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ABSTRACT 

 

This study aims to forecast daily sales using time series analysis through two 

models: Holt-Winters and ARIMA. A real dataset containing 1,826 consecutive days 

of sales data was used as the basis for analysis. 

The first model, Holt-Winters, was optimized by adjusting parameters for level, 

trend, and seasonality to achieve the lowest possible MAPE. Subsequently, ARIMA 

(4,1,1) models were developed using Minitab software. Forecasted values from each 

model were compared against the actual sales values to compute the Mean Absolute 

Percentage Error (MAPE), which was used as the main metric for evaluating 

forecasting accuracy. 

The results showed that the Holt-Winters model achieved the lowest MAPE of 

22.04, indicating the highest accuracy among the two models. These findings suggest 

that the Holt-Winters method is a suitable approach for short-term sales forecasting in 

daily time series data. 

This study provides useful insights for improving forecasting in business 

operations, especially for production planning and inventory management. 
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CHAPTER 1 

INTRODUCTION 

 

In today’s highly competitive environment, organizations are under sustained 

pressure to run lean operations and make decisions grounded in data. A central lever 

for operational excellence is demanding forecasting anticipating near-term sales with 

enough accuracy to plan procurement, staffing, inventory, transportation, and service 

levels. Within logistics and supply chain contexts, forecast accuracy directly affects 

stockouts, excess inventory, working capital, and the ability to react to market changes. 

As sales patterns increasingly reflect a mix of trend, seasonality, calendar 

effects, and noise, single-rule or naïve approaches often fall short. This has motivated 

broad use of time-series models such as Holt-Winters exponential smoothing and 

ARIMA (Autoregressive Integrated Moving Average), alongside modern Artificial 

Neural Networks (ANN) that can learn nonlinear relationships from engineered features 

(e.g., lags and calendar indicators). Each method brings different assumptions and 

strengths; selecting a suitable approach depends on both the data’s structure and the 

forecasting objective. 

This Independent Study (IS) compares these approaches on a real retail sales 

series. Using a common evaluation protocol and focusing on Mean Absolute Percentage 

Error (MAPE) as the primary criterion, the study assesses which method is most 

appropriate for daily demand prediction and discusses implications for supply-chain 

planning. 

 

1.1 Background and significance 

Reliable short-horizon forecasts are foundational to supply-chain and logistics 

decisions. When forecasts are well-calibrated, firms can align purchasing with demand, 

position inventory efficiently, schedule labor and transport more effectively, and 

deliver higher service levels at lower cost. Because demand patterns can be complex 

exhibiting weekly and annual seasonality, holidays, and trend model choice matters. 

Comparing established statistical models with learning-based methods helps 

practitioners select tools that balance accuracy, transparency, and ease of deployment. 
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1.2 Problem statement 

Multiple forecasting options exist from exponential smoothing families to 

ARIMA and data-driven ANN. Their performance, however, is not uniform; it varies 

with structural features of the data such as trend strength, seasonal amplitude, calendar 

effects, and noise. Choosing an unsuitable model can inflate forecast errors and create 

operational inefficiencies. A systematic, side-by-side comparison under a common data 

split and metric is therefore necessary to identify the most appropriate method for the 

dataset at hand. 

 

1.3 Research scope and methodology 

This study analyzes five years of daily sales (1,826 observations) from a retail 

context. The series displays clear seasonal behavior and trend, making it a realistic 

testbed for short-term forecasting. Before modeling, the data were cleaned, transformed 

where required (e.g., differencing for ARIMA), and augmented with time-based 

features (e.g., day-of-week, month, holidays, and sales lags) for models that can exploit 

them (e.g., ANN). 

A fixed data split is used for a fair comparison: training, validation, and test 

subsets. Model selection and hyperparameter tuning are performed on the validation 

set; final performance is reported on the held-out test set using consistent rounding rules 

for count forecasts. 

 

1.3.1 Forecasting models considered 

This study develops and evaluates three forecasting approaches on the same 

dataset. First, the Holt–Winters exponential smoothing method (triple smoothing) is 

applied because it explicitly models level, trend, and seasonality; both additive and 

multiplicative specifications are considered to accommodate constant versus scale‐

dependent seasonal amplitudes. Second, the ARIMA framework is used to capture 

linear dependence in (difference) stationary series, with orders guided by ACF/PACF 

diagnostics following the Box–Jenkins procedure. Third, an Artificial Neural Network 

(ANN) is trained as a feed-forward model on engineered features including recent sales 

lags and calendar or holiday indicators to learn potential nonlinear relationships that 

classical linear models may not capture. All models share a common protocol: they are 
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trained on the same training period, tuned on the validation period, and then refit as 

appropriate prior to evaluation on the held-out test set. 

 

1.3.2 Evaluation metric 

MAPE is the principal metric, reporting average absolute percentage error 

relative to actual demand facilitating comparison across time and across methods. To 

provide a fuller view of error magnitude and dispersion, Mean Absolute Deviation 

(MAD), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) are also 

reported. Accuracy metrics are computed on non-differenced actuals, and where 

applicable, forecast values are rounded to integers to reflect count data before metric 

calculation for consistency across methods. 

 

1.4 Objective of the study 

 The overarching aim is to identify a practically deployable method for day-

ahead demand forecasting in a retail/supply-chain setting. 

 

1.4.1 Develop and compare multiple models 

Build and evaluate Holt–Winters, ARIMA, and ANN on the same daily-sales 

data under a unified training/validation/test protocol. Holt–Winters addresses level–

trend–seasonality explicitly; ARIMA benchmarks linear dependence after differencing; 

ANN leverages lagged sales and calendar features to capture potential nonlinearities. 

 

1.4.2 Evaluate forecasting accuracy using MAPE 

 Model performance is benchmarked primarily with Mean Absolute Percentage 

Error (MAPE), which reports error as a percentage of the observed value, enabling 

comparisons across different demand levels. To add robustness, we also report Mean 

Absolute Deviation (MAD), Mean Squared Error (MSE), and Root Mean Squared Error 

(RMSE). 
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1.4.3 Determine the most effective model 

By comparing MAPE values across all models, the study aims to identify the 

model that yields the lowest forecasting error. This model will be recommended as the 

most suitable for forecasting daily sales in similar operational environments. The 

identification of the best-performing model will also consider the complexity and 

interpretability of each method. 

