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ABSTRACT

This study aims to forecast daily sales using time series analysis through two
models: Holt-Winters and ARIMA. A real dataset containing 1,826 consecutive days
of sales data was used as the basis for analysis.

The first model, Holt-Winters, was optimized by adjusting parameters for level,
trend, and seasonality to achieve the lowest possible MAPE. Subsequently, ARIMA
(4,1,1) models were developed using Minitab software. Forecasted values from each
model were compared against the actual sales values to compute the Mean Absolute
Percentage Error (MAPE), which was used as the main metric for evaluating
forecasting accuracy.

The results showed that the Holt-Winters model achieved the lowest MAPE of
22.04, indicating the highest accuracy among the two models. These findings suggest
that the Holt-Winters method is a suitable approach for short-term sales forecasting in
daily time series data.

This study provides useful insights for improving forecasting in business

operations, especially for production planning and inventory management.
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CHAPTER 1
INTRODUCTION

In today’s highly competitive environment, organizations are under sustained
pressure to run lean operations and make decisions grounded in data. A central lever
for operational excellence is demanding forecasting anticipating near-term sales with
enough accuracy to plan procurement, staffing, inventory, transportation, and service
levels. Within logistics and supply chain contexts, forecast accuracy directly affects
stockouts, excess inventory, working capital, and the ability to react to market changes.

As sales patterns increasingly reflect a mix of trend, seasonality, calendar
effects, and noise, single-rule or naive approaches often fall short. This has motivated
broad use of time-series models such as Holt-Winters exponential smoothing and
ARIMA (Autoregressive Integrated Moving Average), alongside modern Artificial
Neural Networks (ANN) that can learn nonlinear relationships from engineered features
(e.g., lags and calendar indicators). Each method brings different assumptions and
strengths; selecting a suitable approach depends on both the data’s structure and the
forecasting objective.

This Independent Study (IS) compares these approaches on a real retail sales
series. Using a common evaluation protocol and focusing on Mean Absolute Percentage
Error (MAPE) as the primary criterion, the study assesses which method is most
appropriate for daily demand prediction and discusses implications for supply-chain

planning.

1.1 Background and significance

Reliable short-horizon forecasts are foundational to supply-chain and logistics
decisions. When forecasts are well-calibrated, firms can align purchasing with demand,
position inventory efficiently, schedule labor and transport more effectively, and
deliver higher service levels at lower cost. Because demand patterns can be complex
exhibiting weekly and annual seasonality, holidays, and trend model choice matters.
Comparing established statistical models with learning-based methods helps

practitioners select tools that balance accuracy, transparency, and ease of deployment.
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1.2 Problem statement

Multiple forecasting options exist from exponential smoothing families to
ARIMA and data-driven ANN. Their performance, however, is not uniform; it varies
with structural features of the data such as trend strength, seasonal amplitude, calendar
effects, and noise. Choosing an unsuitable model can inflate forecast errors and create
operational inefficiencies. A systematic, side-by-side comparison under a common data
split and metric is therefore necessary to identify the most appropriate method for the

dataset at hand.

1.3 Research scope and methodology

This study analyzes five years of daily sales (1,826 observations) from a retail
context. The series displays clear seasonal behavior and trend, making it a realistic
testbed for short-term forecasting. Before modeling, the data were cleaned, transformed
where required (e.g., differencing for ARIMA), and augmented with time-based
features (e.g., day-of-week, month, holidays, and sales lags) for models that can exploit
them (e.g., ANN).

A fixed data split is used for a fair comparison: training, validation, and test
subsets. Model selection and hyperparameter tuning are performed on the validation
set; final performance is reported on the held-out test set using consistent rounding rules

for count forecasts.

1.3.1 Forecasting models considered

This study develops and evaluates three forecasting approaches on the same
dataset. First, the Holt—-Winters exponential smoothing method (triple smoothing) is
applied because it explicitly models level, trend, and seasonality; both additive and
multiplicative specifications are considered to accommodate constant versus scale-
dependent seasonal amplitudes. Second, the ARIMA framework is used to capture
linear dependence in (difference) stationary series, with orders guided by ACF/PACF
diagnostics following the Box—Jenkins procedure. Third, an Artificial Neural Network
(ANN) is trained as a feed-forward model on engineered features including recent sales
lags and calendar or holiday indicators to learn potential nonlinear relationships that

classical linear models may not capture. All models share a common protocol: they are
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trained on the same training period, tuned on the validation period, and then refit as

appropriate prior to evaluation on the held-out test set.

1.3.2 Evaluation metric

MAPE is the principal metric, reporting average absolute percentage error
relative to actual demand facilitating comparison across time and across methods. To
provide a fuller view of error magnitude and dispersion, Mean Absolute Deviation
(MAD), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) are also
reported. Accuracy metrics are computed on non-differenced actuals, and where
applicable, forecast values are rounded to integers to reflect count data before metric

calculation for consistency across methods.

1.4 Objective of the study
The overarching aim is to identify a practically deployable method for day-

ahead demand forecasting in a retail/supply-chain setting.

1.4.1 Develop and compare multiple models

Build and evaluate Holt—Winters, ARIMA, and ANN on the same daily-sales
data under a unified training/validation/test protocol. Holt—Winters addresses level—
trend—seasonality explicitly; ARIMA benchmarks linear dependence after differencing;

ANN leverages lagged sales and calendar features to capture potential nonlinearities.

