensitivity analysis evaluates how 

varying γ affects the outcomes, as presented in Tables 4.44 and 4.45. When γ is set to 

0.5, corresponding to the most probable scenario, the model produces the lowest total 

supply chain operational costs and downside risk. Conversely, at γ = 1, representing the 

most conservative or pessimistic scenario, both the operational costs and downside risk 

reach their highest levels. 

 

Table 4.44 Result of sensitivity analysis of the percentage of credibility. 

γ Minimizing Total Supply Chain 

Operation Costs 

Minimizing Downside Risk 

(MCVaRG) 

50% $6,665,479.13 $888,131.70 

60% $7,097,234.97 $1,151,982.54 

70% $7,455,783.73 $1,530,145.78 

80% $7,832,100.00 $1,921,500.00 

90% $8,271,553.91 $2,365,962.17 

100% $8,649,609.54 $2,740,306.33 
The highlighted cell displays the results of applying γ at 80%, which served as the initial benchmark in this case study. 
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Figure 4.13 Objective value results correspond to different percentages of credibility. 

 

Table 4.44 and Figure 4.13 illustrate that as the credibility level (γ) increases 

from 50% to 100%, total supply chain operational costs rise from $6,665,479.13 to 

$8,649,609.54. Likewise, the minimum downside risk (MCVaRG) escalates from 

$888,131.70 to $2,740,306.33. This trend offers valuable insights for decision-makers 

by highlighting the potential variability in outcomes and supporting more informed, 

proactive planning. A higher credibility level represents a more conservative outlook, 

where both operational costs and downside risk are elevated. Thus, increasing γ reflects 

a stronger level of confidence in the reliability of the results produced by the model. 
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Table 4.45 Result reflecting how average service levels change with varying percentage of credibility of each retailer. 

 Retailer 1 Retailer 2 Retailer 3 Retailer 4 Retailer 5 Retailer 6 

γ = 50% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

γ = 60% 100.00% 100.00% 94.69% 100.00% 98.27% 100.00% 

γ = 70% 97.42% 100.00% 93.49% 100.00% 94.52% 100.00% 

γ = 80% 95.33% 98.29% 92.30% 100.00% 93.71% 96.67% 

γ = 90% 94.56% 97.64% 91.85% 100.00% 92.82% 95.76% 

γ = 100% 93.03% 96.04% 88.99% 100.00% 90.85% 94.56% 
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Table 4.45 shows that as the credibility level (γ) rises from 50% to 100%, the 

service levels for each retailer vary accordingly. This variation occurs because higher γ 

values correspond to increased retailer demands, which are modeled as fuzzy and 

defuzzified using chance-constrained programming. At the most probable scenario (γ 

= 0.5), all retailers’ demands are fully met, achieving a 100% service level. However, 

as γ increases, service levels for certain retailers gradually decline due to production 

capacity constraints. The order of decreasing service levels is Retailer 3, Retailer 5, 

Retailer 1, Retailer 6, and then Retailer 2. Importantly, Retailer 4 consistently maintains 

a 100% service level, even at the highest credibility level (γ = 1), because it incurs the 

highest penalty cost for lost sales and is subject to the greatest uncertainty risk. 

Allowing shortages for Retailer 4 would therefore lead to substantial costs and risks. 

 

4.3.4 Summary 

This research offers important managerial insights and practical implications 

for those involved in SCAPP. Conventional SCAPP approaches typically concentrate 

on reducing overall operational costs, often overlooking the risks tied to uncertainty. 

The methodology presented in this study introduces a novel framework that accounts 

for asymmetrical skewness, thereby enhancing decision-making under uncertain 

conditions. By incorporating different forms of skewness into the model, it enables a 

more thorough evaluation of risk, leading to improved allocation of resources and 

greater operational effectiveness. Consequently, organizations are better equipped to 

formulate customized strategies that optimize performance in evolving and complex 

supply chain environments. 