 

1.4.4 Provide practical implications for real-world business use 

The ultimate goal of the study is to generate insights that are directly applicable 

to real-world business operations. By identifying a forecasting method with the lowest 

error, organizations can make more informed decisions regarding inventory planning, 

supply chain scheduling, budgeting, and workforce allocation. Improved forecast 

accuracy can lead to better service levels, cost savings, and strategic agility in logistics 

and retail environments. 

 

 

  

Ref. code: 25686722041115TZM



5 

 

 

CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 Introduction to time-series forecasting in retail 

Time-series forecasting underpins retail and supply-chain operations by 

informing replenishment, inventory positioning, labor scheduling, and service-level 

planning. Reviewing a quarter century of research, De Gooijer and Hyndman (2006) 

conclude that exponential smoothing (including Holt–Winters) and ARIMA remain 

durable baselines for short-horizon demand when identification, diagnostics, and out-

of-sample evaluation are applied systematically. Large-scale benchmarking reinforces 

this view: in the M3 competition, Makridakis and Hibon (2000) show that relatively 

simple approaches especially exponential-smoothing variants often match or surpass 

more complex methods across thousands of series, underscoring their practical value in 

business contexts. Extending the evidence, the M4 competition demonstrates that no 

single method dominates universally; nevertheless, families such as exponential 

smoothing and ARIMA remain among the strongest general-purpose performers when 

tuned carefully, while combinations can further improve accuracy as Makridakis, 

Spiliotis and Assimakopoulos (2020) report. Focusing on daily supermarket sales, 

Taylor (2007) highlights volatility and skewness that motivate interval forecasting, 

while also noting the widespread operational use of exponential smoothing for point 

forecasts. Taken together, these findings justify evaluating Holt–Winters and ARIMA 

as baselines for daily retail demand in this study. 

 

2.2 Exponential smoothing and Holt–Winters 

Exponential smoothing evolved from level-only updating to formulations that 

also track trend and seasonality. Building the trend-corrected structure and its 

forecasting expressions, Holt (2004) laid foundations for modern Holt–Winters 

variants used widely when trends coexist with recurring seasonal patterns. Synthesizing 

post-1985 advances, Gardner (2006) clarifies practical issues initialization, parameter 

stability, and when additive versus multiplicative seasonality is appropriate and 

concludes that Holt–Winters remains highly competitive for short-horizon operational 

forecasting. Linking the family to a statistical framework, Hyndman, Koehler, Ord 
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and Snyder (2002) cast exponential smoothing in innovations state-space (ETS) form, 

enabling principled estimation, information-criterion selection, and forecast intervals 

for automated application. Addressing unstable long-run extrapolation in trending 

demand, Taylor (2003) proposes a damped multiplicative trend specification that 

tempers growth while preserving level-proportional seasonal amplitude, often 

improving stability without sacrificing responsiveness. 

 

2.3 ARIMA and the Box–Jenkins framework 

The Box–Jenkins methodology frames ARIMA as an iterative cycle identify, 

estimate, diagnose aimed at parsimonious yet accurate forecasting models. Surveying 

25 years of research, De Gooijer and Hyndman (2006) position ARIMA as a durable 

statistical baseline once stationarity is enforced (e.g., via differencing) and orders are 

guided by ACF/PACF with residual checks, a practice consistent with retail use. 

Comparative work against machine-learning alternatives emphasizes ARIMA’s 

strength in capturing short-run linear dependence; in repairable-system series, Ho, Xie 

and Goh (2002) find Box–Jenkins ARIMA robust for short horizons relative to neural 

networks, reinforcing its role as a transparent benchmark. To aid order selection beyond 

heuristic diagnostics, Ong, Huang and Tzeng (2005) apply genetic algorithms, 

showing that search-based identification navigates complex order spaces and avoids 

local optima while remaining within the Box–Jenkins workflow. With explanatory 

inputs, ARIMAX can incorporate promotions and category effects: using SKU-level 

retail data, Ma, Fildes and Huang (2016) demonstrate material accuracy gains from 

promotional covariates, an important signal for retail planning. Hybridization further 

suggests complementary strengths, as Zhang (2003) shows that combining ARIMA 

(linear) with neural networks (nonlinear) can outperform either alone across multiple 

series. 

 

2.4 Artificial Neural Networks (ANN) for time-series demand forecasting 

Artificial Neural Networks (ANNs) have been adopted in retail and operations 

forecasting as flexible learners capable of capturing nonlinear interactions among 

lagged demand, calendar effects, and special-day influences that linear time-series 

models may not fully represent. On aggregate retail sales, Alon, Qi and Sadowski 
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(2001) compare ANNs with traditional benchmarks and report competitive accuracy 

across seasonal horizons, motivating ANN as a practical alternative when calendar 

structure interacts with demand. Examining sales series with potential interventions and 

nonlinearities, Ansuj and Sharma (1996) show that back-propagation networks can 

learn patterns not easily handled by linear autoregressive structures, supporting a 

complementary role alongside Box–Jenkins baselines. At product level for short shelf-

life items where volatility and seasonality are pronounced Doganis, Alexandridis, 

Patrinos and Sarimveis (2006) develop nonlinear ANN models that improve short-

term sales prediction, particularly when engineered inputs such as recent sales lags and 

encoded calendar/holiday indicators are included. More recently, for daily horizons 

with rich calendar structure, Vallés-Pérez and Martínez-Ballesté (2022) evaluate 

recurrent architectures for store-item sales and find gains over conventional methods in 

several settings, especially when networks exploit day-of-week, month, and special-

day effects. While ANNs can deliver accuracy improvements, they require 

hyperparameter tuning and careful control of data leakage (e.g., fitting any scaling on 

training data and applying the same transformation to validation/test). They may be less 

transparent than Holt–Winters or ARIMA and can overfit when training samples are 

limited relative to model capacity trade-offs that motivate evaluating ANN alongside 

classical baselines under a common protocol. 