1.4.2 Evaluate forecasting accuracy using MAPE

Model performance is benchmarked primarily with Mean Absolute Percentage
Error (MAPE), which reports error as a percentage of the observed value, enabling
comparisons across different demand levels. To add robustness, we also report Mean
Absolute Deviation (MAD), Mean Squared Error (MSE), and Root Mean Squared Error
(RMSE).
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1.4.3 Determine the most effective model

By comparing MAPE values across all models, the study aims to identify the
model that yields the lowest forecasting error. This model will be recommended as the
most suitable for forecasting daily sales in similar operational environments. The
identification of the best-performing model will also consider the complexity and

interpretability of each method.

1.4.4 Provide practical implications for real-world business use

The ultimate goal of the study is to generate insights that are directly applicable
to real-world business operations. By identifying a forecasting method with the lowest
error, organizations can make more informed decisions regarding inventory planning,
supply chain scheduling, budgeting, and workforce allocation. Improved forecast
accuracy can lead to better service levels, cost savings, and strategic agility in logistics

and retail environments.

Ref. code: 25686722041115TZM



CHAPTER 2
REVIEW OF LITERATURE

2.1 Introduction to time-series forecasting in retail

Time-series forecasting underpins retail and supply-chain operations by
informing replenishment, inventory positioning, labor scheduling, and service-level
planning. Reviewing a quarter century of research, De Gooijer and Hyndman (2006)
conclude that exponential smoothing (including Holt—Winters) and ARIMA remain
durable baselines for short-horizon demand when identification, diagnostics, and out-
of-sample evaluation are applied systematically. Large-scale benchmarking reinforces
this view: in the M3 competition, Makridakis and Hibon (2000) show that relatively
simple approaches especially exponential-smoothing variants often match or surpass
more complex methods across thousands of series, underscoring their practical value in
business contexts. Extending the evidence, the M4 competition demonstrates that no
single method dominates universally; nevertheless, families such as exponential
smoothing and ARIMA remain among the strongest general-purpose performers when
tuned carefully, while combinations can further improve accuracy as Makridakis,
Spiliotis and Assimakopoulos (2020) report. Focusing on daily supermarket sales,
Taylor (2007) highlights volatility and skewness that motivate interval forecasting,
while also noting the widespread operational use of exponential smoothing for point
forecasts. Taken together, these findings justify evaluating Holt—Winters and ARIMA

as baselines for daily retail demand in this study.

2.2 Exponential smoothing and Holt—Winters

Exponential smoothing evolved from level-only updating to formulations that
also track trend and seasonality. Building the trend-corrected structure and its
forecasting expressions, Holt (2004) laid foundations for modern Holt—Winters
variants used widely when trends coexist with recurring seasonal patterns. Synthesizing
post-1985 advances, Gardner (2006) clarifies practical issues initialization, parameter
stability, and when additive versus multiplicative seasonality is appropriate and
concludes that Holt—Winters remains highly competitive for short-horizon operational

forecasting. Linking the family to a statistical framework, Hyndman, Koehler, Ord
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and Snyder (2002) cast exponential smoothing in innovations state-space (ETS) form,
enabling principled estimation, information-criterion selection, and forecast intervals
for automated application. Addressing unstable long-run extrapolation in trending
demand, Taylor (2003) proposes a damped multiplicative trend specification that
tempers growth while preserving level-proportional seasonal amplitude, often

improving stability without sacrificing responsiveness.

2.3 ARIMA and the Box—Jenkins framework

The Box—Jenkins methodology frames ARIMA as an iterative cycle identify,
estimate, diagnose aimed at parsimonious yet accurate forecasting models. Surveying
25 years of research, De Gooijer and Hyndman (2006) position ARIMA as a durable
statistical baseline once stationarity is enforced (e.g., via differencing) and orders are
guided by ACF/PACF with residual checks, a practice consistent with retail use.
Comparative work against machine-learning alternatives emphasizes ARIMA’s
strength in capturing short-run linear dependence; in repairable-system series, Ho, Xie
and Goh (2002) find Box—Jenkins ARIMA robust for short horizons relative to neural
networks, reinforcing its role as a transparent benchmark. To aid order selection beyond
heuristic diagnostics, Ong, Huang and Tzeng (2005) apply genetic algorithms,
showing that search-based identification navigates complex order spaces and avoids
local optima while remaining within the Box—Jenkins workflow. With explanatory
inputs, ARIMAX can incorporate promotions and category effects: using SKU-level
retail data, Ma, Fildes and Huang (2016) demonstrate material accuracy gains from
promotional covariates, an important signal for retail planning. Hybridization further
suggests complementary strengths, as Zhang (2003) shows that combining ARIMA
(linear) with neural networks (nonlinear) can outperform either alone across multiple

series.

2.4 Artificial Neural Networks (ANN) for time-series demand forecasting
Artificial Neural Networks (ANNs) have been adopted in retail and operations

forecasting as flexible learners capable of capturing nonlinear interactions among

lagged demand, calendar effects, and special-day influences that linear time-series

models may not fully represent. On aggregate retail sales, Alon, Qi and Sadowski
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(2001) compare ANNs with traditional benchmarks and report competitive accuracy
across seasonal horizons, motivating ANN as a practical alternative when calendar
structure interacts with demand. Examining sales series with potential interventions and
nonlinearities, Ansuj and Sharma (1996) show that back-propagation networks can
learn patterns not easily handled by linear autoregressive structures, supporting a
complementary role alongside Box—Jenkins baselines. At product level for short shelf-
life items where volatility and seasonality are pronounced Doganis, Alexandridis,
Patrinos and Sarimveis (2006) develop nonlinear ANN models that improve short-
term sales prediction, particularly when engineered inputs such as recent sales lags and
encoded calendar/holiday indicators are included. More recently, for daily horizons
with rich calendar structure, Vallés-Pérez and Martinez-Ballesté (2022) evaluate
recurrent architectures for store-item sales and find gains over conventional methods in
several settings, especially when networks exploit day-of-week, month, and special-
day effects. While ANNs can deliver accuracy improvements, they require
hyperparameter tuning and careful control of data leakage (e.g., fitting any scaling on
training data and applying the same transformation to validation/test). They may be less
transparent than Holt-Winters or ARIMA and can overfit when training samples are
limited relative to model capacity trade-offs that motivate evaluating ANN alongside

classical baselines under a common protocol.

