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ABSTRACT

Warehouse location selection requires the consideration of multiple, often
conflicting criteria such as cost, space availability, and accessibility, as the warehouse
itself plays a critical role in optimizing logistics costs and enhancing customer service.
To accommodate the selection efforts, this study presents an integrated fuzzy multi-
criteria decision-making approach that combines the Fuzzy Best-Worst Method (FBWM)
with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to
identify the most suitable warehouse location. The former is employed to determine the
relative weights of criteria, taking into account the uncertainty inherent in expert
judgments, while the later is used to rank the alternative locations with respective to the
criteria and its weights.

A case study, which involves three warehouse alternatives evaluated based on
area, rental rate, and distance to the airport is conducted to demonstrate the effectiveness
of the proposed method. Closeness coefficients were calculated across multiple
methodological configurations using three normalization techniques (linear vector, linear

sum, and max) and two distance metrics (Euclidean and Manhattan).
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To further explore the robustness of the rankings, combinations of weight
generated using a complementary weighting strategy was experimented. From a discrete
set of weights ranging from 0.05 to 0.90, a total of 5,832 possible combinations were
generated. Two filtering conditions were applied to eliminate invalid weight
combinations: all the weights must sum to one, and the weight for the rental cost criterion
must be the largest one. This process yielded 45 valid weight combinations. These
combinations of weight were later put into usage to evaluate the consistency of ranking
outcomes.

Sensitivity and robustness analyses reveal that the top-ranked warehouse
(Alternative S2) consistently outperforms others regardless of methodological
configurations and weights combinations. This confirms the reliability of the decision. In
addition, Analysis of variance (ANOVA) results indicate that both weight combinations
and distance metrics significantly affect the closeness coefficient (CC;), while the
normalization method shows minimal impact. Moreover, Manhattan distance provides
higher discrimination among alternatives, whereas Euclidean distance offers more stable
and consistent rankings. Overall, the proposed approach is robust and practical, providing

decision-makers with a clear and reliable framework for selecting warehouse locations.
Keywords: Warehouse selection, FBWM, TOPSIS, MCDM, Normalization techniques,

Distance metrics, Sensitivity analysis, Robustness analysis, two-way

ANOVA
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CHAPTER 1
INTRODUCTION

The selection of a warehouse is a critical aspect of logistics and supply chain
management, playing a pivotal role in ensuring operational efficiency, logistics costs,
and service performance. Warehouses serve as essential nodes within supply chains,
connecting suppliers, manufacturers, and customers while enabling the storage,
handling, and distribution of goods. Beyond their functional roles, warehouses
significantly influence broader supply chain performance by optimizing inventory
levels, reducing transportation costs, and enhancing service quality. Despite their
importance, warehouse selection is a complex decision-making process requiring

careful consideration of multiple, often conflicting criteria.

1.1 Background

As supply chains become increasingly complex and customer expectations for
speed and reliability continue to grow, the strategic role of warehouse location has
become more significant than ever. A well-chosen warehouse location not only
enhances operational efficiency but also contributes to cost optimization and service
performance across the entire supply chain network (Singh et al., 2018).

Selecting the optimal warehouse requires the consideration of multiple, often
conflicting criteria, such as rental cost, available storage space, proximity to
transportation infrastructure, and accessibility to markets. For instance, a location with
lower rent may be far from distribution hubs, while a more central location might incur
higher operating costs (Dey et al., 2016; Yang & Hung, 2007). Additionally, many of
these factors are qualitative and subjective, relying on expert judgment, which
introduces uncertainty and imprecision into the decision-making process.

To address this complexity, researchers and practitioners frequently apply
MCDM methods. In particular, fuzzy set theory, introduced by Zadeh (1965), has been
widely adopted to manage the vagueness and subjectivity in human judgment. FBWM,
an advancement in fuzzy MCDM techniques, enables decision-makers to identify and

compare criteria efficiently by focusing on the most and least important ones. It reduces
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the cognitive burden and improves consistency in the weight elicitation process (Guo
& Zhao, 2017; Rezaei, 2015).

Once the criteria weights are determined using FBWM, TOPSIS is often
employed to rank alternatives. TOPSIS evaluates each option based on its geometric
distance to an ideal and a negative-ideal solution, identifying the most favorable choice
overall (Ocampo et al., 2020; Omrani et al., 2018).However, recent studies have
highlighted that TOPSIS outcomes can be sensitive to methodological configurations,
particularly the choice of normalization technique (e.g., vector, max, or sum) and
distance metric (Euclidean vs. Manhattan). These variations can significantly affect
closeness coefficient (CC;) values and thus alter the final rankings (Banhidi & Dobos,
2024; Vafaei et al., 2021).

To address this concern, this study develops a hybrid fuzzy MCDM framework
that combines FBWM and TOPSIS with robustness and sensitivity analyses. Alongside
expert-derived weights, 45 valid random weight combinations are used to examine how
changes in decision-maker preferences affect the results. The framework systematically
evaluates multiple normalization methods and distance metrics to assess the stability,
reliability, and consistency of the results. This methodological approach aims to
enhance the transparency and robustness of warehouse location decisions, particularly

under conditions of uncertainty and subjectivity inherent in expert-based evaluations.

1.2 Problem statement

Selecting an appropriate warehouse location is a critical and complex decision
in logistics and supply chain management. The location directly impacts operational
costs, such as transportation and inventory holding, and influences service quality,
delivery speed, and overall supply chain responsiveness. With growing customer
expectations, intensified global competition, and increasing supply chain complexity,
the importance of selecting warehouses accurately and strategically has become
increasingly significant.

However, warehouse location selection is inherently a multi-criteria decision-
making process, involving the assessment of both quantitative factors (e.g., rental cost,
available space, proximity to airports) and qualitative factors (e.g., contract conditions,

flexibility, reputation). These criteria often conflict, making trade-offs challenging to
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evaluate using conventional methods. Furthermore, many assessments rely on
subjective expert judgments expressed in linguistic terms, which introduce uncertainty
and ambiguity into the decision-making process.

Traditional MCDM methods, such as the Analytic Hierarchy Process (AHP),
have been widely used for such evaluations, but they tend to be time-consuming and
inconsistent when dealing with many criteria. The FBWM offers an efficient and
consistent alternative by reducing the number of pairwise comparisons and effectively
handling vagueness in expert input (Guo & Zhao, 2017; Rezaei, 2015). When
integrated with TOPSIS, this hybrid framework allows for the structured ranking of
alternatives based on their relative closeness to an ideal solution.

Nevertheless, studies have shown that TOPSIS results can be sensitive to the
choice of normalization technique and distance metric, which can significantly impact
the closeness coefficients and resulting rankings (Celen, 2014; Shyur & Shih, 2024).
Without addressing this sensitivity, decision-makers may unknowingly rely on rankings
that lack robustness and consistency.

Therefore, this research aims to fill this gap by developing a hybrid fuzzy
MCDM framework for warehouse location selection and conducting a comprehensive
robustness analysis. This includes exploring how different normalization techniques,
distance metrics, and weight combinations affect ranking outcomes. The goal is to
provide a reliable, transparent, and methodologically sound tool for warehouse

selection under uncertainty.

1.3 Research objectives

The primary objective of this research is to develop a structured, transparent,
and reliable decision-making framework for warehouse selection under uncertainty,
using a hybrid fuzzy multi-criteria decision-making (MCDM) approach. Given the
strategic importance of warehouse location in logistics and supply chain performance,
it is necessary to systematically evaluate multiple and often conflicting decision criteria.

This study first identifies and validates key warehouse selection criteria such as
rental cost, storage area, and proximity to transportation hubs through expert input and
a review of relevant literature. The relative importance of these criteria is then

determined using FBWM, which enables experts to express preferences through fuzzy
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linguistic terms while minimizing the number of pairwise comparisons required. By
constructing best-to-others and others-to-worst matrices, the FBWM generates
consistent and reliable fuzzy weight vectors for each criterion.

These weights are then integrated into TOPSIS, which evaluates and ranks the
warehouse alternatives according to their relative closeness to an ideal solution. To
ensure the robustness of the ranking results, this study further investigates the effect of
different methodological configurations, specifically, three normalization techniques
(linear vector, linear sum, and max) and two distance metrics (Euclidean and
Manhattan) within the TOPSIS model.

Additionally, a set of 45 valid random weight combinations is systematically
generated to simulate variations in expert preferences. These are used to test the
sensitivity of the decision model. Finally, statistical analyses, including two-way
ANOVA by general linear model (GLM), are performed to evaluate the significance of
methodological choices on ranking outcomes.

Through this integrated approach, the study aims to provide a practical and
robust decision-support tool for warehouse selection that is capable of handling

uncertainty, expert subjectivity, and methodological variability.

1.4 Significance of study

This study addresses these challenges by developing a structured decision-
making model that improves both the reliability and transparency of warehouse
selection under uncertainty by integrating FBWM with TOPSIS. FBWM enables the
derivation of consistent and efficient criteria weights using fuzzy linguistic input,
thereby reducing the cognitive load on experts while maintaining high decision quality.
These weights are then applied within the TOPSIS model to generate a rational, data-
driven ranking of warehouse alternatives, providing decision-makers with robust and
transparent guidance.

In addition to providing a practical decision-support tool, this study contributes
to the literature by incorporating a comprehensive robustness and sensitivity analysis,
an area often overlooked in traditional MCDM studies. By systematically examining
the effects of different normalization techniques and distance metrics on the final

rankings, the model ensures greater reliability in various decision-making contexts.
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Furthermore, the application of statistical methods such as two-way ANOVA within
the GLM model is used to validate the stability of the results. Ultimately, this research
offers both academic and practical value by delivering a robust, adaptable framework

for warehouse location decisions in real-world supply chain environments.

1.5 Scope and limitations

This study develops a structured and robust decision-making framework for
warehouse selection using a hybrid fuzzy MCDM approach. The model integrates the
FBWM for criteria weighting and TOPSIS for alternative ranking, supported by
robustness and sensitivity analyses to evaluate the stability of results under varying
methodological conditions.

The scope of this research is limited to three key quantitative decision criteria:
rental cost, warehouse area, and distance to the airport selected through expert
consultation, as well as their relevance to logistics operations. The framework is
demonstrated through a case study with three warehouse alternatives. While this
ensures a focused and manageable analysis, it may not fully reflect the complexity of
larger-scale or more diverse decision scenarios involving additional qualitative or
strategic factors.

For robustness testing, random weight combinations were generated under
practical constraints, such as prioritizing rental cost. While this increases realism, it also
restricts the generalizability of results to other contexts where the criteria priorities may
differ. Similarly, although fuzzy logic helps address uncertainty in expert judgments,
subjectivity may still arise from differences in interpreting linguistic terms.

Two-way ANOVA was applied specifically to examine the effects of
normalization techniques and distance metrics on closeness coefficients. These
analyses provide useful insights but are limited to the parameters and configurations
selected for this case study.Despite these limitations, the proposed framework offers
both methodological and practical value. It provides a transparent and reliable
foundation for warehouse location decisions and can be extended in future research to

include additional criteria, alternatives, or decision contexts. decision-making contexts.
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CHAPTER 2
LITERATURE REVIEW

As global supply chains become more dynamic and complex, selecting an
optimal warehouse location requires a structured decision-making framework that can
address multiple, often conflicting, criteria such as rental cost, facility size, and access
to key transportation infrastructure. Traditional approaches, though foundational, often
fail to adequately capture the uncertainty and subjectivity present in real-world logistics
decisions.

To address these limitations, MCDM methods have been widely adopted.
Techniques such as AHP, TOPSIS, and the BWM provide structured approaches for
evaluating and ranking alternatives based on various decision criteria. However, these
methods frequently rely on precise numerical input, which can be unrealistic in practice.
In response, researchers have integrated fuzzy logic into classical MCDM frameworks,
resulting in Fuzzy MCDM models that effectively manage linguistic judgments and
imprecise evaluations.

Among these, the FBWM offers notable advantages by reducing the cognitive
burden on decision-makers while maintaining consistency in pairwise comparisons.
This hybrid framework is robust for supporting warehouse selection decisions when
combined with TOPSIS, which ranks alternatives based on relative closeness to ideal
solutions.

Additionally, methodological choices within the TOPSIS process, such as
normalization techniques (e.g., linear vector, linear sum, max) and distance metrics
(e.g., Euclidean, Manhattan), can significantly influence the final rankings. Despite
their impact, these elements are often overlooked in sensitivity analysis. Therefore,
recent studies have emphasized the importance of evaluating the robustness of decision
outcomes by analyzing how such variations affect consistency and reliability.