While the proposed model effectively targets the downside risk associated with 

uncertainty, it does not account for the potential benefits of favorable cost outcomes. 

By utilizing the Mean-Conditional Value at Risk Gap (MCVaRG) to measure and 

reduce downside risk, the model emphasizes limiting the negative impacts of worst-

case scenarios. This risk-averse approach is particularly relevant for decision-makers 

focused on avoiding adverse outcomes. However, the model's focus on minimizing 

losses means it may not fully encompass the broader spectrum of uncertainty affecting 

supply chain operational costs, which are subject to a variety of unpredictable 

influences. Therefore, the study highlights the need for comprehensive risk 
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management strategies that address the full range of uncertainties in supply chain 

planning. 

Integrating multiple objectives into SCAPP, particularly under uncertain 

conditions, yields significant benefits. Relying on a single-objective model often falls 

short when dealing with volatile markets and unexpected disruptions. A multi-objective 

approach enables decision-makers to craft strategies that are both flexible and resilient, 

allowing them to address weaknesses throughout the supply chain. This broader 

perspective helps organizations respond more effectively to uncertainty, promoting 

greater long-term stability and sustainability. The framework introduced in this study 

supports decision-makers by offering tools to evaluate a wide range of cost scenarios 

and manage risks proactively, ultimately fostering more robust and adaptable supply 

chain systems. 

Finally, this study presents an innovative multi-objective fuzzy linear 

programming model designed to optimize SCAPP by simultaneously balancing cost 

reduction and downside risk management. The proposed framework is both flexible 

and robust, improving decision-making in complex and uncertain settings. This study 

also identifies opportunities for future work, including investigating alternative fuzzy 

distribution models, accounting for the dynamic behavior of parameters, and examining 

the influence of external factors on outcomes. Additionally, incorporating advanced 

optimization methods such as meta-heuristic algorithms and machine learning could 

further strengthen the model’s performance, offering more adaptable and sophisticated 

solutions. Future studies should also explore a variety of risk metrics and optimization 

approaches to better reflect diverse risk preferences and priorities, thereby advancing 

the development of more effective supply chain optimization models under uncertainty. 
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CHAPTER 5 

DISCUSSION AND CONCLUSIONS 
 

This chapter presents a comprehensive analysis of the research findings, 

highlighting the theoretical contributions and practical implications of the developed 

fuzzy optimization models for SCAPP. It explores how the proposed framework 

addresses the inherent uncertainties and conflicting objectives in modern supply chains, 

offering adaptive and resilient solutions for cost minimization, resource optimization, 

and risk mitigation. This chapter also reflects on the broader impact of these findings 

on industry practices and academic discourse, providing actionable insights for 

decision-makers and laying the groundwork for future research to advance the field 

further. 

 
5.1 Discussion and Conclusions 

• Case 1 (A Five-Phase Hybrid Fuzzy Optimization Approach for Supply Chain 

Aggregate Production Planning) 

 

This study addresses the dual challenges of data uncertainty and conflicting 

objectives in SCAPP, highlighting the inseparable nature of supply chain operations 

and production planning in real-world scenarios. It proposes a five-phase hybrid fuzzy 

optimization approach that integrates procurement, production, and distribution 

planning while accommodating imprecise, incomplete, and noisy data. Utilizing 

advanced fuzzy optimization techniques, including Triangular Intuitionistic Fuzzy 

Numbers, (α, β)-cut, Realistic Robust Programming, Chance-Constrained 

Programming, Intuitionistic Fuzzy Linear Programming, and the AUGMECON 

method, the model generates a diverse set of Pareto optimal solutions tailored to 

decision-makers' varying risk preferences. This adaptability enables strategic planning 

across optimistic to pessimistic scenarios, providing decision-makers with a flexible 

range of solutions that can be customized to specific operational needs. The managerial 

implications are significant, offering a practical framework for addressing real-world 

complexities by demonstrating the necessity of integrating supply chain operations with 

production planning. This study encourages managers to adopt robust decision-making 
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tools that can accommodate imprecise data, noisy inputs, and hesitation in human 

judgment. By generating Pareto optimal solutions, the proposed approach empowers 

managers to conduct trade-off analyses among competing objectives, ensuring that 

supply chain goals align with organizational priorities and enhancing the reliability of 

decisions in uncertain environments. 