2.5 Comparative evidence: Holt—Winters, ARIMA, and ANN

Comparative results across operational settings indicate that relative
performance is data-dependent and horizon-specific. When structural breaks or
interventions occur, ARIMA with explicit intervention terms can be advantageous; in
a call-center application, Bianchi, Jarrett and Hanumara (1998) show that modeling
disturbances within a Box—Jenkins framework improves accuracy, highlighting
ARIMA’s strength when shocks or level shifts must be accommodated. Where
seasonality is strong and recurring, exponential-smoothing variants remain highly
competitive; for short-term electricity demand with pronounced weekly/daily cycles,
Taylor, de Menezes and McSharry (2006) report that advanced exponential-
smoothing specifications designed for multiple seasonalities often match or exceed

ARIMA at day-ahead horizons, underscoring Holt-Winters/ETS as a robust baseline
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when seasonal structure dominates. At broader industrial scale, Hassani, Heravi and
Zhigljavsky (2009) observe broadly similar short-horizon accuracy for Holt—Winters
and ARIMA when seasonality is stable, with differences emerging at longer horizons
or under structural change. Relative to these statistical baselines, learning-based
methods show complementary strengths. Ho, Xie and Goh (2002) find that ARIMA
offers reliable short-horizon performance and stands as a credible benchmark against
neural networks when linear autocorrelation drives predictability, while Zhang (2003)
demonstrates that hybrid ARIMA-NN models can surpass either component alone,
implying coexistence of linear and nonlinear signals. In retail contexts with rich
exogenous information, Ma, Fildes and Huang (2016) show that adding promotions
and category effects via regression with ARIMA errors (ARIMAX) materially
improves accuracy, suggesting that feature-enriched models statistical or ANN benefit
from explanatory signals beyond pure autocorrelation. These findings motivate the
present study’s side-by-side evaluation of Holt—Winters, ARIMA, and ANN under a

shared train—validation—test protocol.

2.6 Forecast Accuracy Metrics

Choosing appropriate accuracy metrics is essential for fair model comparison
and for aligning forecasts with operational decisions. Reviewing and systematizing
measures used across time-series applications, Hyndman and Koehler (2006)
recommend reporting multiple metrics and introduce the mean absolute scaled error
(MASE) to enable comparability across series; they also discuss pitfalls of percentage-
based measures such as MAPE and sMAPE, including undefined values at zero and
small-value bias issues salient for daily retail sales. Empirical comparisons across 191
economic series show that the choice of error measure can materially affect method
rankings; evaluating reliability, sensitivity, and robustness, Armstrong and Collopy
(1992) argue for relative error measures when generalizing performance across
heterogeneous series, reinforcing the need to avoid over-reliance on any single metric.
Addressing claims that the symmetric MAPE fixes problems with MAPE, Goodwin
and Lawton (1999) demonstrate that SMAPE is itself asymmetric for positive versus
negative errors, particularly when actual values are small. Consistent with these

insights, the present study emphasizes MAPE for headline comparability and reports
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MAD, MSE, and RMSE as supporting measures, computed on non-differenced actuals
and, where applicable, on integer-rounded forecasts to reflect the count nature of daily

sales.

2.7 Research Gap and Practical Importance

Although prior studies establish Holt—Winters/ETS and ARIMA as strong
baselines and document promising gains from neural networks, most evidence is
scattered across different datasets, horizons, and evaluation protocols. Direct head-to-
head comparisons on daily retail demand with long seasonal cycles (s=<365) are still
limited, especially when models are tuned under a consistent train—validation—test split,
exposed to the same calendar and holiday information, and judged with identical
accuracy rules (e.g., rounding forecasts to integers before computing error to respect
count data). In particular, few works examine how multi-step dynamic forecasting
affects ARIMA behavior (e.g., the tendency to flatten under d = 1) relative to Holt—
Winters and ANN on the same series and window, nor do they report a unified set of
metrics (MAPE with MAD/MSE/RMSE) to triangulate conclusions.

This study addresses that gap by comparing Holt—Winters, ARIMA, and ANN
on a single five-year, daily retail dataset using a shared, transparent protocol: (i) feature
design aligned with operational signals (lags and calendar/holiday flags) where
applicable; (ii) model selection on a held-out validation segment; and (iii) final
assessment on a strict test horizon with consistent rounding and metric computation.
The practical importance is direct: selecting a method that is demonstrably best for this
data and horizon enables more reliable replenishment, leaner inventories, and better
labor and transport planning. Beyond the specific dataset, the protocol itself common
inputs, identical splits, and comparable error reporting offers a replicable template for
organizations to evaluate forecasting options on their own series and deploy the most

effective model with confidence.
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CHAPTER 3
METHODOLOGY

3.1 Data

3.1.1 Data collection
The study draws on a publicly released daily-sales series from a Bangladeshi
retailer hosted on Mendeley Data. The dataset was accessed for academic use under the

repository’s terms and serves as a transparent basis for replicating the analysis.