This chapter critically examines the existing literature on warehouse selection,
emphasizing the evolution of MCDM methodologies, the integration of fuzzy logic,
and the influence of methodological parameters on decision outcomes. The review

identifies research gaps, particularly in robustness testing through weight variation and
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sensitivity analysis, and establishes the foundation for the hybrid FBWM-TOPSIS

framework proposed in this study.

2.1 Warehouse selection in supply chain management

Warehouse selection is a crucial decision in supply chain management, as it
directly impacts cost efficiency, service quality, and overall operational performance.
A strategically located and well-equipped warehouse reduces transportation and
operational costs and enhances a firm’s responsiveness to fluctuating market demands
and customer expectations. With supply chains becoming increasingly complex and
time-sensitive, identifying an optimal warehouse location requires the careful
evaluation of multiple criteria, often involving trade-offs between cost, accessibility,
infrastructure, and flexibility (Singh et al., 2018; Vafaei et al., 2021).

Modern warehouses serve far more than just storage purposes; they are critical
nodes in the logistics network, supporting operations such as cross-docking, packaging,
and real-time inventory management. As such, selecting an appropriate warehouse
requires careful evaluation of several key quantitative factors. These include warehouse
area (m?), which affects storage capacity and operational layout; rental cost (THB/
m?/month), which influences financial viability; and distance to transportation hubs
such as airports, which is crucial for time-sensitive deliveries (Ocampo et al., 2020).
Additionally, material handling fees (THB/move/cu.m.) and fulfillment rates
(THB/order) serve as important indicators of cost-efficiency and processing
performance in warehouse operations (Dey et al., 2016)

Due to numerous conflicting criteria and the inherent uncertainty in expert
evaluations, traditional decision-making approaches are often insufficient. Therefore,
MCDM methods such as AHP, TOPSIS, and BWM have gained prominence in
academic and practical applications. These methods allow structured and systematic
evaluation of multiple alternatives against diverse criteria. The following sections will
explore these methodologies, with a focus on their fuzzy extensions and hybrid
applications, particularly the integration of FBWM with TOPSIS and the use of

robustness analysis to validate decision reliability
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2.2 Multi-criteria decision-making (MCDM) Methods

Warehouse selection is a complex, multi-criteria decision problem that requires
careful evaluation of conflicting factors such as cost, accessibility, space availability,
and operational efficiency. Traditional decision-making methods cannot often
incorporate subjective judgments or handle the inherent uncertainty in real-world
logistics environments. To overcome these limitations, MCDM approaches have
become essential tools for systematically analyzing and ranking alternatives in
warehouse selection.

Among the widely applied MCDM techniques are the AHP, TOPSIS, and
BWM. These methods enable decision-makers to evaluate both qualitative and
quantitative criteria, providing a more structured and transparent approach to
warehouse evaluation (Guo & Zhao, 2017).

AHP structures complex decisions into a hierarchical model and utilizes
pairwise comparisons to derive priority weights (Yang & Hung, 2007) . While effective,
AHP becomes cumbersome with many criteria, leading to inconsistencies in judgments
(Patil & Kant, 2014) . On the other hand, TOPSIS ranks alternatives based on their
relative distance from an ideal and anti-ideal solution, making it suitable for balancing
multiple trade-offs. However, its outcomes are sensitive to the choice of normalization
technique and distance metric, which may impact the stability of final rankings (Celen,
2014; Vafaei et al., 2021) .

The BWM, particularly in its fuzzy extension (FBWM), offers a more consistent
and efficient alternative. By asking decision-makers to identify only the best and worst
criteria and compare others relative to them, it significantly reduces the number of
required comparisons while improving consistency (Rezaei, 2015) . Fuzzy BWM
further enhances this method by incorporating linguistic assessments to deal with the
vagueness in expert opinions (Guo & Zhao, 2017) .

To leverage the strengths of multiple techniques and mitigate their limitations,
hybrid approaches have gained popularity. One such approach, FBWM integrated with
TOPSIS, combines robust weight determination with effective alternative ranking
under uncertainty. Furthermore, recent studies have highlighted the importance of
robustness and sensitivity analysis in MCDM applications. Variations in normalization

methods (e.g., linear vector, linear sum, max) and distance metrics (e.g., Euclidean,
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Manhattan) can significantly influence the ranking results, raising concerns about the
reliability of decision outcomes (Bénhidi & Dobos, 2024; Shyur & Shih, 2024). To
address this issue, the current research employs expert-derived fuzzy weights and a
wide range of randomly generated weight combinations. This strategy supports a
thorough sensitivity and robustness assessment, providing insights into the stability of

the ranking under different methodological settings.

2.3 Fuzzy logic in decision-making

The Warehouse selection involves uncertainty and subjective judgments that
traditional MCDM methods struggle to handle. Fuzzy logic, introduced by Zadeh,
1965, provides a framework to address imprecision by expressing criteria in linguistic
terms (e.g., low, medium, high) rather than exact numerical values. This approach
enhances decision models by incorporating human-like reasoning, making it
particularly useful for evaluating qualitative factors such as facility quality, contract
conditions, and reputation (Guo & Zhao, 2017) .

Fuzzy logic is commonly integrated with MCDM techniques like Fuzzy AHP,
which refines pairwise comparisons by reducing inconsistencies (Patil & Kant, 2014) ,
Fuzzy TOPSIS, which ranks alternatives based on their relative closeness to an ideal
solution, improves the evaluation of warehouse cost efficiency, fulfillment rate, and
infrastructure quality (Sun, 2010) . FBWM, a more recent method, simplifies the
decision-making process by prioritizing the most and least important criteria while
minimizing subjective bias (Guo & Zhao, 2017) .

The primary advantage of fuzzy logic is its ability to handle uncertainty and
enhance decision accuracy (Dong et al., 2021). However, defining membership
functions and fuzzification rules can be complex, requiring expert input and increasing
computational intensity (Foroozesh et al., 2022) . Despite these challenges, hybrid
fuzzy MCDM models continue to improve the robustness of warehouse selection,

making them essential for handling real-world logistics decisions.

2.4 Normalization methods in MCDM
Normalization is a fundamental step in MCDM that transforms criteria with

different units into a comparable scale, ensuring fair evaluation across alternatives.
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Since MCDM techniques rely on aggregating multiple criteria, normalization helps
mitigate bias caused by varying measurement units. The most used normalization
methods include Linear vector normalization, Max normalization, and Linear sum
normalization, each affecting decision outcomes differently (Vafaei et al., 2021).

o Linear vector normalization adjusts each criterion value relative to the overall
magnitude, ensuring that all criteria contribute proportionally to the decision
process. This method is commonly applied in TOPSIS and other ranking-based
techniques.

e Linear sum normalization standardizes each criterion by dividing values by their
total sum. While this preserves proportional relationships, extreme values can
sometimes affect it, distorting the results.

e Max normalization scales each criterion by dividing values by the maximum
value in the dataset. This makes interpretation straightforward but can
exaggerate differences among alternatives.

The choice of normalization method significantly impacts ranking consistency
and decision reliability in MCDM applications. Studies have shown that different
normalization approaches can lead to rank reversal issues, affecting the final selection

of alternatives (Celen, 2014).

2.5 Robustness and sensitivity in decision analysis

Robustness and sensitivity analysis are essential components of decision
analysis, especially in fuzzy MCDM frameworks, where variations can influence the
ranking of alternatives in model parameters, weighting schemes, normalization
techniques, or distance metrics. Mukhametzyanov & Pamucar, 2018 highlighted a key
limitation of traditional MCDM models, the lack of formal validation mechanisms to
assess the stability of decision outcomes. They emphasized the importance of statistical
sensitivity analysis, particularly for strategic decisions such as warehouse location
selection, where unstable rankings can compromise practical reliability. Banhidi &
Dobos, 2024 , further investigated the role of normalization techniques in TOPSIS,
namely, Vector linear, Max, and Linear sum, and demonstrated that even minor
differences in these methods can lead to substantial shifts in closeness coefficients

(CC;), thereby impacting final rankings.
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Building on this foundation, the current study employs a hybrid FBWM-—
TOPSIS approach complemented by a comprehensive robustness analysis. The study
evaluates how methodological choices influence ranking stability by applying various
normalization methods (linear vector, linear sum, and max), distance metrics
(Euclidean and Manhattan), and valid random weight combinations. Statistical tools
such as Two-Way ANOVA and GLM quantify the sensitivity of closeness coefficients

to these variations.

2.6 Research gaps and justification for the study

Despite the growing application of fuzzy MCDM techniques in logistics and
warehouse selection, several critical gaps persist in the literature. Although FBWM and
TOPSIS have been successfully applied to facility location problems, few studies have
integrated these methods into a unified framework incorporating robustness and
sensitivity analysis. While FBWM enhances efficiency and consistency in criteria
weighting, its application with TOPSIS has primarily been limited to case-specific
studies, without systematic evaluation under different methodological assumptions.

A significant gap in the literature concerns the limited investigation of
methodological parameters within TOPSIS, specifically normalization methods (Linear
vector, linear sum, and max) and distance metrics (Euclidean, Manhattan) that affect
the final rankings. Existing studies (Banhidi & Dobos, 2024; Celen, 2014; Shyur &
Shih, 2024) have shown that these components can significantly alter closeness
coefficient values (CC;), yet few have examined their combined effect within a fuzzy
decision-making framework. Furthermore, the interaction between these
methodological parameters and fuzzy-derived weights remains underexplored in
warehouse selection contexts, where accuracy and consistency are crucial for strategic
decision-making.

Another underexplored area is large-scale random weight combinations to
capture decision variability and evaluate model robustness. Most existing MCDM
applications rely exclusively on expert-derived weights, which may not reflect the full
range of decision-making scenarios encountered in practice. Incorporating valid weight
sets provides a more comprehensive understanding of how changes in criteria

importance influence alternative rankings. Furthermore, while robustness is a core
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concern in real-world applications, many studies still lack formal statistical testing to
validate model stability. Techniques like two-way ANOVA are rarely applied, resulting
in limited insights into the statistical significance of methodological choices.

To address these gaps, this study proposes a hybrid fuzzy MCDM framework
that integrates FBWM with TOPSIS, supported by systematic testing of normalization
methods and distance metrics. The framework incorporates valid random weight
combinations and applies statistical analysis through ANOVA and GLM. This
approach aims to deliver a transparent, robust, and adaptable decision-support model
for warehouse selection, capable of addressing uncertainty, subjectivity, and

methodological variation in real-world supply chain environments.
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This chapter describes the research design and methodological framework used

to solve the warehouse location selection problem. The approach integrates two

weighting methods, the Fuzzy Best-Worst Method (FBWM) and random weight

generation with TOPSIS. As shown in Figure 3.1, the methodology begins with

identifying decision criteria based on expert input and market observations. Next, the

criteria are assigned weights using FBWM and random weight combinations, and the

alternatives are evaluated to generate the normalized comparison matrix. The results

are then processed through TOPSIS to calculate the closeness coefficient CC; values,

which are compared to assess ranking robustness.

Decision criteria are defined by expert input. Alternative
data are collected through market observations

A A

Y

Identify decision criteria Rate the alternatives

)

}

Assign weights to criteria Normalized comparison matrix

\/

Compute the weighted
normalized matrix

A

Calculate (PIS) and (NIS)

)

Calculate closeness coefficient
(CCy)

Compare results and analyze
ranking robustness

Figure 3.1 Framework for research methodology
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3.1 Research Framework
This study adopts a hybrid multi-criteria decision-making approach to evaluate
and rank warehouse alternatives under uncertain and variable conditions. The objective
is to combine expert judgment with structured mathematical techniques to ensure
accuracy and robustness in the selection process. The research design can be divided
into three broad stages:
e C(riteria definition and weighting: Identify relevant decision criteria and
determine their weights.
e Alternative evaluation: Compute a ranking of the warehouse location using
TOPSIS.
e Robustness analysis: Test the stability of the rankings by varying input weights

of the criteria and methodological parameters.

The process begins by identifying the decision criteria through literature review
and expert consultation. For this warehouse selection case, three quantitative criteria
were chosen based on their practical importance: warehouse area, rental rate, and
distance to the airport. Data for each alternative on these criteria was obtained through
market surveys and expert estimates, reflecting real-world conditions.

To determine the relative importance of each criterion, two weighting strategies
were applied. The first method uses FBWM, incorporating expert input expressed
through linguistic comparisons. F-BWM is particularly effective in handling imprecise
judgments and translating them into structured fuzzy weights using triangular fuzzy
numbers (TFNs). In addition to the expert-derived weights, a second strategy involving
randomly generated weight combinations was employed to assess the robustness of the
methodology.