 

2.5 Comparative evidence: Holt–Winters, ARIMA, and ANN 

Comparative results across operational settings indicate that relative 

performance is data-dependent and horizon-specific. When structural breaks or 

interventions occur, ARIMA with explicit intervention terms can be advantageous; in 

a call-center application, Bianchi, Jarrett and Hanumara (1998) show that modeling 

disturbances within a Box–Jenkins framework improves accuracy, highlighting 

ARIMA’s strength when shocks or level shifts must be accommodated. Where 

seasonality is strong and recurring, exponential-smoothing variants remain highly 

competitive; for short-term electricity demand with pronounced weekly/daily cycles, 

Taylor, de Menezes and McSharry (2006) report that advanced exponential-

smoothing specifications designed for multiple seasonalities often match or exceed 

ARIMA at day-ahead horizons, underscoring Holt–Winters/ETS as a robust baseline 
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when seasonal structure dominates. At broader industrial scale, Hassani, Heravi and 

Zhigljavsky (2009) observe broadly similar short-horizon accuracy for Holt–Winters 

and ARIMA when seasonality is stable, with differences emerging at longer horizons 

or under structural change. Relative to these statistical baselines, learning-based 

methods show complementary strengths. Ho, Xie and Goh (2002) find that ARIMA 

offers reliable short-horizon performance and stands as a credible benchmark against 

neural networks when linear autocorrelation drives predictability, while Zhang (2003) 

demonstrates that hybrid ARIMA–NN models can surpass either component alone, 

implying coexistence of linear and nonlinear signals. In retail contexts with rich 

exogenous information, Ma, Fildes and Huang (2016) show that adding promotions 

and category effects via regression with ARIMA errors (ARIMAX) materially 

improves accuracy, suggesting that feature-enriched models statistical or ANN benefit 

from explanatory signals beyond pure autocorrelation. These findings motivate the 

present study’s side-by-side evaluation of Holt–Winters, ARIMA, and ANN under a 

shared train–validation–test protocol. 

 

2.6 Forecast Accuracy Metrics 

Choosing appropriate accuracy metrics is essential for fair model comparison 

and for aligning forecasts with operational decisions. Reviewing and systematizing 

measures used across time-series applications, Hyndman and Koehler (2006) 

recommend reporting multiple metrics and introduce the mean absolute scaled error 

(MASE) to enable comparability across series; they also discuss pitfalls of percentage-

based measures such as MAPE and sMAPE, including undefined values at zero and 

small-value bias issues salient for daily retail sales. Empirical comparisons across 191 

economic series show that the choice of error measure can materially affect method 

rankings; evaluating reliability, sensitivity, and robustness, Armstrong and Collopy 

(1992) argue for relative error measures when generalizing performance across 

heterogeneous series, reinforcing the need to avoid over-reliance on any single metric. 

Addressing claims that the symmetric MAPE fixes problems with MAPE, Goodwin 

and Lawton (1999) demonstrate that sMAPE is itself asymmetric for positive versus 

negative errors, particularly when actual values are small. Consistent with these 

insights, the present study emphasizes MAPE for headline comparability and reports 
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MAD, MSE, and RMSE as supporting measures, computed on non-differenced actuals 

and, where applicable, on integer-rounded forecasts to reflect the count nature of daily 

sales. 

 

2.7 Research Gap and Practical Importance 

Although prior studies establish Holt–Winters/ETS and ARIMA as strong 

baselines and document promising gains from neural networks, most evidence is 

scattered across different datasets, horizons, and evaluation protocols. Direct head-to-

head comparisons on daily retail demand with long seasonal cycles (s≈365) are still 

limited, especially when models are tuned under a consistent train–validation–test split, 

exposed to the same calendar and holiday information, and judged with identical 

accuracy rules (e.g., rounding forecasts to integers before computing error to respect 

count data). In particular, few works examine how multi-step dynamic forecasting 

affects ARIMA behavior (e.g., the tendency to flatten under 𝑑 = 1) relative to Holt–

Winters and ANN on the same series and window, nor do they report a unified set of 

metrics (MAPE with MAD/MSE/RMSE) to triangulate conclusions. 

This study addresses that gap by comparing Holt–Winters, ARIMA, and ANN 

on a single five-year, daily retail dataset using a shared, transparent protocol: (i) feature 

design aligned with operational signals (lags and calendar/holiday flags) where 

applicable; (ii) model selection on a held-out validation segment; and (iii) final 

assessment on a strict test horizon with consistent rounding and metric computation. 

The practical importance is direct: selecting a method that is demonstrably best for this 

data and horizon enables more reliable replenishment, leaner inventories, and better 

labor and transport planning. Beyond the specific dataset, the protocol itself common 

inputs, identical splits, and comparable error reporting offers a replicable template for 

organizations to evaluate forecasting options on their own series and deploy the most 

effective model with confidence. 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Data 

 

3.1.1 Data collection 

The study draws on a publicly released daily‐sales series from a Bangladeshi 

retailer hosted on Mendeley Data. The dataset was accessed for academic use under the 

repository’s terms and serves as a transparent basis for replicating the analysis. 

 

3.1.2 Data description 

The file contains 1,826 consecutive calendar days from 2013-01-01 to 2017-12-

31. Two fields are provided: a date stamp and the corresponding sales count for that 

day. This structure enables direct exploration of temporal features trend and recurring 

seasonal patterns relevant to short-horizon retail forecasting. 

 

3.2 Forecast performance measures 

To assess the predictive performance of the forecasting models, several 

statistical error metrics are employed. These measures provide a quantitative evaluation 

of forecast accuracy and enable comparison across different methods. 

 

3.2.1 Definition of MAD, MSE, RMSE, and MAPE 

 Four error criteria were used. MAD summarizes the average absolute miss. 

MSE magnifies large deviations via squaring, while RMSE returns the result to the 

original unit by taking the square root. MAPE expresses error as a share of the observed 

value, which eases comparison across demand levels. 

 

3.2.2 Equation of MAD 

MAD = 
1

𝑛
∑ |𝑌𝑡 −  𝑌̂𝑡|𝑛

𝑡=1                             (3.1) 
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3.2.3 Equation of MSE 

MSE = 
1

𝑛
∑ (𝑌𝑡 −  𝑌̂𝑡)2𝑛

𝑡=1                             (3.2) 

 

3.2.4 Equation of RMSE 

RMSE =√
1

𝑛
∑ (𝑌𝑡 − 𝑌̂𝑡)2𝑛

𝑡=1                             (3.3) 

 

3.2.5 Equation of MAPE 

MAPE = 
100

𝑛
∑ |

𝑌𝑡− 𝑌̂𝑡

𝑌𝑡
|𝑛

𝑡=1                                        (3.4) 

Where: 

• 𝑌𝑡 = actual value at time t 

• 𝑌̂𝑡 = forecasted value at time t 

• 𝑛 = number of observations 

Among these measures, MAPE serves as the primary evaluation metric in this 

study because of its intuitive interpretation as the average percentage error. MAD, 

MSE, and RMSE are also calculated to provide additional insights into the magnitude 

and distribution of forecast errors. 