3.1.2 Data description

The file contains 1,826 consecutive calendar days from 2013-01-01 to 2017-12-
31. Two fields are provided: a date stamp and the corresponding sales count for that
day. This structure enables direct exploration of temporal features trend and recurring

seasonal patterns relevant to short-horizon retail forecasting.

3.2 Forecast performance measures
To assess the predictive performance of the forecasting models, several
statistical error metrics are employed. These measures provide a quantitative evaluation

of forecast accuracy and enable comparison across different methods.

3.2.1 Definition of MAD, MSE, RMSE, and MAPE

Four error criteria were used. MAD summarizes the average absolute miss.
MSE magnifies large deviations via squaring, while RMSE returns the result to the
original unit by taking the square root. MAPE expresses error as a share of the observed

value, which eases comparison across demand levels.

3.2.2 Equation of MAD
1 ~
MAD ==30,|Y, — ¥ (3.1)
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3.2.3 Equation of MSE
1 ~
MSE = n =1 (Ye — )2 (3.2)

3.2.4 Equation of RMSE

RMSE = \/% Y (Y — )2 (3.3)

3.2.5 Equation of MAPE

MAPE ==2yn, [*ot

Yt

(3.4)

Where:
e Y, =actual value at time t
o ¥, =forecasted value at time t
e n =number of observations
Among these measures, MAPE serves as the primary evaluation metric in this
study because of its intuitive interpretation as the average percentage error. MAD,

MSE, and RMSE are also calculated to provide additional insights into the magnitude

and distribution of forecast errors.

3.3 Holt-Winters method

Holt—Winters exponential smoothing is a forecasting method specifically
designed for time series data that exhibit both trend and seasonal variations. Unlike
simple exponential smoothing, which only accounts for level, the Holt—Winters method
incorporates two additional components: trend and seasonality. This makes it
particularly suitable for datasets such as daily sales, where seasonal cycles can
significantly influence demand patterns. There are two common variations of Holt—
Winters: additive and multiplicative. The additive version is typically applied when
seasonal fluctuations are relatively constant in magnitude, whereas the multiplicative
version is used when the amplitude of seasonal variations changes proportionally with

the level of the series.
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3.3.1 Data preprocessing for Holt-Winters

To ensure fair model selection and evaluation, the dataset was split
chronologically into training (first 1,729 days), validation (next 90 days), and test (final
7 days) with no shuffling. Smoothing parameters («, 8, y)were tuned using a grid on
the validation segment (design of experiments over preset levels, yielding 64
combinations), after fitting on the training data. The final HW configuration was then
re-estimated as appropriate before generating forecasts for the test horizon. For
comparability across methods and to respect count data, HW forecasts were rounded to
the nearest integer prior to computing accuracy metrics (MAPE, MAD, MSE, RMSE)

against the non-differenced actuals.

3.3.2 Parameter of Holt-Winters
The model involves three smoothing constants:
e Alpha (a): Controls the smoothing of the level component.
e Beta (B): Controls the smoothing of the trend component.
e (Gamma (y): Controls the smoothing of the seasonal component.
In this study, the optimal values of a, B, and y were determined using grid search
approach, starting with values of 0.01, 0.04, 0.07, and 0.10. By combining these values,
64 different parameter configurations were tested to identify the one that produced the

lowest forecasting error.

3.3.3 Equations of Holt-Winters

Level equation

L =0 () + (1-0) (Ley + Teo) (3.5)

Trend equation

Ty =B (L — L)) +(A=P)Te—y (3.6)

Seasonality equation

Se=v @)+ (1-1) Sees (3.7)
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Forecast equation

?t +m= L +mTy) Se_sim (3.8)

Where:
e L, =level component at time t
e T, =trend component at time ¢t
e S; =seasonal component at time t
e s =season length

e m = forecast horizon

3.4 ARIMA model

ARIMA is a stochastic model for univariate time series in which, after
differencing to achieve stationarity, the current value is expressed as a combination of
past values and past shocks. Within the Box—Jenkins framework, model orders are
written (p,d, q): p is the number of autoregressive lags, d is the degree of non-

seasonal differencing, and g is the number of moving-average terms.

3.4.1 Data preprocessing for ARIMA

The daily series was split chronologically into train (1,729 days), validation (90
days), and test (7 days). All identification was done on train only: the series showed
trend, so first-order differencing was applied (4 = 1), and ACF/PACF of ¥, guided
parsimonious (p, g)candidates (with/without constant). No exogenous variables and
no seasonal differencing were used (non-seasonal ARIMA baseline).

Each candidate was fitted on train and validated with 90-day dynamic forecasts;
accuracy was computed on the original (non-differenced) scale, with forecasts rounded
to integers before calculating MAPE, MAD, MSE, RMSE. The best specification by
validation MAPE was then re-estimated on train + validation and used to produce 7-

step dynamic forecasts for the held-out test set under the same rounding and metrics.
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3.4.2 Parameters of ARIMA
o Autoregressive (AR, p): Refers to the number of lagged observations included
in the model.
o Integrated (I, 4): Represents the number of differencing operations applied to
the raw series to achieve stationarity.
e Moving Average (MA, g): Indicates the number of lagged forecast errors
included in the prediction equation.

The selection of AR, I, and MA parameters was carried out using the Box—
Jenkins methodology, which involves analyzing the Autocorrelation Function (ACF)
and Partial Autocorrelation Function (PACF) plots. The ACF is useful for identifying
potential MA terms, while the PACEF is applied to determine possible AR terms. Before
examining the ACF and PACF plots, the original sales series was checked for
stationarity. Since the series exhibited a clear trend, first-order differencing (4 = 1) was
applied to stabilize the mean and remove non-stationarity. The differenced series was
calculated as:

-

Y, =Y, -Y_, (3.9)
Where Y; represents the sales at time t and Y;_; is the sales at the previous time step.