Once the criteria weights are established, the warehouse alternatives are
evaluated using TOPSIS method. In this study, TOPSIS is configured in several ways:
three normalization techniques (linear vector, linear sum, and max normalization) and
two distance metrics (Euclidean and Manhattan) are applied to evaluate the ranking.

A robustness analysis was performed to validate the stability of the outcomes.

This involved applying the randomly generated weight sets to the TOPSIS framework
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and statistically analyzing the variation in rankings. A two-way ANOVA, applied
within the General Linear Model (GLM) framework used to examine the effects of
different normalization and distance methods on the closeness coefficient of each
alternative. This statistical analysis helps identify which methodological configurations
yield the most consistent and reliable rankings.

The research design integrates expert knowledge, fuzzy logic, and statistical
validation into a comprehensive decision-making framework. It ensures that the
selected warehouse alternative is optimal based on expert judgment and robust across

a wide range of input scenarios.

3.2 Selection of criteria and alternatives

This study involves a Thai logistics service provider seeking a warehouse to
support its regional distribution operations. There are three candidate locations (S1, S2,
and S3) for the warehouse. These facilities are located within the Bangkok metropolitan
area. The company seeks to lease one of these warehouses. The evaluation is based on
three quantitative criteria selected to reflect key operational aspects: area (C1, measured
in m?), rental rate (C2, in THB/m?/month), and distance to the airport (C3, in km). The
area 1s classified as a benefit criterion, with which higher values are preferred, while
rental rate and distance to the airport are regarded as cost criteria, where lower values
are more desirable. As summarized in Table 3.1, the three criteria are initially identified
through a review of relevant literature and later retained through expert consultations
with logistics practitioners and academic researchers to ensure both theoretical validity

and practical relevance.

Table 3.1 Criteria for warehouse selection

Code Criteria Description
Cl Area Physical size of the warehouse (m?).
Cost associated with leasing the warehouse
€2 Rental rate space (THB/m?*month).
C3 Distance to airport Proximity to major transportation hubs (km).

In addition, expert evaluations of the relative importance of these criteria are

conducted using fuzzy linguistic terms, such as “Equally Important (EI),” “Weakly
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Important (WI),” and “Fairly Important (FI).” These qualitative judgments are then
translated into TFNs, which serve as inputs to the fuzzy MCDM framework employed

in this study.

The finalized criteria are listed in Table 3.1, forming the foundation for the
evaluation process. These are organized hierarchically to reflect the structure of the

decision-making model as shown in Figure 3.2.

Warehouse location selection

Cl Cl1 Cl
( Area) ( Rental Rate) (Distance to Airport )

Figure 3.2 Overview of criteria hierarchy.

3.3 Weighting approaches for criteria
3.3.1 Fuzzy set theory

Expert opinions often expressed using linguistic terms such as “equally
important (EI)”, “weakly important (WI)”, “fairly important (FI)” (see Table 3-2), can
be translated into TFNs, preserving the vagueness of human judgment. A TFN, denoted
as A = (I,m,u), is a special type of fuzzy set represented by a triplet of values: the
lower bound (I), the most likely or modal value (m), and the upper bound (u). The

membership function p;(x) of a TFN is defined by Zadeh, 1965 as:

0,x<l
x—1
m_l,leSm
natx) =44 _"4 o 3.1
x<u
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Table 3.2 Linguistic terms and corresponding TFNs

Symbol Linguistic term Scale Triangular fuzzy scale
EIl Equally important | (1,1,1)
WI Weakly important 2 (2/3,1,3/2)
FI Fairly Important 3 (3/2,2,5/2)
VI Very important 4 (5/2.,3,7/2)
Al Absolutely important 5 (7/2 ,4,9/2)

To obtain crisp values from fuzzy evaluations, defuzzification is applied to
convert fuzzy numbers into representative real values. One widely used method is the
graded mean integration representation (GMIR), first introduced by (Chen & Hsieh,
2000), which ranks TFNs by computing a weighted average emphasizing the most
likely value.

For a TEN of 4 = (I;, m;,u;), the defuzzified value R(/I) is calculated using the

following equation:

li +4m; +u;
6

The GMIR approach has been successfully applied in fuzzy MCDM contexts, including

R(4) = (3.2)

FAHP and FBWM, due to its computational simplicity, clarity, and effectiveness in

handling imprecise evaluations.

3.3.2 Criteria weighting using FBWM

FBWM is employed to derive the weights of decision criteria using fuzzy theory
and an optimization model. The following steps summarize the FBWM procedure:
Step 1: Construct a set of decision criteria {C;, C5, ..., Cp,}
Step 2: Determine the most important criteria (best) and the least important (worst)
criteria.
Step 3: Construct fuzzy best-to-others (BO) and fuzzy others-to-worst (OW) vectors.
The best criterion is compared with all other criteria using linguistic terms (see Table
2). Each linguistic term is converted into a TFN: dp ; = (I j, Mg j, Up ), Where dp
represents the fuzzy preference of the best criteria over the criteria j. The fuzzy BO

vector is then constructed as: Ag = (dB,l, g2, - ..,dB_n). Similarly, each criterion j is
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compared to the worst criterion using linguistic terms, resulting in: d&;, =
(lj,W, mjw, uj,W), where d;,, represents the fuzzy preference of criterion j over the
worst criteria. The fuzzy OW vector is then constructed as: Ay =
(@w, @aws - Gnw)-

Step 4: Compute fuzzy weights by optimization.

The fuzzy weights w; = (le, ij, Wju) for each criterion are computed by solving the

following optimization model adopted from Dong et al., 2021:

min k*
(W
= —apj| =K
Wj
LA
P~ jw| =
Wy
n (3.3)

S.t ZR(Wj) 1

R (Wj) can be calculated by using the GMIR method as shown below:

l m u
w; + 4w + wy
R(Wj) = 6] ] 3.4)

Step 5: Consistency Ratio (CR) is computed as follows:

k*
CR = (3.5)
Clmax

where Cl,,,, is obtained as per Table 3. If CR < threshold (e.g., 0.1 or 0.05), the
comparisons are deemed consistent. Otherwise, the decision-maker must revise the

judgments.
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Table 3. 3 Consistency index (Cl,,,,) values

Linguistic | Equally Weakly Fairly Yery Absolutely

Terms important (EI) important Important important Important
(WD) (FD (VD (AD

dpw (1,1,1) (2/3,1,3/2) | (3/2,2,5/2) | (5/2.,3,72) | (7/2,4,9/2)

Clynax 3.00 3.80 5.29 6.69 8.04

3.3.3 Ciriteria weighting using random weight combinations.

In addition to the expert-derived FBWM weights, this study incorporates a
complementary approach based on random weight combinations to perform a
structured sensitivity and robustness analysis. This method allows for the exploration
of how variations in criteria importance can influence the final rankings of warehouse
alternatives

In this approach, three criteria weights wy, w,, w3 were assigned values from a
discrete set ranging from 0.05 to 0.90 in increments of 0.05, resulting in 18 possible
values for each criterion, as w; = {0.10,0.15,0.20,...,0.90}, Vj = 1,2,...,n. This
produced a total of 183 = 5,832 potential weight combinations. To ensure that these
combinations were both valid and meaningful, two constraints were applied. First, the

weights had to sum to one, as shown in Equation (3.6).

ij =1 (3.6)
=

Second, to reflect the assumption that rental cost is the most important criterion in
the decision-making process, the condition w, > w; and w, > w5 was applied. Only
the weight combinations that satisfied both conditions were applied for analysis. These
valid weight combinations were later used in the TOPSIS model to perform a

comparative assessment of decision robustness across different weighting scenarios.
3.4 TOPSIS evaluation

In this phase, TOPSIS is applied to evaluate and rank warehouse alternatives based

on their proximity to the ideal solution.
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Step 1: Establish alternatives, criteria, and construct the decision matrix.

The alternatives S; are evaluated against a set of quantitative criteria that include area
(m?), rental rate (THB/m? month), and distance to the airport (km). These criteria are
categorized into benefit criteria (e.g., area where higher values are preferred) and cost

criteria (e.g., rental rate, where lower values are selected). Let A = [x;;] be the decision
matrix consisting of p alternatives and n criteria, where x;; denotes the performance
score of alternatives i with respect to the criteria j, for i = 1,2,3,...,p and j =

1,2,3, ...n. The matrix is structured as follows:

X11 X12  t Xin
X21 X2 v Xop
A= i

,wherei =1,2,3,...,p andj = 1,2,3, ...n.

Xp1 Xp2  Xpn
Step 2: The decision matrix defined in Step 1 is normalized by using either of the three
following techniques.

Linear vector normalization;

A &y K
;=

14 2

\,Zi=1xij

Linear sum normalization:

T 0 ] = 1,2,3, W n, Where i = 1,2,3, P (37)

xij

=57 .
Yizq ¥ij

T j=123,..n,wherei =1,2,3,...,p (3.8)

Max normalization:
xij

rij = m, ] = 1,2,3, Tl,l = 1,2,3, Y (39)

Here, 7;; represents the normalized value of the criterion j for alternative i, while x;;

denotes the raw value of the criterion j for alternative i.
Step 3: Construction of the weighted normalized decision matrix.

The weighted normalized values are calculated using the equation:

vij = Tij : Wj, i = 1,2,3, o, P andj = 1,2,3, W n (310)
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Here, v;; is the weighted normalized value of the criteria j for alternative i, and w;
represents the weight for the criteria j.

Step 4: Determination of positive and negative ideal solutions

The positive ideal solution (PIS) and negative ideal solution (NIS) are determined for

each criterion based on their nature:

For benefit criteria,

vj+ = miax{vij}, j=12,..,n

(3.11)
v = miin{vij}, j=12,..,n
For cost criteria,
v =min{v;}, j=12,..,n

(3.12)
v =max{v;}, j=12,..,n

For beneficial criteria, such as area, the maximum value is selected as the ideal solution.
For non-beneficial criteria, such as cost, the minimum value is selected.

Step 5: Calculation of distances to ideal solutions.

Each alternative’s distance from the ideal solutions is calculated using both the
Euclidean and Manhattan distance formulas. The Euclidean distance quantifies the
straight-line distance from each alternative to the ideal solution and is computed as
follows:

Euclidean distance calculation.

n
ar= Y =), i=123.p 613
j=1

n
di = Z(Vij—vj_)z, i1=123,..,p (3.14)
j=1

Ref. code: 25686622040100WQY



22

The Manhattan distance is calculated by summing the absolute differences between
each alternative.

Manhattan distance calculation

n

af = ) |vy v, i=123.p (3.15)
j=1
n

di = Z|vij —v7|, i=123,..,p (3.16)
j=1

Step 6: Closeness coefficient calculation
The closeness coefficient (CC;), indicating the relative proximity of each alternative to

the ideal solution, was calculated using:

dr

— l .=
CCr df +d;)’ &

1,2,3,...,p (3.17)

A higher CC; value indicates a closer proximity to the PIS, reflecting better
performance.

Step 7: Ranking of alternatives

The alternatives are ranked based on their CC; values, with the highest CC;

corresponding to the most suitable warehouse location.

3.5 Robustness and sensitivity analysis

A comprehensive robustness and sensitivity analysis was conducted to evaluate
the proposed decision-making framework's reliability. The analysis examined how
variations in criterion weights, normalization techniques, and distance metrics
influence the final rankings of warehouse alternatives.

Robustness was assessed by comparing CC; values across different
methodological configurations, which combined two weighting approaches (FBWM
and random weights generation ), three normalization methods (linear vector, linear
sum, and max), and two distance metrics (Euclidean and Manhattan). For each
configuration, the CC; values were calculated, and the resulting rankings were analyzed

for consistency.
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Sensitivity analysis focused on how normalization methods and distance
metrics affected the TOPSIS results. Each combination was applied to the weighted
decision matrices, and changes in CC; values were used to observe shifts in rankings.

Finally, a two-way ANOVA was performed within the General Linear Model
(GLM) framework to test the effects of these methodological variations statistically.
The factors analyzed were weight combinations, normalization method, and distance
metric, with CC; as the response variable. Significant main and interaction effects were
further examined using Tukey’s post-hoc tests to identify which specific configurations
produced statistically distinct results. This approach provides deeper insight into the
model's sensitivity and highlights the methodological choices that lead to more stable

and discriminative rankings.
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CHAPTER 4
RESULTS AND DISCUSSION

This chapter presents the results of the proposed approach to warehouse location
selection. The approach consists of three stages: (1) determining the importance of
criteria using the Fuzzy Best-Worst Method (FBWM) and random weight generation,
(2) ranking the warehouse alternatives using TOPSIS under various methodological
settings, and (3) conducting a robustness analysis to evaluate the stability of the results
across different configurations. Furthermore, a sensitivity analysis is performed to

investigate how methodological variations influence the final rankings.