 

3.3 Holt-Winters method 

Holt–Winters exponential smoothing is a forecasting method specifically 

designed for time series data that exhibit both trend and seasonal variations. Unlike 

simple exponential smoothing, which only accounts for level, the Holt–Winters method 

incorporates two additional components: trend and seasonality. This makes it 

particularly suitable for datasets such as daily sales, where seasonal cycles can 

significantly influence demand patterns. There are two common variations of Holt–

Winters: additive and multiplicative. The additive version is typically applied when 

seasonal fluctuations are relatively constant in magnitude, whereas the multiplicative 

version is used when the amplitude of seasonal variations changes proportionally with 

the level of the series. 
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3.3.1 Data preprocessing for Holt-Winters 

To ensure fair model selection and evaluation, the dataset was split 

chronologically into training (first 1,729 days), validation (next 90 days), and test (final 

7 days) with no shuffling. Smoothing parameters (𝛼, 𝛽, 𝛾)were tuned using a grid on 

the validation segment (design of experiments over preset levels, yielding 64 

combinations), after fitting on the training data. The final HW configuration was then 

re-estimated as appropriate before generating forecasts for the test horizon. For 

comparability across methods and to respect count data, HW forecasts were rounded to 

the nearest integer prior to computing accuracy metrics (MAPE, MAD, MSE, RMSE) 

against the non-differenced actuals. 

 

3.3.2 Parameter of Holt-Winters 

The model involves three smoothing constants: 

• Alpha (α): Controls the smoothing of the level component. 

• Beta (β): Controls the smoothing of the trend component. 

• Gamma (γ): Controls the smoothing of the seasonal component. 

In this study, the optimal values of α, β, and γ were determined using grid search 

approach, starting with values of 0.01, 0.04, 0.07, and 0.10. By combining these values, 

64 different parameter configurations were tested to identify the one that produced the 

lowest forecasting error. 

 

3.3.3 Equations of Holt-Winters 

Level equation 

𝐿𝑡 = α (
𝑌𝑡

𝑆𝑡−𝑠
) + (1- α) (𝐿𝑡−1 +  𝑇𝑡−1)                                      (3.5) 

 

Trend equation 

𝑇𝑡 = β (𝐿𝑡 − 𝐿𝑡−1) + (1 – β) 𝑇𝑡−1                              (3.6) 

 

Seasonality equation 

𝑆𝑡 = γ (
𝑌𝑡

𝐿𝑡
) + (1 – γ) 𝑆𝑡−𝑠                            (3.7) 
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Forecast equation 

𝑌̂𝑡 + 𝓂 = (𝐿𝑡 + 𝓂𝑇𝑡) 𝑆𝑡−𝑠+𝓂                            (3.8) 

 

Where: 

• 𝐿𝑡 = level component at time 𝑡 

• 𝑇𝑡 = trend component at time 𝑡 

• 𝑆𝑡 = seasonal component at time 𝑡 

• 𝑠 = season length 

• 𝓂 = forecast horizon 

 

3.4 ARIMA model 

ARIMA is a stochastic model for univariate time series in which, after 

differencing to achieve stationarity, the current value is expressed as a combination of 

past values and past shocks. Within the Box–Jenkins framework, model orders are 

written (𝓅, 𝒹, 𝓆): 𝓅 is the number of autoregressive lags, 𝒹 is the degree of non-

seasonal differencing, and 𝓆 is the number of moving-average terms. 

 

3.4.1 Data preprocessing for ARIMA  

The daily series was split chronologically into train (1,729 days), validation (90 

days), and test (7 days). All identification was done on train only: the series showed 

trend, so first-order differencing was applied (𝒹 = 1), and ACF/PACF of 𝑌́𝑡 guided 

parsimonious (𝓅, 𝓆)candidates (with/without constant). No exogenous variables and 

no seasonal differencing were used (non-seasonal ARIMA baseline). 

Each candidate was fitted on train and validated with 90-day dynamic forecasts; 

accuracy was computed on the original (non-differenced) scale, with forecasts rounded 

to integers before calculating MAPE, MAD, MSE, RMSE. The best specification by 

validation MAPE was then re-estimated on train + validation and used to produce 7-

step dynamic forecasts for the held-out test set under the same rounding and metrics. 
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3.4.2 Parameters of ARIMA 

• Autoregressive (AR,  𝓅): Refers to the number of lagged observations included 

in the model. 

• Integrated (I, 𝒹): Represents the number of differencing operations applied to 

the raw series to achieve stationarity. 

• Moving Average (MA, 𝓆): Indicates the number of lagged forecast errors 

included in the prediction equation. 

The selection of AR, I, and MA parameters was carried out using the Box–

Jenkins methodology, which involves analyzing the Autocorrelation Function (ACF) 

and Partial Autocorrelation Function (PACF) plots. The ACF is useful for identifying 

potential MA terms, while the PACF is applied to determine possible AR terms. Before 

examining the ACF and PACF plots, the original sales series was checked for 

stationarity. Since the series exhibited a clear trend, first-order differencing (𝒹 = 1) was 

applied to stabilize the mean and remove non-stationarity. The differenced series was 

calculated as: 

𝑌́𝑡 = 𝑌𝑡 - 𝑌𝑡−1                              (3.9) 

 

Where 𝑌𝑡 represents the sales at time 𝑡 and 𝑌𝑡−1 is the sales at the previous time step. 

 

The resulting differenced series (𝑌́𝑡) was then used for ACF and PACF analysis 

to determine the appropriate AR and MA orders. 

 

3.4.3 Equation of ARIMA 

Following the formulation used in Minitab, the general ARIMA (𝓅, 𝒹, 𝓆) model 

can be expressed as: 

𝑌̂𝑡 = 𝒸 +  𝜙1𝑌́𝑡−1 + 𝜙2𝑌́𝑡−2  + … + 𝜙𝑝𝑌́𝑡−𝑝 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + … + 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡      (3.10) 

 

Where: 

• 𝑌́𝑡 = the differenced series at time t (after applying 𝒹 differencing operations) 

• 𝒸 = constant term 

• 𝜙𝑖 = coefficients of the autoregressive terms 
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• 𝜃𝑗 = coefficients of the moving average terms 

• 𝜀𝑡 = random error term (white noise) at time 𝑡 

 

3.5 Artificial Neural Network (ANN) 

An Artificial Neural Network (ANN) is a data-driven, nonlinear function 

approximator that maps input features to a target by composing linear transformations 

with nonlinear activation functions. For univariate demand forecasting, a feed-forward 

network learns a direct relationship between recent demand lags and calendar effects 

and the next-day sales level, without requiring an explicit stochastic structure as in 

ARIMA or explicit decomposition as in Holt–Winters. In this study, we employ a fully 

connected feed-forward network with one or two hidden layers (sigmoid activation) 

and a linear output node suitable for continuous-valued forecasts. 