The resulting differenced series (Y;) was then used for ACF and PACF analysis
to determine the appropriate AR and MA orders.

3.4.3 Equation of ARIMA
Following the formulation used in Minitab, the general ARIMA (p, &, ¢) model
can be expressed as:

Vi=c+ ¢Vt oYy +o v @Yoy T 0161 T 0,6 5+ ...+ 0,6 +& (3.10)

Where:
« Y, =the differenced series at time t (after applying & differencing operations)
e ¢ = constant term

e ¢; = coefficients of the autoregressive terms
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o 0, = coefficients of the moving average terms

e & =random error term (white noise) at time t

3.5 Artificial Neural Network (ANN)

An Artificial Neural Network (ANN) is a data-driven, nonlinear function
approximator that maps input features to a target by composing linear transformations
with nonlinear activation functions. For univariate demand forecasting, a feed-forward
network learns a direct relationship between recent demand lags and calendar effects
and the next-day sales level, without requiring an explicit stochastic structure as in
ARIMA or explicit decomposition as in Holt—-Winters. In this study, we employ a fully
connected feed-forward network with one or two hidden layers (sigmoid activation)

and a linear output node suitable for continuous-valued forecasts.

3.5.1 Data preprocessing for ANN

The daily sales series was split chronologically into training (1,729 days),
validation (90 days), and test (7 days). The dependent variable is the non-differenced
daily sales Y;. To encode short-term dynamics and calendar effects, we constructed the
following inputs: seven sales lags (t—1... t—7), day-of-week dummies
(Monday...Sunday), month dummies (January... December), a holiday flag (0/1), and
optionally day of month (1-31). The date field was kept only as an identifier and not
used as a predictor. Because ANN is trained on the original (non-differenced) scale,
each lagged input is defined directly from past observations:

sales_lag,(t) = Yy (3.11)

For t < k, sales_lag, (t) is undefined; after generating all lags (k = 1...7),

the first 7 rows were removed so every remaining record has a complete set of lag

features.

3.5.1.1 Normalization and leakage control
When feature scaling was used, the transformer was fit on the training set only
and then applied unchanged to validation and test. The target ¥; and binary dummies

(day-of-week, month, holiday) were not scaled. For consistency with count data and
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with other models, ANN predictions were rounded to the nearest integer prior to

computing MAPE, MAD, MSE, and RMSE against non-differenced actuals.

3.5.2 Parameters of ANN

The ANN is characterized by architectural and optimization parameters.
Architectural choices include the number of hidden layers (1-2), the number of hidden
nodes per layer, the hidden activation (sigmoid/logistic), and a linear output unit.
Optimization choices include the number of training cycles (epochs), learning rate,
momentum, and optional weight decay (L2 regularization). Random initialization and
a fixed chronological split were used, no shuffling of time order or sequence windowing
was performed. Hyperparameters were selected via grid search on the validation set
under the fixed split, using MAPE as the primary selection criterion while also
monitoring MAD, MSE, and RMSE for supporting evidence. The final configuration
was retrained on the combined train + validation data before evaluation on the held-out

test horizon.

3.5.3 Equation of ANN (single hidden layer)

The model used is a feed-forward neural network with one hidden layer (linear
output). Its mapping is:
Y, = wya(Wyx, + by) + b, (3.12)

Where:

o x; € RK: input feature vector at day t, concatenating
[Yi_q, ..., Yi_7] (sales lags), one-hot day-of-week (Mon—Sun), one-hot month
(Jan—Dec), holiday flag (0/1), and (optionally) day-of-month; K = total number
of features.

« Y, € R: predicted sales for day t (real-valued before rounding).

o« W, € RE*K b, € RH: weights and biases of the hidden layer with H units.

e w, € R¥ b, € R: weights and bias of the linear output unit.

e 0: element-wise hidden activation (sigmoid/logistic in this study).

H: number of hidden units; K: number of input features.
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Predicted values Y; are rounded to the nearest integer (to reflect count data)

before computing MAPE, MAD, MSE, and RMSE against non-differenced actuals.
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4.1 Holt—Winters result

CHAPTER 4
RESULT

4.1.1 DOE on validation (model selection)

18

Holt—Winters (multiplicative seasonality, s = 365) was fit on the training set

(days 1-1,729). Model selection used grid search over smoothing parameters

(a, B,y) € {0.01,0.04,0.07,0.10}3 (64 combinations).

For each combination, the model produced 90-day dynamic forecasts for the

validation window. Forecasts were rounded to the nearest integer before computing

MAPE on non-differenced actuals (with MAD, MSE, RMSE recorded as supporting

metrics).

Table 4.1 Validation MAPE for Holt-Winters grid search (64 combinations;

multiplicative, s = 365)

Level Trend Seasonal MAPE
0.01 0.01 0.01 28.19
0.01 0.01 0.04 28.43
0.01 0.01 0.07 28.42
0.01 0.01 0.1 28.42
0.01 0.04 0.01 28.90
0.01 0.04 0.04 28.99
0.01 0.04 0.07 28.82
0.01 0.04 0.1 28.98
0.01 0.07 0.01 30.18
0.01 0.07 0.04 30.22
0.01 0.07 0.07 30.18
0.01 0.07 0.1 29.61
0.01 0.1 0.01 28.41
0.01 0.1 0.04 28.19
0.01 0.1 0.07 28.05
0.01 0.1 0.1 28.45
0.04 0.01 0.01 28.49
0.04 0.01 0.04 28.51
0.04 0.01 0.07 28.73
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0.1 0.1 0.07 28.09
0.1 0.1 0.1 28.14

Table 4.2 DOE result for the best Holt-Winters model

Level Trend Seasonal MAPE
0.1 0.04 0.01 27.92

The best validation configuration was Level = 0.10, Trend = 0.04 and Seasonal

=0.01 with MAPE =27.92

4.1.2 Validation fit of the winning model

Figure 4.1 shows Actual vs Forecast on the validation window (90 days) for the
winning Holt—Winters configuration. The forecasts follow the short-run level and the
recurring seasonal pattern implied by s = 365, with visible deviations around holiday-

related spikes-typical for daily retail demand.