4.1 Fuzzy Best-Worst method (FBWM)

The FBWM is applied to derive the importance weights of the three criteria:
Area (C1), Rental rate (C2), and Distance to airport (C3). Rental rate (C2) is identified
as the most important criterion, while Distance to airport (C3) is considered the least
important based on the decision context. Linguistic preferences are expressed by expert
judgments and converted into TFNs to form comparison matrices. The best-to-others
(BO) vector represents the relative importance of the best criterion (C2) over the other
criteria.

Table 4.1 Best-to-others (BO) fuzzy comparison matrix

Best-to-Others (BO) Cl C2 C3
Linguistic Scale FI El Al
TFNs (ag ;) (3/2,2,512) | (1,1,1) | (7/2,4,9/2)
2 Lower (lg ;) 32 1 7/2
Medium (mg ;) 2 1 4
Upper (ug ;) 52 1 9/2

Table 4.1 shows that C2 is “Fairly important” over C1, “Equally important” to
itself, and “Absolutely important” over C3. These linguistic terms correspond to the
TFNs (1.5, 2, 2.5), (1, 1, 1), and (3.5, 4, 4.5), respectively. The others-to-worst (OW)
vector reflects the importance of each criterion relative to the worst one (C3). As

presented in Table 4.2, C1 is considered “Weakly important” compared to C3, C2 is
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“Absolutely important,” and C3 is “Equally important” to itself. The corresponding
TFNs are (0.666, 1, 1.5), (3.5, 4,4.5), and (1, 1, 1), respectively.

Table 4.2 Others-to-worst (OW) fuzzy comparison matrix

C3
Others-to-(\)N“(;rst Linguistic TFNs Lower | Medium | Upper
(OW) Scale @) | Q) | ) | Q)
Cl WI (2/3,1,3/2) 2/3 1 3/2
C2 Al (7/2 ,4,9/2) 7/2 4 9/2
C3 EIl (1,1,1) 1 1 1

These fuzzy comparisons are then used to construct the fuzzy optimization
model as shown in Equation (3.3). The results obtained from solving the model are as
follows: the weight of Area (C1) is 0.250, Rental rate (C2) is 0.593, and Distance to
airport (C3) is 0.157. These weights reflect the relative importance of each criterion and
are used in the next phase for alternative ranking via TOPSIS.

To ensure the reliability of the expert judgments used in the FBWM model, a
consistency check is conducted using the approach proposed by (Dong et al., 2021).
The consistency ratio (CR) is calculated as the ratio between the maximum deviation
value k* obtained from the optimization model and the corresponding Cl,;,4,, Which is
determined based on the fuzzy linguistic scale used in the comparisons, as shown in
Table 3.3.

In this study, the maximum deviation k* = 0.07 , and the value of k" is obtained
from the optimal solution of the FBWM optimization model (solved using Excel
Solver), which minimizes the maximum deviation between the derived weights and the
expert comparison ratio. The corresponding CI,,,, = 8.04, and CR was computed
using Equation (3.5). Since the CR = 0.07/8.04 = 0.0087 is significantly lower than
the commonly accepted threshold of 0.1, the comparisons are considered consistent,

and the derived fuzzy weights are valid for further analysis.
4.2 Alternatives ranking using TOPSIS

To evaluate the alternatives, a decision matrix was constructed based on three

alternatives S; = {S;,5,,5;} and three criteria: Area (Cy, benefit), Rental Rate
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(Cy, cost), and Distance to Airport (C3, cost). The evaluation matrix is presented in

Table 4.3, which serves as the input for the TOPSIS procedure.

Table 4.3 Evaluation matrix for warehouse alternatives

Alternative (S;) Benefit Criteria Cost Criteria Cost Criteria
l Cl C2 C3
S1 1000.00 159.00 30.00
S2 700.00 79.50 25.00
S3 500.00 95.40 40.00

Table 4.4 Normalized matrix by linear vector normalization

Alternative (S)) Benefit Criteria Cost Criteria Cost Criteria
! Cl C2 C3
S1 0.758 0.788 0.537
S2 0.531 0.394 0.447
S3 0.379 0.473 0.716

Table 4.5 Normalized matrix by linear sum normalization

Alternative (S;) Benefit Criteria Cost Criteria Cost Criteria
l Cl C2 C3
S1 0.455 0.476 0.316
S2 0.318 0.238 0.263
S3 0.227 0.286 0.421

Table 4.6 Normalized matrix by max normalization

Alternative (S,) Benefit Criteria Cost Criteria Cost Criteria
l Cl C2 C3
S1 1.000 1.000 0.750
S2 0.700 0.500 0.625
S3 0.500 0.600 1.000

The matrix was normalized using linear vector, linear sum, and max

normalization as defined in Equations (3.7) to (3.9). Tables 4.4, 4.5, and 4.6 present the

corresponding normalized values for each method, respectively.

Next, the normalized values r;; were multiplied by the previously obtained

fuzzy weights w; (from FBWM), to obtain the weighted normalized values v;; , using

Equation (3.10). The weighted normalized values were then used to compute the
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distances of each alternative from the PIS and NIS, based on whether the criteria were

classified as benefit or cost types, as shown in Equations (3.11) and (3.12). Tables (4.7)

— (4.9) present the weighted normalized matrices for linear vector, linear sum, and max

normalization methods, along with the corresponding PIS and NIS values for each

criterion. Two distance metrics were applied: Euclidean distance, computed using

Equations (3.13) and (3.14), and Manhattan distance, based on Equations (3.15) and

(3.16). Finally, CC; is computed using Equation (3.17).

Table 4.7 Weighted normalized matrix using linear vector normalization

Alternative (S;) Benefit Criteria Cost Criteria Cost Criteria
l Cl C2 C3
S1 0.190 0.467 0.084
S2 0.133 0.234 0.070
S3 0.095 0.280 0.112
PIS 0.190 0.234 0.070
NIS 0.095 0.467 0.112

Table 4.8 Weighted normalized matrix using linear sum normalization

Alternative (S) Benefit Criteria Cost Criteria Cost Criteria
- Cl C2 C3
S1 0.114 0.282 0.050
S2 0.080 0.141 0.041
S3 0.057 0.169 0.066
PIS 0.114 0.141 0.041
NIS 0.057 0.282 0.066

Table 4.9 Weighted normalized matrix using max normalization

Alternative (S;) Benefit Criteria Cost Criteria Cost Criteria
! Cl C2 C3
S1 0.900 0.050 0.038
S2 0.630 0.025 0.031
S3 0.450 0.030 0.050
PIS 0.900 0.025 0.031
NIS 0.450 0.050 0.050
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The final ranking results of the three alternatives using TOPSIS under all
combinations of three normalization techniques (linear vector, linear sum, and max)

and two distance metrics (Euclidean and Manhattan) are presented in Table 4.10.

Table 4.10 Ranking results of alternatives using FBWM and TOPSIS

Ranking by FBWM and TOPSIS
Normalizati- S Euclidean Distance Manhattan Distance
on Method | ~* df di | CC; |Rank | df | di | CC; | Rank

Linear S1 | 0.234 | 0.099 | 0.297 3 0.248 | 0.123 | 0.332 3
vector S2 | 0.057 | 0.240 | 0.809 1 0.057 | 0.314 | 0.847 1
S3 | 0.114 | 0.187 | 0.622 2 0.184 | 0.187 | 0.504 2

Linear S1 | 0.141 | 0.059 | 0.295 3 0.149 | 0.073 | 0.329 3
- S2 | 0.034 | 0.145 | 0.810 1 0.034 | 0.189 | 0.847 1

S3 | 0.068 | 0.113 | 0.624 2 0.110 | 0.113 | 0.507 2

S1 | 0.297 | 0.131 | 0.306 3 0.316 | 0.164 | 0.342 3

Max S2 | 0.075 | 0.306 | 0.803 1 0.075 | 0.405 | 0.844 1
S3 | 0.150 | 0.237 | 0.612 2 0.243 | 0.237 | 0.494 2

4.3 Analysis of FBWM-TOPSIS rankings across normalization and distance
methods

The rankings derived from applying FBWM weights within the TOPSIS
framework are presented in Table 4.10. The results compare the impact of three
normalization methods (linear vector, linear sum, and max normalization) and two
distance measures (Euclidean and Manhattan) on the final warehouse rankings.

Across all configurations, alternative S2 consistently ranked first, with
closeness coefficient (CC;) values ranging from 0.803 to 0.847. This stability across all
normalization and distance methods confirms S2 as the most robust and preferred
option. Warehouse alternative (S1) consistently ranked last, with CC; values between
0.295 and 0.342. Warehouse alternative (S3) ranked in second place across all methods
but showed more variation in results than S2 and S1. Specifically, under linear vector
normalization, its CC; dropped from 0.622 with Euclidean distance to 0.504 with
Manhattan distance. Under linear sum normalization, the variation was smaller, with
CC; values between 0.612 and 0.624. These differences indicate that S3’s ranking is

moderately affected by the choice of normalization and distance method.
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In terms of distance metrics, the Manhattan distance generally produces higher
CC; values across alternatives compared to Euclidean distance. Additionally,
Manhattan distance showed greater discrimination between top and bottom-ranked
alternatives, particularly under the linear sum normalization. This indicates that
Manhattan distance is more sensitive to variations in normalized performance values.

Regarding normalization techniques, linear vector normalization and linear sum
normalization presented similar ranking patterns, with slightly more pronounced
differences in CC;. These small deviations highlight the importance of carefully
selecting a normalization technique, as even small computational differences can
influence how alternatives are distinguished.

Overall, while the top and bottom rankings remained stable across all methods
(S2 and S1, respectively), the middle-ranked alternative (S3) demonstrated some degree
of sensitivity. This highlights that the choice of normalization and distance methods can
influence the differentiation between alternatives, particularly those that are closely

matched in performance, when methodological choices are varied.

4.4 Evaluation using valid weight combinations

To evaluate the robustness of the decision-making model beyond expert-derived
FBWM weights, an additional analysis was conducted using systematically generated
random weight combinations. A total of 5,832 potential weight combinations were
generated by assigning discrete values ranging from 0.05 to 0.90 (in increments of 0.05)
to each of the three criteria (wy,w,, w3). To ensure only meaningful and realistic
configurations, two filtering conditions were applied:

(1) The weights must sum to one (w; + w, + wz = 1)

(2) the weight assigned to the rental rate (w,) must be greater than or equal to
the weights of the other two criteria (w, = wy,w, = w3). After applying these
constraints, 45 valid weight distributions remained, as in Table 4.11.

These were then applied in the TOPSIS framework across all combinations of
normalization (linear vector, linear sum, and max) and distance methods (Euclidean

and Manhattan). This procedure allowed for 270 evaluation runs (45 weight
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combinations x 3 normalization methods x 2 distance metrics) for each alternative,
enabling a detailed assessment of how rankings respond to varying inputs.

The closeness coefficient (CC;) was calculated for each alternative under every
scenario, and the resulting rankings were recorded. This approach provided a rich
dataset for understanding the sensitivity of warehouse rankings to weight for

identifying patterns of consistency across different methodological settings.

Table 4.11 Valid weight combinations

Weight Weight Weight

Comb- | W1 | W2 | W3 Comb- | W1 | W2 | W3 Comb- | W1 | W2 | W3

1nation ination ination
1 0.05 | 0.50 | 0.45 16 0.10 | 0.80 | 0.10 31 0.25 ] 0.50 | 0.25
2 0.05 | 0.55 | 0.40 17 0.10 | 0.85 | 0.05 32 0.25 ] 0.55 | 0.20
3 0.05] 0.6 | 0.35 18 0.15 ] 0.50 | 0.35 33 0.25] 0.6 | 0.15
4 0.05 | 0.65 | 0.30 19 0.15 ] 0.55 | 0.30 34 0.2510.65 | 0.10
5 0.05 ] 0.70 | 0.25 20 0.15 ] 0.60 | 0.25 35 0.25 ] 0.70 | 0.05
6 0.05]0.75 | 0.20 21 0.15 ] 0.65| 0.20 36 0.30 | 0.50 | 0.20
7 0.05 ] 0.80 | 0.15 22 0.15]0.70 | 0.15 37 0.30 | 0.55| 0.15
8 0.05]0.850.10 23 0.15(0.75 | 0.10 38 0.30 | 0.60 | 0.10
9 0.05 | 0.90 | 0.05 24 0.15 ] 0.80 | 0.05 39 0.30 | 0.65 | 0.05
10 0.10 | 0.50 | 0.40 25 0.20 | 0.50 | 0.30 40 0.35]0.50 | 0.15
11 0.10 | 0.55 ] 0.35 26 0.20 | 0.55 | 0.25 41 0.35]0.5510.10
12 0.10 | 0.60 | 0.30 27 0.20 | 0.60 | 0.20 42 0.35 ] 0.60 | 0.05
13 0.10 | 0.65 | 0.25 28 0.20 | 0.65 | 0.15 43 0.40 | 0.50 | 0.10
14 0.10 | 0.70 | 0.20 29 0.20 | 0.70 | 0.10 44 0.40 | 0.55| 0.05
15 0.10 | 0.75 | 0.15 30 0.20 | 0.75 | 0.05 45 0.45 ] 0.50 | 0.05

Table 4.12 Dataset components used for robustness and sensitivity analysis.