 

3.5.1 Data preprocessing for ANN 

The daily sales series was split chronologically into training (1,729 days), 

validation (90 days), and test (7 days). The dependent variable is the non-differenced 

daily sales 𝒀𝒕. To encode short-term dynamics and calendar effects, we constructed the 

following inputs: seven sales lags (𝒕 − 𝟏… 𝒕 − 𝟕), day-of-week dummies 

(Monday…Sunday), month dummies (January… December), a holiday flag (0/1), and 

optionally day of month (1–31). The date field was kept only as an identifier and not 

used as a predictor. Because ANN is trained on the original (non-differenced) scale, 

each lagged input is defined directly from past observations: 

𝑠𝑎𝑙𝑒𝑠_𝑙𝑎𝑔𝑘(𝑡) =  𝑌𝑡−𝑘                                                                                            (3.11) 

 

For 𝑡 ≤ 𝑘, sales_lag
𝑘

(𝑡) is undefined; after generating all lags (𝑘 = 1 … 7), 

the first 7 rows were removed so every remaining record has a complete set of lag 

features. 

 

3.5.1.1 Normalization and leakage control 

When feature scaling was used, the transformer was fit on the training set only 

and then applied unchanged to validation and test. The target 𝑌𝑡 and binary dummies 

(day-of-week, month, holiday) were not scaled. For consistency with count data and 
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with other models, ANN predictions were rounded to the nearest integer prior to 

computing MAPE, MAD, MSE, and RMSE against non-differenced actuals. 

 

3.5.2 Parameters of ANN 

The ANN is characterized by architectural and optimization parameters. 

Architectural choices include the number of hidden layers (1–2), the number of hidden 

nodes per layer, the hidden activation (sigmoid/logistic), and a linear output unit. 

Optimization choices include the number of training cycles (epochs), learning rate, 

momentum, and optional weight decay (L2 regularization). Random initialization and 

a fixed chronological split were used, no shuffling of time order or sequence windowing 

was performed. Hyperparameters were selected via grid search on the validation set 

under the fixed split, using MAPE as the primary selection criterion while also 

monitoring MAD, MSE, and RMSE for supporting evidence. The final configuration 

was retrained on the combined train + validation data before evaluation on the held-out 

test horizon. 

 

3.5.3 Equation of ANN (single hidden layer) 

The model used is a feed-forward neural network with one hidden layer (linear 

output). Its mapping is: 

𝑌̂𝑡 =  w2 𝜎( W1𝑥𝑡 + 𝑏1) +  𝑏2                                                                       (3.12) 

 

Where: 

• x𝑡 ∈ ℝ𝐾: input feature vector at day 𝑡, concatenating 

[𝑌𝑡−1, … , 𝑌𝑡−7] (sales lags), one-hot day-of-week (Mon–Sun), one-hot month 

(Jan–Dec), holiday flag (0/1), and (optionally) day-of-month; 𝐾 = total number 

of features. 

• 𝑌̂𝑡 ∈ ℝ: predicted sales for day 𝑡 (real-valued before rounding). 

• W1 ∈ ℝ𝐻×𝐾, b1 ∈ ℝ𝐻: weights and biases of the hidden layer with 𝐻 units. 

• w2 ∈ ℝ𝐻, 𝑏2 ∈ ℝ: weights and bias of the linear output unit. 

• 𝜎: element-wise hidden activation (sigmoid/logistic in this study). 

• 𝐻: number of hidden units; 𝐾: number of input features. 
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Predicted values 𝑌̂𝑡 are rounded to the nearest integer (to reflect count data) 

before computing MAPE, MAD, MSE, and RMSE against non-differenced actuals. 
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CHAPTER 4 

RESULT 

 

4.1 Holt–Winters result 

 

4.1.1 DOE on validation (model selection) 

Holt–Winters (multiplicative seasonality, 𝑠 = 365) was fit on the training set 

(days 1–1,729). Model selection used grid search over smoothing parameters 

(𝛼, 𝛽, 𝛾) ∈ {0.01,0.04,0.07,0.10}3 (64 combinations). 

For each combination, the model produced 90-day dynamic forecasts for the 

validation window. Forecasts were rounded to the nearest integer before computing 

MAPE on non-differenced actuals (with MAD, MSE, RMSE recorded as supporting 

metrics). 

 

Table 4.1 Validation MAPE for Holt–Winters grid search (64 combinations; 

multiplicative, 𝑠 = 365) 

Level Trend Seasonal MAPE 

0.01 0.01 0.01 28.19 

0.01 0.01 0.04 28.43 

0.01 0.01 0.07 28.42 

0.01 0.01 0.1 28.42 

0.01 0.04 0.01 28.90 

0.01 0.04 0.04 28.99 

0.01 0.04 0.07 28.82 

0.01 0.04 0.1 28.98 

0.01 0.07 0.01 30.18 

0.01 0.07 0.04 30.22 

0.01 0.07 0.07 30.18 

0.01 0.07 0.1 29.61 

0.01 0.1 0.01 28.41 

0.01 0.1 0.04 28.19 

0.01 0.1 0.07 28.05 

0.01 0.1 0.1 28.45 

0.04 0.01 0.01 28.49 

0.04 0.01 0.04 28.51 

0.04 0.01 0.07 28.73 
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0.04 0.01 0.1 28.58 