Time Series Plot of validate_set, Forecast_Val
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Figure 4.1 Validation (90 days): actual vs forecast (Holt-Winters)
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Interpretation. The model reproduces the main seasonal cycle and adapts to
local movements sufficiently to attain the lowest validation MAPE among the DOE

candidates.

4.1.3 Test-set evaluation (using the selected parameters)

After selection, the Holt—Winters model was re-estimated on train + validation
with the winning parameters and used to generate 7-day dynamic forecasts for the test
set. As in validation, predictions were rounded to integers prior to scoring against non-
differenced actuals. The resulting accuracy was MAPE = 21.12 (with MAD, MSE,
RMSE computed under the same rule).

Table 4.3 Holt—Winters accuracy under the split protocol

Data MAPE MAD MSE RMSE
Validation (90 days) | 27.92 4.66 36.37 6.03
Test (7 days) 21.12 4.14 25.00 5.00

Remark. Using a common split and identical rounding/metrics ensures a fair

comparison with ARIMA and ANN in subsequent sections.

4.2 ARIMA result

4.2.1 Model identification (ACF/PACF-based orders)

Using the training segment only, the series was first differenced to address non-
stationarity, fixing & = 1. Order cues were then taken from the correlograms of the
differenced series. The PACF shows clear early significance through lags 1-4 before

tapering, so autoregressive orders p € {1,2,3,4} were deemed plausible as in figure 4.2
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Partial Autocorrelation Function for sales_d1
{(with 5% significance limits for the partial autocorrelations)
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Figure 4.2 Partial Autocorrelation Function (PACF) of differenced data
The ACF displays a pronounced first-lag effect with a gradual decay rather than

a sharp multi-lag cut-off, suggesting at most a short moving-average component, i.e.,

g € {0,1} as in figure 4.3
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Autocorrelation Function for sales_d1

significance limits for the autocorrelations)

0.41

0.2

0.0

-0.2 1

|

I A

S I I

— - I, c  +— 1+ 1 1 1 1 1T .1
II!! I e II|II|I! Il!lll [ 1" rTrrrmim II|'|_L

1 10

20 30 40

Lag

L0 a0 T0 B0

Figure 4.3 Autocorrelation Function (ACF) of differenced data

These readings set the search space to ARIMA(p, 1, g) with p € {1,2,3,4} and

g € {0,1}.

4.2.2 Candidate set and validation selection

All candidates ARIMA(p,1,q) with p € {1,2,3,4}and g € {0,1} (each

with/without a constant) were estimated on the train set and scored on the 90-day

validation window under a common rule: forecasts were rounded to the nearest integer

and errors computed on the original (non-differenced) sales. Based on lowest validation

MAPE.

Table 4.4 Validation accuracy of ARIMA candidates

ARIMA MAPE

4,1,0
4,1,1
3,1,0
2,1,0
11,1

33.98
37.01
31.29
29.58
37.16
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1,1,0 28.23

Table 4.5 The best accuracy of ARIMA model

ARIMA MAPE
1,1,0 28.23

The selected specification was ARIMA (1,1,0) (no constant) with MAPE =
28.23%. Higher p and/or g = 1 did not yield lower error.

4.2.3 Validation fit of the selected model

Figure 4.4 plots actuals versus forecasts for the 90-day validation horizon
using the selected ARIMA (1,1,0). As expected for a non-seasonal ARIMA with & =
1 under multi-step use, the forecast profile flattens toward a local level, capturing
short-run persistence but not the pronounced seasonal swings. With integer rounding

applied prior to scoring, the validation performance was MAPE = 28.23%.

Time Series Plot of validate_set, Forecast_Val
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Figure 4.4 Validation (90 days): actual vs forecast (ARIMA (1,1,0))
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4.2.4 Test-set evaluation (using the selected parameters)

The winning ARIMA (1,1,0) was re-estimated on train + validation and used to
generate 7-day test forecasts, evaluated under the same rounding and metric protocol.
The model obtained MAPE = 24.90% on the test set, consistent with validation and
confirming ARIMA (1,1,0) as a clear, level-tracking baseline for comparison with

Holt—Winters and ANN.

Table 4.6 ARIMA (1,1,0) accuracy under the split protocol

Data MAPE MAD MSE RMSE
Validation (90 days) | 28.23 5.56 48.40 6.96
Test (7 days) 24.90 4.29 23.71 4.87

Remark. Using a common split and identical rounding/metrics ensures a fair

comparison with Holt-Winters and ANN in subsequent sections.

4.3 Artificial Neural Network (ANN) results

4.3.1 Model setup and feature design

The ANN is a feed-forward network for single-step regression. Inputs are the
engineered time-series features prepared in Chapter 3: seven recent sales lags (sales {t-
1} ... sales {t-7}), calendar indicators (day-of-week dummies, month dummies, day-
of-month), and a holiday flag. The target is the next-day sales value in levels (no
differencing). The training/validation/test protocol follows the same rolling split used
for other models: Train = 1,729 days, Validation = 90 days, Test = 7 days. Predictions
are rounded to the nearest integer before scoring, and all metrics are computed on the

original sales for fair comparison.