Component Description Quantity
Alternatives Warehouse location options (S1, S2, S3) 3
Valid weight Valid weight sets generated for 45
combinations robustness analysis
Normalization methods Linear vector, llngar sum, and max 3
normalization

. ) Euclidean and Manhattan distance

Distance metrics . 2

calculations
1 fficient
Closeness coefficien Total number of CC;values computed 810

values
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The full dataset consists of 810 closeness coefficient values (denoted as CC; ),
covering every alternative (S1, S2, S3) across the 270 scenarios. For each evaluation,

the following parameters were recorded in Table 4.12.

4.5 Statistical analysis of ranking robustness

To evaluate the influence of methodological variation on warehouse selection
outcomes, a two-way ANOVA was conducted in Minitab. The analysis examined the
effects of three factors: valid weight combinations, normalization method (linear
vector, linear sum, and max), and distance metric (Euclidean and Manhattan) on the
CC; of each warehouse alternative. The dataset consisted of 810 CC; values, generated
from 45 valid weight combinations across all methodological configurations. Residual
analysis indicated no major violations of normality or homogeneity, confirming the
suitability of the model. Finally, Tukey post-hoc tests were performed to identify
specific method pairs with significant differences in their impact on CC;. The analysis

included the following three factors, as shown in Table 4.13.

Table 4.13 Factor information for S1, S2 and S3 for ANOVA model

Factor Type | Levels Values
1,2,3,4,5,6,7,8,9,10, 11, 12, 13,
14,15, 16,17, 18, 19, 20, 21, 22, 23, 24,
25, 26,27, 28, 29, 30,31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42,43, 44,45
Distance Calculation Fixed 2 Euclidean, Manhattan

Normalization Method | Fixed 3 Max, Sum, Vector

Weight Combination Fixed 45

4.5.1 Statistical analysis of results for alternative 1 (S1)

The evaluation shows that weight combination, distance metric, and
normalization method all have a substantial impact on the CC; values for Alternative 1
(S1). The ANOVA results demonstrated that all three factors significantly influenced
CC; values of S1, with p-values less than 0.001, indicating strong statistical significance

(see Table 4.14).
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Table 4.14 Analysis of variance for alternative 1 (S1)

Source DF | AdjSS | AdjMS F-Value P-Value
Weight Combination 44 | 2.62660 | 0.059695 1120.51 0.000
Distance Calculation 1 0.05553 | 0.055526 1042.25 0.000

Normalization Method 2 0.00767 | 0.003836 72.01 0.000
Error 222 | 0.01183 | 0.000053
Total 269 | 2.70162

The model summary metrics further confirmed the strength of the analysis. The
adjusted R-squared value was 99.47%, indicating that the model explained nearly all of
the variation in CC; values. The predicted R-squared was also high at 99.35%,

suggesting strong predictive accuracy in Table 4.15.

Table 4.15 Model summary for alternative 1 (S1)

S R-sq R-sq(adj) R-sq(pred)
0.0072990 99.56% 99.47% 99.35%

To further identify which specific factor differed significantly, Tukey’s post-
hoc pairwise comparisons were conducted for both distance metrics and normalization

methods in Tables 4.16 and 4.17.

Table 4.16 Tukey pairwise comparisons: distance calculation for alternative 1 (S1)

Grouping Information Using the Tukey Method and 95% Confidence
Distance Calculation N Mean Grouping
Manhattan 135 0.280956 A
Euclidean 135 0.252275 B

Table 4.17 Tukey pairwise comparisons: normalization method for alternative 1 (S1)

Grouping Information Using the Tukey Method and 95% Confidence
Normalization Method N Mean Grouping
Max 90 0.274036 A
Vector 90 0.264059 B
Sum 90 0.261752 B

For alternative S1, the Manhattan distance produced a significantly higher mean

CC; (0.280956) than the Euclidean distance (0.252275), as indicated by their different
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statistical groupings A and B. This suggests that Manhattan distance offers greater
discriminative power in differentiating performance. Regarding normalization
methods, max normalization yielded the highest mean CC; (0.274036), significantly
above both Vector (0.264059) and Sum (0.261752) normalization, which were
statistically similar and as in grouped together.

The normal probability plot of residuals (Figure 4.1) supports the validity of the
ANOVA assumptions, with residuals closely following a straight line, indicating

approximate normality and homoscedasticity.

Normal Probability Plot

(response is CC_i)

Percent
w
(=]

-0.02 -0.01 0.00 0.01 0.02
Residual

Figure 4.1 Normal probability plot of residuals for alternative 1(S1)

The statistical analysis confirms that the selection of distance metric, and weight
combination significantly influences the closeness coefficient (CC;) values for

Alternative 1 (S1).

4.5.2 Statistical analysis of results for alternative 2 (S2)

To evaluate the sensitivity and robustness of the ranking outcome for
Alternative 2 (S2), a two-way ANOVA was performed in Minitab, considering the
same factors outlined in Table 4.13. The ANOV A results, presented in Table 4.18, show

that weight combination and distance metric are statistically significant effects on CC;.
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In contrast, the normalization method had only a marginal effect , indicating a weaker
influence compared to the other factors.

As shown in the model summary in Table 4.19, the R-squared value is 98.60%,
with an adjusted R-squared at 98.30% and predicted R-squared at 97.92%. It indicates
that the model is statistically valid and provides a reliable fit for analyzing CC; in
alternative 2.

Tukey’s pairwise comparisons (Tables 4.20 and 4.21) show that Alternative 2
(S2) is strongly influenced by distance metrics, while normalization methods have no

significant effect.

Table 4.18 Analysis of variance for alternative 2 (S2)

Source DF Adj SS Adj MS F-Value | P-Value
Weight Combination | 44 1.50545 0.034215 342.99 0.000
Distance Calculation 1 0.04957 0.049569 496.91 0.000
Normalization Method | 2 0.00059 0.000296 2.97 0.053
Error 222 0.02215 0.000100
Total 269 1.57776
Table 4.19 Model summary for alternative2 (S2)
S R-sq R-sq(adj) R-sq(pred)
0.0099877 98.60% 98.30% 97.92%

Table 4.20 Tukey pairwise comparisons: distance calculation for alternative 2 (S2)

Grouping Information Using the Tukey Method and 95% Confidence
Distance Calculation N Mean Grouping
Manhattan 135 0.887083 A -
Euclidean 135 0.859984 - B

Table 4.21 Tukey pairwise comparisons: normalization method for alternative 2 (S2)

Grouping Information Using the Tukey Method and 95% Confidence
Normalization Method N Mean Grouping
Max 90 0.874825 A -
Vector 90 0.874317 A -
Sum 90 0.871458 A -
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Figure 4.2 Normal probability plot of residuals for alternative 2(S2).

The normal probability plot of residuals (Figure 4.2) confirms that the

assumption of normality was satisfied.

4.5.3 Statistical analysis of results for alternative 3 (S3)

For alternative 3 (S3), the same statistical approach was applied, using the GLM

as the response variable and the same factors listed in Table 4.13. The ANOVA results

are presented in Table 4.22. All three factors exhibited statistically significant effects

on the CC; values, as indicated by their p-values being less than 0.05. The model

summary in Table 4.23 reveals a high goodness-of-fit, with an R-squared value of

99.03%, adjusted R-squared of 98.82%, and predicted R-squared of 98.56%,

confirming that the model explains nearly all variability in the data.

Table 4.22 Analysis of variance for alternative 3 (S3)

Source DF Adj SS Adj MS F-Value | P-Value
Weight Combination | 44 1.84942 0.042032 367.46 0.000
Distance Calculation 1 0.72113 0.721133 6304.32 0.000

Normalization Method | 2 0.00877 0.004384 38.33 0.000
Error 222 0.02539 0.000114
Total 269 2.60471
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S

R-sq

R-sq(adj)

R-sq(pred)

0.0099877

99.03%

98.82%

98.56%

Post-hoc comparisons using Tukey's test were conducted to examine pairwise

differences between levels of the distance and normalization methods. For the distance

calculation method comparison, there is a significant influence on CC; for S3, as

indicated by their assignment to distinct groups (A and B, respectively) in Table 4.24.

Table 4.24 Tukey pairwise comparisons: distance calculation for alternative 3 (S3)

Grouping Information Using the Tukey Method and 95% Confidence
Distance Calculation N Mean Grouping
Manhattan 135 0.641491 A -
Euclidean 135 0.538130 - B

Table 4.25 Tukey pairwise comparisons: normalization method for alternative 3 (S3)

Grouping Information Using the Tukey Method and 95% Confidence
Normalization Method N Mean Grouping

Max 90 0.595045 A -

Vector 90 0.592501 A -

Sum 90 0.581887 - B

Normal Probability Plot
(response is CC_i)
99.9
99
951
90
80
€ 70
S 60
5 a0
& 30
20
10
5
N
0.1 T T T T T T T
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
Residual

Figure 4.3 Normal probability plot of residuals for alternative 3 (S3).
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Table 4.25 shows a comparison of the normalization methods, which were not
significantly different, even though the results are in groups A and B. Furthermore, the
normal probability plot of residuals (Figure 4.3) confirms that the residuals follow a

normal distribution, supporting the validity of the ANOVA assumptions.

4.6 Interpretation of sensitivity and robustness

The sensitivity and robustness analysis shows that the overall ranking pattern is
stable, with S2 consistently in the top-ranked position. However, the variations CC;
values and the magnitude difference between alternatives were changed depending on
the weight combinations, normalization methods, and distance metrics used. These
results highlight the importance of sensitivity analysis in MCDM, particularly in real-
world situations where judgments and methodological choices can vary.

The robustness of the proposed decision-making framework is substantiated
through evaluation, using 45 weight combinations, and statistical analysis via two-way
ANOVA. The findings reveal that weight combinations and distance metrics are
statistically significant effects on CC; values across all three alternatives. Among the
distance metrics, the Manhattan distance demonstrated greater discriminatory
capability by generating a wider dispersion of CC; scores, whereas the Euclidean
distance yielded more stable and consistent rankings across methodological variations.
In contrast, normalization methods did not exhibit a statistically significant influence,
suggesting their negligible effect on CC; values. Overall, the results demonstrate that
the TOPSIS-based framework ensures reliable and adaptable warehouse location

decisions, even under varying inputs and methodological settings.
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CHAPTER S
CONCLUSION

This study developed a hybrid fuzzy multi-criteria decision-making framework
for warehouse location selection, integrating the FBWM for criteria weighting with the
TOPSIS for alternative ranking. The approach was designed to address the uncertainty
inherent in expert judgments and the variability in methodological configurations. A
case study involving three warehouse candidates (S1, S2, and S3) within the Bangkok
metropolitan area was conducted, evaluated against three quantitative criteria:
warehouse area, rental cost, and distance to the airport.

In addition to expert-derived weights from FBWM, the study applied 45 valid
random weight combinations to simulate variations in decision-maker preferences.
Rankings were generated under three normalization methods (linear vector, linear sum,
and max) and two distance metrics (Euclidean and Manhattan), followed by robustness

and sensitivity analysis using Two-Way ANOVA.

5.1 Key findings and contributions

The results demonstrated that alternative S2 consistently ranked as the most
suitable warehouse location across all evaluation scenarios, with closeness coefficient
values ranging from 0.803 to 0.847. Alternative S1 consistently ranked last, while S3
ranked second.

Robustness analysis confirmed that variations in criteria weights and distance
metrics significantly influenced closeness coefficients, whereas normalization methods
had minimal effect. Manhattan distance provided greater discrimination among
alternatives, while Euclidean distance yielded more stable results.

This research contributes to theory by demonstrating the integration of FBWM
and TOPSIS within a warehouse location selection context, and by incorporating a
comprehensive robustness and sensitivity analysis supported by statistical validation.
Practically, it offers decision-makers a transparent and replicable framework capable

of producing reliable results under varying decision preferences.
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5.2 Limitations and recommendations for future research

The study was limited to three quantitative criteria, excluding qualitative
considerations such as facility condition, contract flexibility, and accessibility to labor
markets. The case study involved only three alternatives within a single metropolitan
area, limiting generalizability. The robustness analysis assumed rental cost to be the
most important criterion, which may not hold in all contexts. Finally, while FBWM
accounted for fuzziness in weighting, the TOPSIS stage used deterministic performance
scores.