0.04 0.04 0.01 28.44 

0.04 0.04 0.04 28.53 

0.04 0.04 0.07 28.69 

0.04 0.04 0.1 28.71 

0.04 0.07 0.01 28.72 

0.04 0.07 0.04 28.67 

0.04 0.07 0.07 28.74 

0.04 0.07 0.1 28.74 

0.04 0.1 0.01 28.10 

0.04 0.1 0.04 28.23 

0.04 0.1 0.07 28.59 

0.04 0.1 0.1 28.63 

0.07 0.01 0.01 28.45 

0.07 0.01 0.04 28.46 

0.07 0.01 0.07 28.44 

0.07 0.01 0.1 28.45 

0.07 0.04 0.01 28.22 

0.07 0.04 0.04 28.28 

0.07 0.04 0.07 28.34 

0.07 0.04 0.1 28.39 

0.07 0.07 0.01 28.03 

0.07 0.07 0.04 28.09 

0.07 0.07 0.07 28.12 

0.07 0.07 0.1 28.04 

0.07 0.1 0.01 28.65 

0.07 0.1 0.04 28.60 

0.07 0.1 0.07 28.45 

0.07 0.1 0.1 28.31 

0.1 0.01 0.01 28.44 

0.1 0.01 0.04 28.53 

0.1 0.01 0.07 28.51 

0.1 0.01 0.1 28.47 

0.1 0.04 0.01 27.92 

0.1 0.04 0.04 28.00 

0.1 0.04 0.07 27.96 

0.1 0.04 0.1 28.14 

0.1 0.07 0.01 28.17 

0.1 0.07 0.04 28.13 

0.1 0.07 0.07 28.03 

0.1 0.07 0.1 28.03 

0.1 0.1 0.01 28.16 

0.1 0.1 0.04 28.17 
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0.1 0.1 0.07 28.09 

0.1 0.1 0.1 28.14 

 

Table 4.2 DOE result for the best Holt-Winters model 

Level Trend Seasonal MAPE 

0.1 0.04 0.01 27.92 

 

The best validation configuration was Level = 0.10, Trend = 0.04 and Seasonal 

= 0.01 with MAPE = 27.92 

 

4.1.2 Validation fit of the winning model 

Figure 4.1 shows Actual vs Forecast on the validation window (90 days) for the 

winning Holt–Winters configuration. The forecasts follow the short-run level and the 

recurring seasonal pattern implied by 𝑠 = 365, with visible deviations around holiday-

related spikes-typical for daily retail demand. 

 

Figure 4.1 Validation (90 days): actual vs forecast (Holt-Winters) 
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Interpretation. The model reproduces the main seasonal cycle and adapts to 

local movements sufficiently to attain the lowest validation MAPE among the DOE 

candidates. 

 

4.1.3 Test-set evaluation (using the selected parameters) 

After selection, the Holt–Winters model was re-estimated on train + validation 

with the winning parameters and used to generate 7-day dynamic forecasts for the test 

set. As in validation, predictions were rounded to integers prior to scoring against non-

differenced actuals. The resulting accuracy was MAPE = 21.12 (with MAD, MSE, 

RMSE computed under the same rule). 

 

Table 4.3 Holt–Winters accuracy under the split protocol 

Data MAPE MAD MSE RMSE 

Validation (90 days) 27.92 4.66 36.37 6.03 

Test (7 days) 21.12 4.14 25.00 5.00 

 

Remark. Using a common split and identical rounding/metrics ensures a fair 

comparison with ARIMA and ANN in subsequent sections. 

 

4.2 ARIMA result 

 

4.2.1 Model identification (ACF/PACF–based orders)  

Using the training segment only, the series was first differenced to address non-

stationarity, fixing 𝒹 = 1. Order cues were then taken from the correlograms of the 

differenced series. The PACF shows clear early significance through lags 1–4 before 

tapering, so autoregressive orders 𝓅 ∈ {1,2,3,4} were deemed plausible as in figure 4.2 
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Figure 4.2 Partial Autocorrelation Function (PACF) of differenced data 

 

The ACF displays a pronounced first-lag effect with a gradual decay rather than 

a sharp multi-lag cut-off, suggesting at most a short moving-average component, i.e., 

𝓆 ∈ {0,1} as in figure 4.3 
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Figure 4.3 Autocorrelation Function (ACF) of differenced data 

 

These readings set the search space to ARIMA(𝓅, 1, 𝓆) with 𝓅 ∈ {1,2,3,4} and 

𝓆 ∈ {0,1}. 

 

4.2.2 Candidate set and validation selection 

All candidates ARIMA(𝓅, 1, 𝓆) with 𝓅 ∈ {1,2,3,4} and 𝓆 ∈ {0,1} (each 

with/without a constant) were estimated on the train set and scored on the 90-day 

validation window under a common rule: forecasts were rounded to the nearest integer 

and errors computed on the original (non-differenced) sales. Based on lowest validation 

MAPE. 

 

Table 4.4 Validation accuracy of ARIMA candidates 

ARIMA MAPE 

4,1,0 33.98 

4,1,1 37.01 

3,1,0 31.29 

2,1,0 29.58 

1,1,1 37.16 

Ref. code: 25686722041115TZM



24 

 

 

1,1,0 28.23 

  

Table 4.5 The best accuracy of ARIMA model 

ARIMA MAPE 

1,1,0 28.23 

 

The selected specification was ARIMA (1,1,0) (no constant) with MAPE = 

28.23%. Higher 𝓅 and/or 𝓆 = 1 did not yield lower error. 

 

4.2.3 Validation fit of the selected model 

Figure 4.4 plots actuals versus forecasts for the 90-day validation horizon 

using the selected ARIMA (1,1,0). As expected for a non-seasonal ARIMA with 𝒹 =

1 under multi-step use, the forecast profile flattens toward a local level, capturing 

short-run persistence but not the pronounced seasonal swings. With integer rounding 

applied prior to scoring, the validation performance was MAPE = 28.23%. 

 

Figure 4.4 Validation (90 days): actual vs forecast (ARIMA (1,1,0)) 
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4.2.4 Test-set evaluation (using the selected parameters) 

The winning ARIMA (1,1,0) was re-estimated on train + validation and used to 

generate 7-day test forecasts, evaluated under the same rounding and metric protocol. 

The model obtained MAPE = 24.90% on the test set, consistent with validation and 

confirming ARIMA (1,1,0) as a clear, level-tracking baseline for comparison with 

Holt–Winters and ANN. 

 

Table 4.6 ARIMA (1,1,0) accuracy under the split protocol 

Data MAPE MAD MSE RMSE 

Validation (90 days) 28.23 5.56 48.40 6.96 

Test (7 days) 24.90 4.29 23.71 4.87 

 

Remark. Using a common split and identical rounding/metrics ensures a fair 

comparison with Holt-Winters and ANN in subsequent sections. 