4.3.2 Hyper-parameter search (validation)

Architecture and optimizer settings were tuned by grid search on the validation
window while fitting on the training segment only. The search covered a single hidden
layer (a second layer was trialed but did not improve validation error) with the

following optimizer ranges:
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e training_cycles: 100 - 1000 (9 linear steps)
e learning rate: 0.005 - 0.010 (5 linear steps)
o momentum: 0.1 - 0.9 (8 linear steps)

e decay: {true, false}

Table 4.7 Validation accuracy across candidate ANN settings

Architecture (hidden) MAPE
1 layer, 7 nodes 20.93

1 layer, 14 nodes 20.87

1 layer, 21 nodes 21.77

1 layer, 28 nodes 20.90

2 layer, 14, 7 nodes 21.17
2 layer, 21, 7 nodes 21.50
2 layer, 21, 14 nodes 21.31
2 layer, 28, 14 nodes 21.47

Table 4.8 The best accuracy of ANN model

Architecture (hidden) MAPE
1 layer, 14 nodes 20.87

Hidden-unit counts from small to moderate sizes were tried; validation error
consistently favored a compact single-layer network. The best validation configuration
was:

e Hidden layer: 1 layer, 14 nodes
e training cycles = 800, learning_rate = 0.009, momentum = 0.8, decay = false
This model achieved MAPE = 20.87% on the 90-day validation window under

the rounding rule.

4.3.3 Validation fit of the selected ANN
The selected 1x14 network tracks the level and the recurring weekly pattern
materially better than linear baselines, while smoothing isolated spikes. The 90-day

validation plot (actual vs forecast) should be inserted here.
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Figure 4.5 Validation (90 days): actual vs forecast (ANN 1x14)

4.3.4 Test-set evaluation (using the selected parameters)

The winning configuration above was retrained on Train + Validation and

used to forecast the 7-day test horizon. Under the same integer-rounding and metric

protocol.

Table 4.9 ANN (1x14) accuracy under the split protocol

Data MAPE  MAD MSE RMSE
Validation (90 days) | 20.87  3.89 23.49 4.85
Test (7 days) 13.47  2.71 15.57 3.95

Remark. Using a common split and identical rounding/metrics ensures a fair

comparison with Holt-Winters and ARIMA in subsequent sections.

4.4 Comparative analysis of models

All three approaches were trained, tuned, and tested under the same protocol:

the Train (1,729 days) segment was used to fit candidates, Validation (90 days) to select

hyper-parameters, and the Test (7 days) horizon to report final generalization. Forecasts
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from every model were rounded to the nearest integer before scoring, and all metrics
were computed on the original (non-differenced) sales to ensure a fair, like-for-like

comparison.

Table 4.10 Side-by-side MAPE under the common split/rounding protocol

Model Validation MAPE Test MAPE
Holt-Winters 27.92 21.12
ARIMA 28.23 24.90
ANN 20.87 13.47

On the validation window, the ANN reduces MAPE by ~ 7-8 percentage points
relative to Holt—Winters and ARIMA, indicating better fit to short-run dynamics given
the lag and calendar inputs. On the test horizon, the gap widens: the ANN achieves
13.47%, versus 21.12% for Holt—Winters and 24.90% for ARIMA. The pattern is
consistent with the qualitative behavior of the models:

e ARIMA (1,1,0) tends to flatten under multi-step use, tracking local level but not
the recurring within-week fluctuations, which raises percentage error.

o Holt—Winters multiplicative handles broad seasonal structure but remains linear
in level/trend/season components; without explicit weekday effects it underfits
some short-run variation.

e The ANN captures nonlinear interactions between recent lags and
calendar/holiday indicators, improving day-to-day tracking without manual
seasonal specification.

These results position the ANN (1x14) as the strongest model under the agreed
evaluation, with Holt—Winters a competitive classical baseline and ARIMA serving as
a simple level-tracking benchmark. The common rounding rule and metric computation

on original sales support a transparent.
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CHAPTER S
CONCLUSION

This study compared three time-series approaches for daily sales forecasting
under a common and fair protocol. All models were trained on the same training set
(1,729 days), tuned on a 90-day validation window, and finally evaluated on a 7-day
test horizon. To align with operational use, fitted/forecast values were rounded to the
nearest integer, and all errors were computed on the original (non-differenced) sales

series.

5.1 Summary of findings

Holt—Winters (multiplicative, s = 365). After a grid search, the best setting on
the validation window was a=0.10, =0.04, y=0.01. MAPE: Validation 27.92%, Test
21.12%.

ARIMA. Based on ACF/PACEF identification with & =1 and a small g, the best
candidate on validation was ARIMA (1,1,0) (no constant). MAPE: Validation 28.23%,
Test 24.90%.

Artificial Neural Network (ANN). A one-hidden-layer network with 14 nodes
trained on lag features (t—1...t—7) and calendar/holiday indicators delivered the
strongest results. The tuned training settings were training cycles = 800, learning
rate=0.009, momentum=0.8, decay=false. MAPE: Validation 20.87%, Test 13.47%.

Overall, the ANN (1x14) clearly outperformed the classical baselines on both
validation and test. Holt—Winters was the best of the two statistical models, while

ARIMA served as a transparent, level-tracking benchmark.