Future research could integrate fuzzy TOPSIS in the ranking stage, expand the
criteria set to include qualitative and sustainability-related factors, apply the framework
to a broader range of alternatives and contexts, and use real-time data for dynamic

decision-making.
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APPENDIX A
Dataset of CC; Values for Alternative S1
Weigh
t Distance Normaliz
SN Combi | M1 W2 W3 Calculation ation Si Gy
nation
1 1 0.05 0.50 0.45 Euclidean Vector S1 0.2914
2 1 0.05 0.50 0.45 Euclidean Max S1 0.3102
3 1 0.05 | 0.50 | 0.45 Euclidean Sum S1 0.2864
4 1 0.05 0.50 0.45 Manhattan Vector S1 0.2953
5 1 0.05 | 0.50 0.45 Manhattan Max S1 0.3099
6 1 0.05 0.50 0.45 Manhattan Sum S1 0.2915
7 2 0.05 0.55 0.40 Euclidean Vector S1 0.2520
8 2 0.05 | 0.55 0.40 Euclidean Max S1 0.2694
9 2 0.05 | 0.55 0.40 | Euclidean Sum S1 0.2474
10 2 0.05 0.55 0.40 Manhattan Vector S1 0.2639
11 2 0.05 | 0.55 0.40 Manbhattan Max S1 0.2778
12 2 0.05 | 0.55 0.40 Manbhattan Sum S1 0.2602
13 3 0.05 0.60 0.35 Euclidean Vector S1 0.2152
14 3 0.05 | 0.60 0.35 Euclidean Max S1 0.2309
15 3 0.05 | 0.60 0.35 Euclidean Sum S1 0.2111
16 3 0.05 0.60 0.35 Manbhattan Vector S1 0.2335
17 3 0.05 | 0.60 0.35 Manhattan Max S1 0.2466
18 3 0.05 | 0.60 0.35 Manbhattan Sum S1 0.2301
19 4 0.05 0.65 0.30 Euclidean Vector S1 0.1810
20 4 0.05 | 0.65 0.30 Euclidean Max S1 0.1946
21 4 0.05 | 0.65 0.30 Euclidean Sum S1 0.1775
22 4 0.05 0.65 0.30 Manbhattan Vector S1 0.2042
23 4 0.05 | 0.65 0.30 Manhattan Max S1 0.2162
24 4 0.05 | 0.65 0.30 Manhattan Sum S1 0.2011
25 5 0.05 0.70 0.25 Euclidean Vector S1 0.1493
26 5 0.05 0.70 0.25 Euclidean Max S1 0.1608
27 5 0.05 | 0.70 0.25 Euclidean Sum S1 0.1464
28 5 0.05 0.70 0.25 Manbhattan Vector S1 0.1760
29 5 0.05 0.70 0.25 Manbhattan Max S1 0.1867
30 5 0.05 0.70 0.25 Manhattan Sum S1 0.1732
31 6 0.05 0.75 0.20 Euclidean Vector S1 0.1203
32 6 0.05 0.75 0.20 Euclidean Max S1 0.1295
33 6 0.05 | 0.75 0.20 Euclidean Sum S1 0.1180
34 6 0.05 0.75 0.20 Manbhattan Vector S1 0.1487
35 6 0.05 0.75 0.20 Manhattan Max S1 0.1579
36 6 0.05 0.75 0.20 Manhattan Sum S1 0.1463
37 7 0.05 0.80 0.15 Euclidean Vector S1 0.0943
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Weigh
t Distan Normaliz
SN Combi | M1 W2 W3 Calcsuellat(izn (;tioill Si Gy
nation

38 7 0.05 | 0.80 0.15 Euclidean Max S1 0.1012
39 7 0.05 | 0.80 0.15 Euclidean Sum S1 0.0926
40 7 0.05 0.80 0.15 Manhattan Vector S1 0.1223
41 7 0.05 | 0.80 0.15 Manhattan Max S1 0.1299
42 7 0.05 | 0.80 0.15 Manhattan Sum S1 0.1204
43 8 0.05 0.85 0.10 Euclidean Vector S1 0.0722
44 8 0.05 | 0.85 0.10 Euclidean Max S1 0.0768
45 8 0.05 | 0.85 0.10 Euclidean Sum S1 0.0711
46 8 0.05 0.85 0.10 Manbhattan Vector S1 0.0968
47 8 0.05 | 0.85 0.10 Manbhattan Max S1 0.1026
48 8 0.05 | 0.85 0.10 Manbhattan Sum S1 0.0954
49 9 0.05 0.90 0.05 Euclidean Vector S1 0.0558
50 9 0.05 | 0.90 0.05 Euclidean Max S1 0.0585
51 9 0.05 | 0.90 0.05 Euclidean Sum S1 0.0552
52 9 0.05 0.90 0.05 Manhattan Vector S1 0.0721
53 9 0.05 | 0.90 0.05 Manhattan Max S1 0.0759
54 9 0.05 | 0.90 0.05 Manhattan Sum S1 0.0712
55 10 0.10 | 0.50 0.40 Euclidean Vector S1 0.2879
56 10 0.10 | 0.50 0.40 Euclidean Max S1 0.3048
57 10 0.10 | 0.50 0.40 Euclidean Sum S1 0.2836
58 10 0.10 0.50 0.40 Manhattan Vector S1 0.3198
59 10 0.10 | 0.50 0.40 Manhattan Max S1 0.3333
60 10 0.10 | 0.50 0.40 Manhattan Sum S1 0.3164
61 11 0.10 0.55 0.35 Euclidean Vector S1 0.2505
62 11 0.10 | 0.55 0.35 Euclidean Max S1 0.2657
63 11 0.10 | 0.55 0.35 Euclidean Sum S1 0.2466
64 11 0.10 | 0.55 0.35 Manhattan Vector S1 0.2884
65 11 0.10 | 0.55 0.35 Manhattan Max S1 0.3014
66 11 0.10 | 0.55 0.35 Manhattan Sum S1 0.2851
67 12 0.10 | 0.60 0.30 Euclidean Vector S1 0.2164
68 12 0.10 | 0.60 0.30 Euclidean Max S1 0.2297
69 12 0.10 | 0.60 0.30 Euclidean Sum S1 0.2130
70 12 0.10 0.60 0.30 Manbhattan Vector S1 0.2581
71 12 0.10 | 0.60 0.30 Manhattan Max S1 0.2703
72 12 0.10 | 0.60 0.30 Manhattan Sum S1 0.2550
73 13 0.10 | 0.65 0.25 Euclidean Vector S1 0.1857
74 13 0.10 | 0.65 0.25 Euclidean Max S1 0.1969
75 13 0.10 | 0.65 0.25 Euclidean Sum S1 0.1829
76 13 0.10 0.65 0.25 Manbhattan Vector S1 0.2288
77 13 0.10 | 0.65 0.25 Manhattan Max S1 0.2400

Ref. code: 25686622040100WQY



46

Weigh
Distan Normaliz
SN Co:nbi W1 W2 W3 Calcsuellat(izn ation Si CC
nation

78 13 0.10 | 0.65 0.25 Manhattan Sum S1 0.2260
79 14 0.10 | 0.70 0.20 Euclidean Vector S1 0.1586
80 14 0.10 | 0.70 0.20 Euclidean Max S1 0.1677
81 14 0.10 | 0.70 0.20 Euclidean Sum S1 0.1565
82 14 0.10 | 0.70 0.20 Manbhattan Vector S1 0.2005
83 14 0.10 | 0.70 0.20 | Manhattan Max S1 0.2105
84 14 0.10 | 0.70 0.20 | Manhattan Sum S1 0.1981
85 15 0.10 | 0.75 0.15 Euclidean Vector S1 0.1357
86 15 0.10 | 0.75 0.15 Euclidean Max Sl 0.1427
87 15 0.10 | 0.75 0.15 Euclidean Sum Sl 0.1341
88 15 0.10 | 0.75 0.15 Manbhattan Vector S1 0.1732
89 15 0.10 | 0.75 0.15 Manbhattan Max S1 0.1818
90 15 0.10 | 0.75 0.15 Manhattan Sum Sl 0.1712
91 16 0.10 | 0.80 0.10 Euclidean Vector S1 0.1173
92 16 0.10 | 0.80 0.10 Euclidean Max S1 0.1226
93 16 0.10 | 0.80 0.10 Euclidean Sum S1 0.1162
94 16 0.10 | 0.80 0.10 | Manhattan | Vector S1 0.1468
95 16 0.10 | 0.80 0.10 Manbhattan Max S1 0.1538
96 16 0.10 | 0.80 0.10 Manbhattan Sum S1 0.1452
97 17 0.10 | 0.85 0.05 Euclidean Vector S1 0.1042
98 17 0.10 | 0.85 0.05 Euclidean Max Sl 0.1081
99 17 0.10 | 0.85 0.05 Euclidean Sum S1 0.1033
100 17 0.10 | 0.85 0.05 Manbhattan Vector S1 0.1213
101 17 0.10 | 0.85 0.05 Manhattan Max Sl 0.1266
102 17 0.10 | 0.85 0.05 Manbhattan Sum S1 0.1201
103 18 0.15 0.50 0.35 Euclidean Vector Sl 0.2977
104 18 0.15 | 0.50 0.35 Euclidean Max S1 0.3123
105 18 0.15 | 0.50 0.35 Euclidean Sum S1 0.2941
106 18 0.15 | 0.50 0.35 Manhattan | Vector S1 0.3435
107 18 0.15 | 0.50 0.35 Manbhattan Max S1 0.3562
108 18 0.15 | 0.50 0.35 Manhattan Sum S1 0.3404
109 19 0.15 | 0.55 0.30 Euclidean Vector S1 0.2636
110 19 0.15 | 0.55 0.30 Euclidean Max Sl 0.2765
111 19 0.15 | 0.55 0.30 Euclidean Sum Sl 0.2605
112 19 0.15 | 0.55 0.30 Manbhattan Vector S1 0.3121
113 19 0.15 | 0.55 0.30 Manhattan Max S1 0.3243
114 19 0.15 | 0.55 0.30 Manbhattan Sum S1 0.3092
115 20 0.15 | 0.60 0.25 Euclidean Vector S1 0.2335
116 20 0.15 | 0.60 0.25 Euclidean Max S1 0.2445
117 20 0.15 | 0.60 0.25 Euclidean Sum S1 0.2309
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Weigh
t Distan Normaliz
SN Combi | M1 W2 W3 Calcsuellat(izn (;tioill Si CC
nation