 

• Case 2 (A Unified Fairness and Robustness Fuzzy Optimization Approach for 

Supply Chain Aggregate Production Planning) 

 

This study provides valuable insights into SCAPP under uncertainty, 

emphasizing the advantages of a multi-objective approach over conventional single-

objective models. By enhancing flexibility and resilience, the multi-objective strategy 

enables decision-makers to effectively manage supply network dynamics and 

fluctuations in demand, contributing to long-term supply chain sustainability. The 

integration of Chance-Constrained Programming (CCP) introduces probabilistic 

elements that improve decision-making and risk management by accounting for the 

likelihood of various outcomes. Furthermore, the incorporation of fairness within the 

optimization framework strengthens stakeholder relationships, fostering trust and 

collaboration critical to ensuring a stable supply chain environment. This study also 

highlights the importance of robustness in maintaining operational stability and 

efficiency in dynamic, uncertain circumstances. The proposed unified fuzzy 

optimization approach, which integrates fairness and robustness, outperforms 

conventional methods by simultaneously optimizing conflicting objectives such as cost 

reduction, workforce stabilization, and purchasing maximization. The use of triangular 

fuzzy numbers and Realistic Robust Programming (RRP) enhances the optimization 

process, making it more adaptable and effective in addressing the complex challenges 

faced by modern supply chains. 
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• Case 3 (A Downside Risk Mitigation Approach for Supply Chain Aggregate 

Production Planning) 

 

This study offers valuable insights for decision-makers in SCAPP, emphasizing 

the importance of incorporating multiple objectives into supply chain strategies. 

Traditional SCAPP models typically focus on minimizing operational costs, often 

neglecting the associated risks. The proposed methodology enhances decision-making 

under uncertainty by integrating various types of skewness, providing a more 

comprehensive risk assessment and facilitating improved resource allocation. By 

addressing downside risks through the Mean-Conditional Value at Risk Gap 

(MCVaRG), the model helps mitigate the adverse effects of worst-case scenarios, 

improving risk management and operational efficiency. This approach enables 

organizations to develop more tailored strategies, optimizing performance in dynamic 

and complex environments. However, while the model focuses on downside risk, it may 

not fully capture all uncertainties impacting supply chain operation costs, which are 

influenced by unpredictable factors. The managerial implications are significant, as the 

model offers a strategic tool for managers to adopt a more holistic approach that moves 

beyond cost minimization to incorporate risk management and resource optimization. 

By proactively addressing potential losses through skewness and downside risk 

assessment, managers can enhance decision robustness and reliability, fostering 

resilient, adaptive supply chain strategies that align with organizational risk profiles. 

Additionally, the model’s focus on fair resource allocation and efficient planning 

contributes to improved stakeholder trust, better alignment of supply chain functions, 

and long-term sustainability. 
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• Overall Discussion and Managerial Implications 

 

This study represents a significant advancement in Supply Chain Aggregate 

Production Planning (SCAPP) by integrating advanced fuzzy optimization models to 

address the inherent uncertainties within modern supply chains. Unlike conventional 

models that rely on static assumptions, the proposed framework leverages fuzzy logic 

to manage the unpredictable nature of supply chain systems, enabling decision-makers 

to balance cost minimization, resource allocation, and risk mitigation effectively. The 

model’s systematic approach to quantifying and managing uncertainties ensures 

resilience against both external shocks and internal variability, making it particularly 

relevant for industries affected by market volatility, global uncertainties, and rapid 

technological changes. Empirical results demonstrate that this framework enhances 

operational efficiency, mitigates cost-related risks, and optimizes resource utilization, 

positioning it as a critical tool for businesses striving to maintain stability and 

competitiveness in uncertain environments.  