 

4.3 Artificial Neural Network (ANN) results 

 

4.3.1 Model setup and feature design 

The ANN is a feed-forward network for single-step regression. Inputs are the 

engineered time-series features prepared in Chapter 3: seven recent sales lags (sales {𝑡-

1} … sales {𝑡-7}), calendar indicators (day-of-week dummies, month dummies, day-

of-month), and a holiday flag. The target is the next-day sales value in levels (no 

differencing). The training/validation/test protocol follows the same rolling split used 

for other models: Train = 1,729 days, Validation = 90 days, Test = 7 days. Predictions 

are rounded to the nearest integer before scoring, and all metrics are computed on the 

original sales for fair comparison. 

 

4.3.2 Hyper-parameter search (validation) 

Architecture and optimizer settings were tuned by grid search on the validation 

window while fitting on the training segment only. The search covered a single hidden 

layer (a second layer was trialed but did not improve validation error) with the 

following optimizer ranges: 
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• training_cycles: 100 - 1000 (9 linear steps) 

• learning_rate: 0.005 - 0.010 (5 linear steps) 

• momentum: 0.1 - 0.9 (8 linear steps) 

• decay: {true, false} 

 

Table 4.7 Validation accuracy across candidate ANN settings 

Architecture (hidden) MAPE 

1 layer, 7 nodes 20.93 

1 layer, 14 nodes 20.87 

1 layer, 21 nodes 21.77 

1 layer, 28 nodes 20.90 

2 layer, 14, 7 nodes 21.17 

2 layer, 21, 7 nodes 21.50 

2 layer, 21, 14 nodes 21.31 

2 layer, 28, 14 nodes 21.47 

 

Table 4.8 The best accuracy of ANN model 

Architecture (hidden) MAPE 

1 layer, 14 nodes 20.87 

 

Hidden-unit counts from small to moderate sizes were tried; validation error 

consistently favored a compact single-layer network. The best validation configuration 

was: 

• Hidden layer: 1 layer, 14 nodes 

• training_cycles = 800, learning_rate = 0.009, momentum = 0.8, decay = false 

This model achieved MAPE = 20.87% on the 90-day validation window under 

the rounding rule. 

 

4.3.3 Validation fit of the selected ANN 

The selected 1×14 network tracks the level and the recurring weekly pattern 

materially better than linear baselines, while smoothing isolated spikes. The 90-day 

validation plot (actual vs forecast) should be inserted here. 
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Figure 4.5 Validation (90 days): actual vs forecast (ANN 1×14) 

 

4.3.4 Test-set evaluation (using the selected parameters) 

The winning configuration above was retrained on Train + Validation and 

used to forecast the 7-day test horizon. Under the same integer-rounding and metric 

protocol. 

 

Table 4.9 ANN (1×14) accuracy under the split protocol 

Data MAPE MAD MSE RMSE 

Validation (90 days) 20.87 3.89 23.49 4.85 

Test (7 days) 13.47 2.71 15.57 3.95 

 

Remark. Using a common split and identical rounding/metrics ensures a fair 

comparison with Holt-Winters and ARIMA in subsequent sections. 

 

4.4 Comparative analysis of models 

All three approaches were trained, tuned, and tested under the same protocol: 

the Train (1,729 days) segment was used to fit candidates, Validation (90 days) to select 

hyper-parameters, and the Test (7 days) horizon to report final generalization. Forecasts 
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from every model were rounded to the nearest integer before scoring, and all metrics 

were computed on the original (non-differenced) sales to ensure a fair, like-for-like 

comparison. 

 

Table 4.10 Side-by-side MAPE under the common split/rounding protocol 

Model Validation MAPE Test MAPE 

Holt-Winters 27.92 21.12 

ARIMA 28.23 24.90 

ANN 20.87 13.47 

 

On the validation window, the ANN reduces MAPE by ~ 7–8 percentage points 

relative to Holt–Winters and ARIMA, indicating better fit to short-run dynamics given 

the lag and calendar inputs. On the test horizon, the gap widens: the ANN achieves 

13.47%, versus 21.12% for Holt–Winters and 24.90% for ARIMA. The pattern is 

consistent with the qualitative behavior of the models: 

• ARIMA (1,1,0) tends to flatten under multi-step use, tracking local level but not 

the recurring within-week fluctuations, which raises percentage error. 

• Holt–Winters multiplicative handles broad seasonal structure but remains linear 

in level/trend/season components; without explicit weekday effects it underfits 

some short-run variation. 

• The ANN captures nonlinear interactions between recent lags and 

calendar/holiday indicators, improving day-to-day tracking without manual 

seasonal specification. 

These results position the ANN (1×14) as the strongest model under the agreed 

evaluation, with Holt–Winters a competitive classical baseline and ARIMA serving as 

a simple level-tracking benchmark. The common rounding rule and metric computation 

on original sales support a transparent. 
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CHAPTER 5 

CONCLUSION 

 

This study compared three time-series approaches for daily sales forecasting 

under a common and fair protocol. All models were trained on the same training set 

(1,729 days), tuned on a 90-day validation window, and finally evaluated on a 7-day 

test horizon. To align with operational use, fitted/forecast values were rounded to the 

nearest integer, and all errors were computed on the original (non-differenced) sales 

series. 

 

5.1 Summary of findings 

Holt–Winters (multiplicative, 𝑠 = 365). After a grid search, the best setting on 

the validation window was α = 0.10, β = 0.04, γ = 0.01. MAPE: Validation 27.92%, Test 

21.12%. 

ARIMA. Based on ACF/PACF identification with 𝒹 = 1 and a small 𝓆, the best 

candidate on validation was ARIMA (1,1,0) (no constant). MAPE: Validation 28.23%, 

Test 24.90%. 

Artificial Neural Network (ANN). A one-hidden-layer network with 14 nodes 

trained on lag features (𝑡−1…𝑡−7) and calendar/holiday indicators delivered the 

strongest results. The tuned training settings were training cycles = 800, learning 

rate=0.009, momentum=0.8, decay=false. MAPE: Validation 20.87%, Test 13.47%. 

Overall, the ANN (1×14) clearly outperformed the classical baselines on both 

validation and test. Holt–Winters was the best of the two statistical models, while 

ARIMA served as a transparent, level-tracking benchmark. 