118 20 0.15 | 0.60 0.25 Manhattan Vector S1 0.2819
119 20 0.15 | 0.60 0.25 Manhattan Max S1 0.2933
120 20 0.15 | 0.60 0.25 Manbhattan Sum S1 0.2791
121 21 0.15 | 0.65 0.20 Euclidean Vector S1 0.2074
122 21 0.15 | 0.65 0.20 Euclidean Max S1 0.2166
123 21 0.15 | 0.65 0.20 Euclidean Sum S1 0.2053
124 21 0.15 | 0.65 0.20 | Manhattan | Vector S1 0.2526
125 21 0.15 | 0.65 0.20 | Manhattan Max S1 0.2632
126 21 0.15 | 0.65 0.20 Manbhattan Sum S1 0.2502
127 22 0.15 | 0.70 0.15 Euclidean Vector S1 0.1854
128 22 0.15 | 0.70 0.15 Euclidean Max S1 0.1931
129 22 0.15 | 0.70 0.15 Euclidean Sum S1 0.1838
130 22 0.15 | 0.70 0.15 Manhattan Vector Sl 0.2244
131 22 0.15 | 0.70 0.15 Manhattan Max S1 0.2338
132 22 0.15 | 0.70 0.15 Manhattan Sum S1 0.2222
133 23 0.15 | 0.75 0.10 Euclidean Vector S1 0.1678
134 23 0.15 | 0.75 0.10 Euclidean Max S1 0.1740
135 23 0.15 | 0.75 0.10 Euclidean Sum S1 0.1665
136 23 0.15 | 0.75 0.10 | Manhattan | Vector S1 0.1971
137 23 0.15 | 0.75 0.10 | Manhattan Max S1 0.2051
138 23 0.15 | 0.75 0.10 Manbhattan Sum S1 0.1953
139 24 0.15 | 0.80 0.05 Euclidean Vector Sl 0.1544
140 24 0.15 | 0.80 0.05 Euclidean Max Sl 0.1597
141 24 0.15 | 0.80 0.05 Euclidean Sum S1 0.1533
142 24 0.15 | 0.80 0.05 Manhattan Vector S1 0.1707
143 24 0.15 | 0.80 0.05 Manhattan Max S1 0.1772
144 24 0.15 | 0.80 0.05 Manbhattan Sum S1 0.1693
145 25 020 | 0.50 0.30 Euclidean Vector S1 0.3184
146 25 020 | 0.50 0.30 Euclidean Max S1 0.3309
147 25 020 | 0.50 0.30 Euclidean Sum S1 0.3155
148 25 020 | 0.50 0.30 Manbhattan Vector S1 0.3664
149 25 020 | 0.50 0.30 Manbhattan Max S1 0.3784
150 25 020 | 0.50 0.30 Manbhattan Sum S1 0.3636
151 26 020 | 0.55 0.25 Euclidean Vector S1 0.2877
152 26 020 | 0.55 0.25 Euclidean Max S1 0.2988
153 26 0.20 | 0.55 0.25 Euclidean Sum S1 0.2852
154 26 0.20 | 0.55 0.25 Manbhattan Vector S1 0.3352
155 26 0.20 0.55 0.25 Manhattan Max S1 0.3467
156 26 020 | 0.55 0.25 Manbhattan Sum S1 0.3325
157 27 020 | 0.60 0.20 Euclidean Vector S1 0.2612
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158 27 0.20 | 0.60 0.20 Euclidean Max S1 0.2708
159 27 0.20 | 0.60 0.20 Euclidean Sum S1 0.2591
160 27 0.20 | 0.60 0.20 Manbhattan Vector S1 0.3050
161 27 0.20 | 0.60 0.20 Manbhattan Max S1 0.3158
162 27 0.20 | 0.60 0.20 Manbhattan Sum S1 0.3025
163 28 0.20 | 0.65 0.15 Euclidean Vector S1 0.2387
164 28 0.20 | 0.65 0.15 Euclidean Max S1 0.2470
165 28 0.20 | 0.65 0.15 Euclidean Sum S1 0.2369
166 28 020 | 0.65 0.15 | Manhattan | Vector S1 0.2758
167 28 0.20 | 0.65 0.15 Manbhattan Max Sl 0.2857
168 28 0.20 | 0.65 0.15 Manbhattan Sum Sl 0.2735
169 29 0.20 | 0.70 0.10 Euclidean Vector S1 0.2201
170 29 0.20 | 0.70 0.10 Euclidean Max Sl 0.2274
171 29 0.20 | 0.70 0.10 Euclidean Sum Sl 0.2186
172 29 0.20 | 0.70 0.10 Manbhattan Vector S1 0.2476
173 29 0.20 | 0.70 0.10 Manbhattan Max S1 0.2564
174 29 0.20 | 0.70 0.10 Manhattan Sum S1 0.2456
175 30 0.20 | 0.75 0.05 Euclidean Vector S1 0.2053
176 30 0.20 | 0.75 0.05 Euclidean Max S1 02118
177 30 0.20 | 0.75 0.05 Euclidean Sum S1 0.2040
178 30 020 | 0.75 0.05 | Manhattan | Vector S1 0.2203
179 30 0.20 | 0.75 0.05 Manhattan Max S1 0.2278
180 30 0.20 | 0.75 0.05 Manbhattan Sum S1 0.2187
181 31 0.25 | 0.50 0.25 Euclidean Vector S1 0.3457
182 31 0.25 | 0.50 0.25 Euclidean Max Sl 0.3568
183 31 0.25 | 0.50 0.25 Euclidean Sum S1 0.3433
184 31 0.25 | 0.50 0.25 | Manhattan | Vector S1 0.3887
185 31 0.25 0.50 0.25 Manbhattan Max S1 0.4000
186 31 0.25 0.50 0.25 Manhattan Sum S1 0.3861
187 32 0.25 | 0.55 0.20 Euclidean Vector S1 0.3178
188 32 0.25 | 0.55 0.20 | Euclidean Max S1 0.3278
189 32 0.25 | 0.55 0.20 Euclidean Sum S1 0.3156
190 32 0.25 | 0.55 0.20 | Manhattan | Vector S1 0.3575
191 32 0.25 | 0.55 0.20 Manbhattan Max Sl 0.3684
192 32 0.25 | 0.55 0.20 Manhattan Sum S1 0.3550
193 33 0.25 0.60 0.15 Euclidean Vector S1 0.2937
194 33 0.25 0.60 0.15 Euclidean Max S1 0.3027
195 33 0.25 | 0.60 0.15 Euclidean Sum S1 0.2919
196 33 0.25 0.60 0.15 Manhattan Vector S1 0.3274
197 33 0.25 | 0.60 0.15 Manbhattan Max S1 0.3377
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198 33 0.25 | 0.60 0.15 Manbhattan Sum S1 0.3251
199 34 0.25 | 0.65 0.10 Euclidean Vector S1 0.2734
200 34 0.25 0.65 0.10 Euclidean Max S1 0.2816
201 34 0.25 0.65 0.10 Euclidean Sum S1 0.2718
202 34 0.25 0.65 0.10 Manbhattan Vector S1 0.2982
203 34 0.25 0.65 0.10 Manhattan Max S1 0.3077
204 34 0.25 | 0.65 0.10 | Manhattan Sum S1 0.2962
205 35 0.25 0.70 0.05 Euclidean Vector S1 0.2565
206 35 0.25 | 0.70 0.05 Euclidean Max Sl 0.2641
207 35 0.25 | 0.70 0.05 Euclidean Sum Sl 0.2550
208 85 0.25 | 0.70 0.05 | Manhattan | Vector S1 0.2701
209 35 0.25 | 0.70 0.05 Manbhattan Max Sl 0.2785
210 35 0.25 | 0.70 0.05 Manbhattan Sum Sl 0.2683
211 36 0.30 | 0.50 0.20 Euclidean Vector S1 0.3760
212 36 0.30 | 0.50 0.20 Euclidean Max S1 0.3862
213 36 0.30 | 0.50 0.20 Euclidean Sum S1 0.3739
214 36 0.30 | 0.50 0.20 Manhattan Vector S1 0.4102
215 36 0.30 | 0.50 0.20 Manbhattan Max S1 0.4211
216 36 0.30 | 0.50 0.20 Manbhattan Sum S1 0.4078
217 37 0.30 | 0.55 0.15 Euclidean Vector S1 0.3498
218 37 0.30 | 0.55 0.15 Euclidean Max Sl 0.3594
219 37 0.30 | 0.55 0.15 Euclidean Sum S1 0.3479
220 37 030 | 0.55 0.15 | Manhattan | Vector S1 0.3791
221 37 0.30 | 0.55 0.15 Manbhattan Max Sl 0.3896
222 37 0.30 | 0.55 0.15 Manhattan Sum S1 0.3769
223 38 0.30 | 0.60 0.10 Euclidean Vector S1 0.3273
224 38 0.30 | 0.60 0.10 Euclidean Max S1 0.3362
225 38 0.30 | 0.60 0.10 Euclidean Sum S1 0.3255
226 38 0.30 | 0.60 0.10 Manhattan Vector S1 0.3491
227 38 0.30 | 0.60 0.10 Manbhattan Max S1 0.3590
228 38 0.30 | 0.60 0.10 Manbhattan Sum S1 0.3470
229 39 0.30 | 0.65 0.05 Euclidean Vector S1 0.3081
230 39 0.30 | 0.65 0.05 Euclidean Max S1 0.3165
231 39 0.30 | 0.65 0.05 Euclidean Sum S1 0.3064
232 39 0.30 | 0.65 0.05 Manbhattan Vector S1 0.3200
233 39 0.30 | 0.65 0.05 Manhattan Max S1 0.3291
234 39 0.30 | 0.65 0.05 Manbhattan Sum S1 0.3182
235 40 0.35 | 0.50 0.15 Euclidean Vector S1 0.4067
236 40 0.35 | 0.50 0.15 Euclidean Max S1 0.4165
237 40 0.35 0.50 0.15 Euclidean Sum S1 0.4047
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238 40 0.35 | 0.50 0.15 | Manhattan | Vector S1 04311
239 40 0.35 | 0.50 0.15 Manbhattan Max S1 0.4416
240 40 0.35 0.50 0.15 Manbhattan Sum S1 0.4289
241 41 035 | 0.55 0.10 Euclidean Vector S1 0.3816
242 41 0.35 0.55 0.10 Euclidean Max S1 0.3910
243 41 0.35 0.55 0.10 Euclidean Sum S1 0.3797
244 41 0.35 | 0.55 0.10 Manhattan Vector S1 0.4002
245 41 0.35 | 0.55 0.10 | Manhattan Max S1 0.4103
246 41 0.35 | 0.55 0.10 Manbhattan Sum Sl 0.3980
247 42 0.35 | 0.60 0.05 Euclidean Vector S1 0.3599
248 42 0.35 | 0.60 0.05 Euclidean Max Sl 0.3690
249 42 0.35 | 0.60 0.05 Euclidean Sum Sl 0.3581
250 42 035 | 0.60 0.05 | Manhattan | Vector S1 0.3702
251 42 0.35 | 0.60 0.05 Manbhattan Max Sl 0.3797
252 42 0.35 | 0.60 0.05 | Manhattan Sum S1 0.3683
253 43 0.40 | 0.50 0.10 Euclidean Vector S1 0.4363
254 43 0.40 | 0.50 0.10 Euclidean Max S1 0.4461
255 43 0.40 | 0.50 0.10 Euclidean Sum S1 0.4344
256 43 0.40 | 0.50 0.10 Manhattan Vector S1 0.4514
257 43 0.40 | 0.50 0.10 Manbhattan Max S1 0.4615
258 43 0.40 | 0.50 0.10 Manbhattan Sum S1 0.4493
259 44 0.40 | 0.55 0.05 Euclidean Vector S1 0.4120
260 44 0.40 | 0.55 0.05 Euclidean Max S1 0.4215
261 44 0.40 | 0.55 0.05 Euclidean Sum S1 0.4101
262 44 0.40 | 0.55 0.05 | Manhattan | Vector S1 0.4206
263 44 0.40 | 0.55 0.05 Manbhattan Max Sl 0.4304
264 44 0.40 | 0.55 0.05 | Manhattan Sum S1 0.4186
265 45 0.45 0.50 0.05 Euclidean Vector S1 0.4643
266 45 0.45 0.50 0.05 Euclidean Max S1 0.4740
267 45 0.45 0.50 0.05 Euclidean Sum S1 0.4624
268 45 0.45 0.50 0.05 Manhattan Vector S1 04712
269 45 0.45 | 0.50 | 0.05 | Manhattan Max S1 0.4810
270 45 0.45 | 0.50 0.05 | Manhattan Sum S1 0.4691
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n