Beyond its theoretical significance, this study offers important managerial 

insights, including the following: 

• Enhanced Decision-Making Under Uncertainty: Managers can benefit from 

a multi-objective approach that accommodates uncertainty and hesitation in 

human judgment, enabling more informed and balanced decisions in fluctuating 

supply chain environments. 

• Strategic Trade-off Analysis: The availability of multiple optimal solutions 

enables managers to conduct trade-off analyses among conflicting objectives, 

supporting more balanced and aligned organizational strategies. 

• Flexible Strategic Planning: By offering Pareto optimal solutions across a 

range of optimistic to pessimistic scenarios, the model allows managers to select 

strategies that best align with their risk tolerance and business conditions. 

• Strengthening Stakeholder Relationships: By incorporating fairness into the 

optimization framework, the proposed approach promotes equitable decision-

making, enhancing trust, cooperation, and long-term partnerships within the 

supply chain. 
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• Operational Stability in Uncertain Environments: The use of robustness in 

the optimization process enhances operational consistency, reducing the impact 

of variability and disruptions. 

• Risk-Awareness Planning: By integrating Chance-Constrained Programming 

(CCP), managers can incorporate probabilistic reasoning into their planning 

processes, enhancing risk management by assessing the likelihood of various 

outcomes. Additionally, the inclusion of downside risk analysis through the 

Mean-Conditional Value at Risk Gap (MCVaRG) empowers managers to 

proactively address worst-case scenarios, reducing potential losses and 

strengthening the overall resilience of the SC. 

• Strategic Use of Skewness in Planning: Leveraging skewness as part of risk 

assessment empowers managers to better evaluate asymmetric uncertainties and 

plan accordingly. 

• Future-Ready Planning Framework: By integrating advanced 

methodologies, the study provides a forward-thinking framework that prepares 

managers to navigate increasingly uncertain and complex supply chain 

environments. 

 

5.2 Limitations and Further Study 

While this study offers meaningful insights into supply chain production 

planning, it also has certain limitations that future research should consider. The main 

constraints identified across the three cases are outlined below: 

• Data Availability and Quality: The model relies heavily on imprecise, 

incomplete, and noisy data, which may impact its accuracy and effectiveness in 

real-world applications, especially when data quality is suboptimal. 

• Human Judgment Bias: Although the model accommodates hesitation and 

human judgment, subjective biases in decision-making could still affect the 

quality of the results, particularly in the absence of sufficient decision-maker 

expertise or experience. 
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• Computational Complexity: The proposed fuzzy optimization approaches, 

while comprehensive, can become computationally intensive, especially when 

applied to large-scale supply chain scenarios, potentially limiting its practical 

application in time-sensitive environments. 

• Limited Consideration of External Factors: Although the study addresses 

data uncertainty and conflicting objectives, it may not fully account for all 

external factors or unforeseen events (e.g., political, economic, or 

environmental disruptions) that could influence supply chain operations. 

• Scalability Issues: The model may face challenges in scaling to large-scale 

supply chains with many variables, decision-makers, and operational 

complexities, potentially reducing its applicability in global or highly intricate 

systems. 

• Assumption of Linear Relationships: The integration of various fuzzy 

optimization techniques may oversimplify some non-linear relationships and 

interactions in supply chain operations, which could affect the accuracy of the 

solutions in certain cases. 

• Assumptions of Static Risk Preferences: The study assumed fixed risk 

preferences of decision-makers across scenarios, which may not reflect the 

dynamic nature of risk tolerance, particularly in fast-changing or uncertain 

environments. 

• Narrow Focus on Downside Risk: The model primarily focuses on mitigating 

downside risks and worst-case scenarios, but it may not fully capture all types 

of uncertainties affecting supply chain operation costs, particularly those arising 

from unpredictable factors such as sudden market shifts or geopolitical events. 