 

5.2 Interpretation and implications 

Short-run nonlinear structure matters. Incorporating recent lags and 

calendar/holiday effects allowed the ANN to capture within-week variation that Holt–

Winters (level–trend–season) and ARIMA (1,1,0) did not fully express. 
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Classical baselines remain useful. Holt–Winters provided competitive accuracy 

with minimal feature engineering and interpretable components; ARIMA offered a 

simple check that the series’ short-run persistence is being modeled correctly. 

Operational takeaway. For short-horizon daily planning, the ANN should be the 

primary forecasting engine. Holt–Winters is a robust fallback when model transparency 

or rapid deployment is required. ARIMA may be retained as a sanity-check baseline 

and for scenarios with structural breaks where intervention modeling is appropriate. 

 

5.3 Practical recommendations 

• Deployment. Automate a pipeline that (i) creates lag and calendar/holiday 

features, (ii) applies the trained ANN, and (iii) rounds forecasts to integers for 

downstream systems. 

• Retraining policy. Refit the ANN on a rolling basis (e.g., monthly) or when 

monitoring reveals drift (e.g., MAPE deteriorates beyond a threshold). 

• Governance. Keep Holt–Winters live as a back-up model; compare nightly to 

detect anomalies. Log forecasts and realized errors for continuous 

improvement. 

 

5.4 Limitations 

• Single series & short test horizon. Results are for one daily series with a 7-day 

test; longer and multiple-series evaluations could alter rankings. 

• Feature scope. Only lags and calendar/holiday indicators were used; 

promotions, price, weather, or other exogenous drivers were not included. 

• Deterministic point forecasts. The study reports point errors 

(MAPE/MAD/MSE/RMSE); uncertainty quantification (prediction intervals or 

quantiles) was not addressed. 

• Protocol choices. Integer rounding before error calculation affects MAPE; 

although applied consistently, different rounding rules might shift absolute 

values. 

 

 

 

Ref. code: 25686722041115TZM



31 

 

 

5.5 Future work 

• Richer features: incorporate promotions, pricing, store events, and weather 

(ARIMAX/ETSX/ML models). 

• Longer & rolling evaluation: adopt rolling-origin cross-validation and extend 

the test horizon to assess stability. 

• Model families: compare with LSTM/Temporal CNN/Transformer baselines; 

explore gradient-boosted trees and hybrid/ensemble methods (e.g., HW + 

ANN). 

• Probabilistic forecasting: produce quantile forecasts for service-level and 

inventory decisions; evaluate with pinball loss. 

• Multiple seasonality: test ETS models with multiple seasonal cycles and Fourier 

terms (daily/weekly/annual). 

• Automated monitoring: deploy drift detectors and scheduled hyper-parameter 

re-tuning. 

 

5.6 Concluding statement 

Under a unified and transparent evaluation, the ANN with one hidden layer (14 

nodes) delivered the lowest error and the most accurate short-horizon forecasts, 

reducing MAPE materially relative to Holt–Winters and ARIMA. For day-to-day 

demand planning, adopting the ANN as the primary forecaster backed by Holt–Winters 

and ARIMA as interpretable safeguards offers a practical, high-accuracy solution that 

can be incrementally enhanced with additional features, probabilistic outputs, and 

systematic monitoring. 
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APPENDIX A 

DATASET (SOURCE & DATA DICTIONARY) 

 

A.1 Source and coverage 

This study uses a daily retail sales dataset provided via Mendeley Data 

(Bangladeshi Retailer). The dataset covers 01 January 2013 to 31 December 2017, 

totaling 1,826 calendar days. The data were downloaded from the public repository and 

used solely for academic purposes in accordance with the repository’s terms. 

Dataset DOI: https://data.mendeley.com/datasets/xwmbk7n3c8/1?utm_source 

 

A.2 Data dictionary (brief) 

Field Type Description 

date Date (YYYY-MM-DD) Calendar date of the observation 

sales_t Integer (count) Units sold on date t for the focal item/category 
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APPENDIX B 

PREPROCESSING & EVALUATION SETTINGS 

 

B.1 Preprocessing steps (by model, with split protocol) 

Data split. The daily sales series was partitioned chronologically into Train = 

1,729 days, Validation = 90 days, and Test = 7 days. Model selection was performed 

on the validation window; the winning settings were then refit on Train + Validation 

and evaluated on the Test window. 

 

Holt–Winters (HW) 

• Input: original sales series 𝑌𝑡 (no differencing). 

• Seasonality: 𝑠 = 365 (annual), multiplicative specification. 

• DOE/grid on 𝛼, 𝛽, 𝛾 ∈ {0.01, 0.04, 0.07, 0.10} using Train; forecasts generated 

for Validation to select by lowest MAPE. 

 

ARIMA 

• Differencing: first difference 𝑌𝑡
′ = 𝑌𝑡 − 𝑌𝑡−1 on Train to enforce stationarity; 

ACF/PACF used for order cues. 

• Candidate set: ARIMA (𝓅, 1, 𝓆) with 𝓅 ∈ {1,2,3,4}, 𝓆 ∈ {0,1} (with/without 

constant). 

• Models estimated on Train; 90-day Validation forecasts scored to select by 

MAPE. 

 

Artificial Neural Network (ANN) 

• Features: sales lags 𝑌𝑡−𝑘 for 𝑘 = 1, … ,7; calendar dummies (day-of-week, 

month), day-of-month, and holiday flag. 

• Architecture search on Train with Validation scoring; 1 hidden layer; node 

count 𝑅 tuned. 

• Training hyperparameters tuned by grid: training cycles, learning rate, 

momentum, weight decay (on/off). 
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B.2 Integer rounding rule 

 Because sales are counts, all validation/test forecasts were rounded to the 

nearest integer (half-up) prior to error calculation. This preserves interpretability and 

ensures a fair, common scoring protocol across HW, ARIMA, and ANN. 

 

B.3 Evaluation protocol 

• Target for scoring: original (non-differenced) sales 𝑌𝑡. 

• Metrics reported: MAPE (primary), plus MAD, MSE, RMSE. 

• Selection: lowest Validation MAPE determines the winning configuration 

within each model family. 

• Test procedure: refit the winning model on Train + Validation and score the 7-

day Test under the same rounding/metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ref. code: 25686722041115TZM



39 

 

 

BIOGRAPHY 

 

Name Nonthaphan Kingrungphet 

Education 2024: Bachelor of Science (Engineering Management) 

Sirindhorn International Institute of Technology 

Thammasat University 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ref. code: 25686722041115TZM