5.2 Interpretation and implications

Short-run nonlinear structure matters. Incorporating recent lags and
calendar/holiday effects allowed the ANN to capture within-week variation that Holt—
Winters (level-trend—season) and ARIMA (1,1,0) did not fully express.
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Classical baselines remain useful. Holt—Winters provided competitive accuracy
with minimal feature engineering and interpretable components; ARIMA offered a
simple check that the series’ short-run persistence is being modeled correctly.

Operational takeaway. For short-horizon daily planning, the ANN should be the
primary forecasting engine. Holt—Winters is a robust fallback when model transparency
or rapid deployment is required. ARIMA may be retained as a sanity-check baseline

and for scenarios with structural breaks where intervention modeling is appropriate.

5.3 Practical recommendations

e Deployment. Automate a pipeline that (i) creates lag and calendar/holiday
features, (i1) applies the trained ANN, and (iii) rounds forecasts to integers for
downstream systems.

o Retraining policy. Refit the ANN on a rolling basis (e.g., monthly) or when
monitoring reveals drift (e.g., MAPE deteriorates beyond a threshold).

e Governance. Keep Holt—Winters live as a back-up model; compare nightly to
detect anomalies. Log forecasts and realized errors for continuous

improvement.

5.4 Limitations

o Single series & short test horizon. Results are for one daily series with a 7-day
test; longer and multiple-series evaluations could alter rankings.

e Feature scope. Only lags and calendar/holiday indicators were used;
promotions, price, weather, or other exogenous drivers were not included.

e Deterministic point forecasts. The study reports point errors
(MAPE/MAD/MSE/RMSE); uncertainty quantification (prediction intervals or
quantiles) was not addressed.

e Protocol choices. Integer rounding before error calculation affects MAPE;
although applied consistently, different rounding rules might shift absolute

values.
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5.5 Future work

o Richer features: incorporate promotions, pricing, store events, and weather
(ARIMAX/ETSX/ML models).

e Longer & rolling evaluation: adopt rolling-origin cross-validation and extend
the test horizon to assess stability.

e Model families: compare with LSTM/Temporal CNN/Transformer baselines;
explore gradient-boosted trees and hybrid/ensemble methods (e.g., HW +
ANN).

o Probabilistic forecasting: produce quantile forecasts for service-level and
inventory decisions; evaluate with pinball loss.

e Multiple seasonality: test ETS models with multiple seasonal cycles and Fourier
terms (daily/weekly/annual).

e Automated monitoring: deploy drift detectors and scheduled hyper-parameter

re-tuning.

5.6 Concluding statement

Under a unified and transparent evaluation, the ANN with one hidden layer (14
nodes) delivered the lowest error and the most accurate short-horizon forecasts,
reducing MAPE materially relative to Holt—-Winters and ARIMA. For day-to-day
demand planning, adopting the ANN as the primary forecaster backed by Holt—Winters
and ARIMA as interpretable safeguards offers a practical, high-accuracy solution that
can be incrementally enhanced with additional features, probabilistic outputs, and

systematic monitoring.
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APPENDIX A
DATASET (SOURCE & DATA DICTIONARY)

A.1 Source and coverage

This study uses a daily retail sales dataset provided via Mendeley Data
(Bangladeshi Retailer). The dataset covers 01 January 2013 to 31 December 2017,
totaling 1,826 calendar days. The data were downloaded from the public repository and
used solely for academic purposes in accordance with the repository’s terms.

Dataset DOI: https://data.mendeley.com/datasets/xwmbk7n3c8/1?utm_source

A.2 Data dictionary (brief)

Field Type Description

date Date (YYYY-MM-DD)  Calendar date of the observation
sales t Integer (count) Units sold on date t for the focal item/category
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APPENDIX B
PREPROCESSING & EVALUATION SETTINGS

B.1 Preprocessing steps (by model, with split protocol)

Data split. The daily sales series was partitioned chronologically into Train =
1,729 days, Validation = 90 days, and Test = 7 days. Model selection was performed
on the validation window; the winning settings were then refit on Train + Validation

and evaluated on the Test window.

Holt—Winters (HW)

e Input: original sales series Y; (no differencing).

e Seasonality: s = 365 (annual), multiplicative specification.

e DOE/gridon a, S,y € {0.01,0.04,0.07,0.10} using Train; forecasts generated
for Validation to select by lowest MAPE.

ARIMA

« Differencing: first difference Y; = Y; — Y;_; on Train to enforce stationarity;
ACF/PACEF used for order cues.

o Candidate set: ARIMA (p, 1,g) with p € {1,2,3,4}, g € {0,1} (with/without
constant).

e Models estimated on Train; 90-day Validation forecasts scored to select by

MAPE.

Artificial Neural Network (ANN)

o Features: sales lags Y;_j for k = 1, ...,7; calendar dummies (day-of-week,
month), day-of-month, and holiday flag.

e Architecture search on Train with Validation scoring; 1 hidden layer; node
count R tuned.

e Training hyperparameters tuned by grid: training cycles, learning rate,

momentum, weight decay (on/off).
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B.2 Integer rounding rule
Because sales are counts, all validation/test forecasts were rounded to the
nearest integer (half-up) prior to error calculation. This preserves interpretability and

ensures a fair, common scoring protocol across HW, ARIMA, and ANN.

B.3 Evaluation protocol
o Target for scoring: original (non-differenced) sales Y;.
e Metrics reported: MAPE (primary), plus MAD, MSE, RMSE.
o Selection: lowest Validation MAPE determines the winning configuration
within each model family.
e Test procedure: refit the winning model on Train + Validation and score the 7-

day Test under the same rounding/metrics.
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