Although the model integrates various types of skewness for a more 

comprehensive risk assessment, it may still overlook certain non-quantifiable 

risks or those driven by human factors, which can significantly influence supply 

chain performance. 
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• Over-Simplification of Fairness: While fairness is integrated into the 

optimization framework, its implementation might not fully capture the 

complex, diverse interests of all stakeholders, potentially simplifying the 

nuances of real-world stakeholder dynamics. 

• Simplification of Real-World Dynamics: The study assumes that decision-

makers can effectively adapt to a range of solutions, but real-world decision-

making often involves more complex interactions and constraints that may not 

be fully captured in the proposed model. 

• Generalizability to All Industries: The framework, though promising, may not 

be universally applicable across all industries, especially those with highly 

specific constraints or operational characteristics that differ significantly from 

the study's focus. 

 

According to all limitations of this study, future research can be explored as 

follows: 

• Enhanced Data Quality Management: Future studies could explore methods 

for improving data collection, processing, and validation, especially in the 

context of noisy or incomplete data, to enhance the accuracy and reliability of 

the model's predictions. 

• Human and Behavioral Factors: Further studies could also incorporate 

insights from behavioral economics and decision-making theories to better 

account for human judgment and biases in the decision-making process within 

the supply chain context. 

• Human-Computer Decision-Making Integration: Future studies could 

investigate ways to better integrate human decision-makers with the fuzzy 

optimization model, perhaps by using machine learning techniques to improve 

the model's adaptability to human intuition and reduce decision bias. 

• Computational Efficiency: Future studies could focus on reducing the 

computational complexity of the model, making it more efficient for larger 

datasets and more scalable for dynamic, real-time supply chain decision-

making. 
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• Integration of External Factors: Future studies could also explore the 

inclusion of additional external uncertainties (e.g., market fluctuations, 

geopolitical risks) that might influence supply chain operations and extend the 

model’s applicability in dynamic environments. 

• Scalability and Efficiency Enhancements: Future studies could explore ways 

to improve the scalability and efficiency of the multi-objective optimization 

approach, potentially using advanced algorithms or heuristic methods that 

reduce computational overhead for larger supply chains. 

• Stochastic and Non-linear Modeling: Future studies could investigate the 

potential of incorporating stochastic or non-linear programming approaches into 

the model to better capture complex relationships and improve the robustness 

of solutions in more varied scenarios. 

• Dynamic Risk Assessment Models: Further studies could also focus on 

developing dynamic models that evolve with changing market conditions, 

enabling ongoing adjustments to risk assessments and optimizing supply chain 

strategies over time. 

• Incorporating Broader Risk Categories: Future research could expand the 

model to include other types of risks beyond downside risk, such as operational, 

financial, and reputational risks, to provide a more comprehensive risk 

assessment framework. 

• Exploration of Non-Quantifiable Risks: Future studies could investigate the 

inclusion of qualitative or non-quantifiable risks, such as those related to human 

behavior, organizational culture, or customer sentiment, to improve the 

comprehensiveness of the risk assessment. 

• Fairness in Resource Allocation: Further research could investigate alternative 

methods for quantifying and implementing fairness in resource allocation, 

especially in multi-stakeholder environments, to refine the model’s practical 

applicability. 

• Real-Time Application and Testing: The model could be tested in real-world 

supply chain scenarios to assess its practicality and effectiveness in real-time 
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decision-making, and adjustments could be made based on feedback from actual 

operations. 

• Cross-Industry Application: Applying the model to different industries with 

unique supply chain characteristics (e.g., healthcare, perishable goods, or 

technology) could provide insights into its generalizability and identify 

potential modifications for specific sectors. 

• Comparative Analysis with Other Models: Future studies could compare the 

proposed approaches with other supply chain optimization models to evaluate 

its relative advantages and limitations, potentially identifying areas for 

improvement or adaptation for different industry sectors. 
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