1 1 0.05 | 0.50 | 0.45 | Euclidean Vector S2 0.9531
2 1 0.05 | 0.50 | 0.45 | Euclidean Max S2 0.9526
3 1 0.05 | 0.50 | 0.45 | Euclidean Sum S2 0.9531
4 1 0.05 | 0.50 | 0.45 | Manhattan Vector S2 0.9662
5 1 0.05 | 0.50 | 0.45 | Manhattan Max S2 0.9662
6 1 0.05 | 0.50 | 0.45 | Manhattan Sum S2 0.9662
7 2 0.05 | 0.55 | 0.40 | Euclidean Vector S2 0.9551
8 2 0.05 | 0.55 | 0.40 | Euclidean Max S2 0.9543
9 2 0.05 | 0.55 | 0.40 | Euclidean Sum S2 0.9552
10 2 0.05 | 0.55 | 0.40 | Manhattan Vector S2 0.9668
11 2 0.05 | 0.55 | 0.40 | Manhattan Max S2 0.9667
12 2 0.05 | 0.55 | 0.40 | Manhattan Sum S2 0.9668
13 3 0.05 | 0.60 | 0.35 | Euclidean Vector S2 0.9572
14 3 0.05 | 0.60 | 0.35 | Euclidean Max S2 0.9562
15 3 0.05 | 0.60 | 0.35 | Euclidean Sum S2 0.9574
16 3 0.05 | 0.60 | 0.35 | Manhattan Vector S2 0.9674
17 3 0.05 | 0.60 | 0.35 | Manhattan Max S2 0.9671
18 3 0.05 | 0.60 | 0.35 | Manhattan Sum S2 0.9675
19 4 0.05 | 0.65 | 0.30 | Euclidean Vector S2 0.9594
20 4 0.05 | 0.65 | 0.30 | Euclidean Max S2 0.9582
21 4 0.05 | 0.65 | 0.30 | Euclidean Sum S2 0.9596
22 4 0.05 | 0.65 | 0.30 | Manhattan Vector S2 0.9680
23 4 0.05 | 0.65 | 0.30 | Manhattan Max S2 0.9676
24 4 0.05 | 0.65 | 0.30 | Manhattan Sum S2 0.9681
25 5 0.05 | 0.70 | 0.25 | Euclidean Vector S2 0.9615
26 5 0.05 | 0.70 | 0.25 | Euclidean Max S2 0.9603
27 5 0.05 | 0.70 | 0.25 | Euclidean Sum S2 0.9617
28 5 0.05 | 0.70 | 0.25 | Manhattan Vector S2 0.9686
29 5 0.05 | 0.70 | 0.25 | Manhattan Max S2 0.9680
30 5 0.05 | 0.70 | 0.25 | Manhattan Sum S2 0.9687
31 6 0.05 | 0.75 | 0.20 | Euclidean Vector S2 0.9635
32 6 0.05 | 0.75 | 0.20 | Euclidean Max S2 0.9623
33 6 0.05 | 0.75 | 0.20 | Euclidean Sum S2 0.9638
34 6 0.05 | 0.75 | 0.20 | Manhattan Vector S2 0.9691
35 6 0.05 | 0.75 | 0.20 | Manhattan Max S2 0.9684
36 6 0.05 | 0.75 | 0.20 | Manhattan Sum S2 0.9692
37 7 0.05 | 0.80 | 0.15 | Euclidean Vector S2 0.9655
38 7 0.05 | 0.80 | 0.15 | Euclidean Max S2 0.9642
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39 7 0.05 | 0.80 | 0.15 | Euclidean Sum S2 0.9657
40 7 0.05 | 0.80 | 0.15 | Manhattan Vector S2 0.9696
41 7 0.05 | 0.80 | 0.15 | Manhattan Max S2 0.9688
42 7 0.05 | 0.80 | 0.15 | Manhattan Sum S2 0.9698
43 8 0.05 | 0.85 | 0.10 | Euclidean Vector S2 0.9673
44 8 0.05 | 0.85 | 0.10 | Euclidean Max S2 0.9660
45 8 0.05 | 0.85 | 0.10 | Euclidean Sum S2 0.9675
46 8 0.05 | 0.85 | 0.10 | Manhattan Vector S2 0.9701
47 8 0.05 | 0.85 | 0.10 | Manhattan Max S2 0.9692
48 8 0.05 | 0.85 | 0.10 | Manhattan Sum S2 0.9703
49 9 0.05 | 0.90 | 0.05 | Euclidean Vector S2 0.9690
50 9 0.05 | 0.90 | 0.05 | Euclidean Max S2 0.9678
51 9 0.05 | 0.90 | 0.05 | Euclidean Sum S2 0.9692
52 9 0.05 | 0.90 | 0.05 | Manhattan Vector S2 0.9706
53 9 0.05 | 0.90 | 0.05 | Manhattan Max S2 0.9696
54 9 0.05 | 0.90 | 0.05 | Manhattan Sum S2 0.9708
55 10 0.10 | 0.50 | 0.40 | Euclidean Vector S2 0.9082
56 10 0.10 | 0.50 | 0.40 | Euclidean Max S2 0.9069
57 10 0.10 | 0.50 | 0.40 | Euclidean Sum S2 0.9083
58 10 0.10 | 0.50 | 0.40 | Manhattan Vector S2 0.9336
59 10 0.10 | 0.50 | 0.40 | Manhattan Max S2 0.9333
60 10 0.10 | 0.50 | 0.40 | Manhattan Sum S2 0.9335
61 11 0.10 | 0.55 | 0.35 | Euclidean Vector S2 0.9123
62 11 0.10 | 0.55 | 0.35 | Euclidean Max S2 0.9105
63 11 0.10 | 0.55 | 0.35 | Euclidean Sum S2 0.9126
64 11 0.10 | 0.55 | 0.35 | Manhattan Vector S2 0.9347
65 11 0.10 | 0.55 | 0.35 | Manhattan Max S2 0.9342
66 11 0.10 | 0.55 | 0.35 | Manhattan Sum S2 0.9347
67 12 0.10 | 0.60 | 0.30 | Euclidean Vector S2 0.9167
68 12 0.10 | 0.60 | 0.30 | Euclidean Max S2 0.9145
69 12 0.10 | 0.60 | 0.30 | Euclidean Sum S2 09171
70 12 0.10 | 0.60 | 0.30 | Manhattan Vector S2 0.9359
71 12 0.10 | 0.60 | 0.30 | Manhattan Max S2 0.9351
72 12 0.10 | 0.60 | 0.30 | Manhattan Sum S2 0.9360
73 13 0.10 | 0.65 | 0.25 | Euclidean Vector S2 0.9210
74 13 0.10 | 0.65 | 0.25 | Euclidean Max S2 0.9187
75 13 0.10 | 0.65 | 0.25 | Euclidean Sum S2 0.9215
76 13 0.10 | 0.65 | 0.25 | Manhattan Vector S2 0.9370
77 13 0.10 | 0.65 | 0.25 | Manhattan Max S2 0.9360
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78 13 0.10 | 0.65 | 0.25 | Manhattan Sum S2 0.9371
79 14 0.10 | 0.70 | 0.20 | Euclidean Vector S2 0.9252
80 14 0.10 | 0.70 | 0.20 | Euclidean Max S2 0.9228
81 14 0.10 | 0.70 | 0.20 | Euclidean Sum S2 0.9257
82 14 0.10 | 0.70 | 0.20 | Manhattan Vector S2 0.9381
83 14 0.10 | 0.70 | 0.20 | Manhattan Max S2 0.9368
84 14 0.10 | 0.70 | 0.20 | Manhattan Sum S2 0.9383
85 15 0.10 | 0.75 | 0.15 | Euclidean Vector S2 0.9292
86 15 0.10 | 0.75 | 0.15 | Euclidean Max S2 0.9268
87 15 0.10 | 0.75 | 0.15 | Euclidean Sum S2 0.9297
88 15 0.10 | 0.75 | 0.15 | Manhattan Vector S2 0.9391
89 15 0.10 | 0.75 | 0.15 | Manhattan Max S2 0.9377
90 15 0.10 | 0.75 | 0.15 | Manhattan Sum S2 0.9394
91 16 0.10 | 0.80 | 0.10 | Euclidean Vector S2 0.9330
92 16 0.10 | 0.80 | 0.10 | Euclidean Max S2 0.9306
93 16 0.10 | 0.80 | 0.10 | Euclidean Sum S2 0.9335
94 16 0.10 | 0.80 | 0.10 | Manhattan Vector S2 0.9401
95 16 0.10 | 0.80 | 0.10 | Manhattan Max S2 0.9385
96 16 0.10 | 0.80 | 0.10 | Manhattan Sum S2 0.9405
97 17 0.10 | 0.85 | 0.05 | Euclidean Vector S2 0.9365
98 17 0.10 | 0.85 | 0.05 | Euclidean Max S2 0.9342
99 17 0.10 | 0.85 | 0.05 | Euclidean Sum S2 0.9370
100 17 0.10 | 0.85 | 0.05 | Manhattan Vector S2 0.9411
101 17 0.10 | 0.85 | 0.05 | Manhattan Max S2 0.9392
102 17 0.10 | 0.85 | 0.05 | Manhattan Sum S2 0.9415
103 18 0.15 | 0.50 | 0.35 | Euclidean Vector S2 0.8655
104 18 0.15 | 0.50 | 0.35 | Euclidean Max S2 0.8632
105 18 0.15 | 0.50 | 0.35 | Euclidean Sum S2 0.8658
106 18 0.15 | 0.50 | 0.35 | Manhattan Vector S2 0.9019
107 18 0.15 | 0.50 | 0.35 | Manhattan Max S2 0.9014
108 18 0.15 | 0.50 | 0.35 | Manhattan Sum S2 0.9019
109 19 0.15 | 0.55 | 0.30 | Euclidean Vector S2 0.8720
110 19 0.15 | 0.55 | 0.30 | Euclidean Max S2 0.8690
111 19 0.15 | 0.55 | 0.30 | Euclidean Sum S2 0.8725
112 19 0.15 | 0.55 | 0.30 | Manhattan Vector S2 0.9037
113 19 0.15 | 0.55 | 0.30 | Manhattan Max S2 0.9027
114 19 0.15 | 0.55 | 0.30 | Manhattan Sum S2 0.9037
115 20 0.15 | 0.60 | 0.25 | Euclidean Vector S2 0.8786
116 20 0.15 | 0.60 | 0.25 | Euclidean Max S2 0.8753
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117 20 0.15 | 0.60 | 0.25 | Euclidean Sum S2 0.8792
118 20 0.15 | 0.60 | 0.25 | Manhattan Vector S2 0.9053
119 20 0.15 | 0.60 | 0.25 | Manhattan Max S2 0.9040
120 20 0.15 | 0.60 | 0.25 | Manhattan Sum S2 0.9055
121 21 0.15 | 0.65 | 0.20 | Euclidean Vector S2 0.8851
122 21 0.15 | 0.65 | 0.20 | Euclidean Max S2 0.8815
123 21 0.15 | 0.65 | 0.20 | Euclidean Sum S2 0.8857
124 21 0.15 | 0.65 | 0.20 | Manhattan Vector S2 0.9070
125 21 0.15 | 0.65 | 0.20 | Manhattan Max S2 0.9053
126 21 0.15 | 0.65 | 0.20 | Manhattan Sum S2 0.9072
127 22 0.15 | 0.70 | 0.15 | Euclidean Vector S2 0.8913
128 22 0.15 | 0.70 | 0.15 | Euclidean Max S2 0.8877
129 22 0.15 | 0.70 | 0.15 | Euclidean Sum S2 0.8920
130 22 0.15 | 0.70 | 0.15 | Manhattan Vector S2 0.9085
131 22 0.15 | 0.70 | 0.15 | Manhattan Max S2 0.9065
132 22 0.15 | 0.70 | 0.15 | Manhattan Sum S2 0.9089
133 23 0.15 | 0.75 | 0.10 | Euclidean Vector S2 0.8972
134 23 0.15 | 0.75 | 0.10 | Euclidean Max S2 0.8936
135 23 0.15 | 0.75 | 0.10 | Euclidean Sum S2 0.8979
136 23 0.15 | 0.75 | 0.10 | Manhattan Vector S2 0.9100
137 23 0.15 | 0.75 | 0.10 | Manhattan Max S2 0.9077
138 23 0.15 | 0.75 | 0.10 | Manhattan Sum S2 0.9105
139 24 0.15 | 0.80 | 0.05 | Euclidean Vector S2 0.9027
140 24 0.15 | 0.80 | 0.05 | Euclidean Max S2 0.8992
141 24 0.15 | 0.80 | 0.05 | Euclidean Sum S2 0.9033
142 24 0.15 | 0.80 | 0.05 | Manhattan Vector S2 0.9115
143 24 0.15 | 0.80 | 0.05 | Manhattan Max S2 0.9089
144 24 0.15 | 0.80 | 0.05 | Manhattan Sum S2 0.9120
145 25 0.20 | 0.50 | 0.30 | Euclidean Vector S2 0.8254
146 25 0.20 | 0.50 | 0.30 | Euclidean Max S2 0.8220
147 25 0.20 | 0.50 | 0.30 | Euclidean Sum S2 0.8259
148 25 0.20 | 0.50 | 0.30 | Manhattan Vector S2 0.8713
149 25 0.20 | 0.50 | 0.30 | Manhattan Max S2 0.8703
150 25 0.20 | 0.50 | 0.30 | Manhattan Sum S2 0.8713
151 26 0.20 | 0.55 | 0.25 | Euclidean Vector S2 0.8342
152 26 0.20 | 0.55 | 0.25 | Euclidean Max S2 0.8302
153 26 0.20 | 0.55 | 0.25 | Euclidean Sum S2 0.8350
154 26 0.20 | 0.55 | 0.25 | Manhattan Vector S2 0.8735
155 26 0.20 | 0.55 | 0.25 | Manhattan Max S2 0.8720
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156 26 0.20 | 0.55 | 0.25 | Manhattan Sum S2 0.8737
157 27 0.20 | 0.60 | 0.20 | Euclidean Vector S2 0.8431
158 27 0.20 | 0.60 | 0.20 | Euclidean Max S2 0.8386
159 27 0.20 | 0.60 | 0.20 | Euclidean Sum S2 0.8439
160 27 0.20 | 0.60 | 0.20 | Manhattan Vector S2 0.8757
161 27 0.20 | 0.60 | 0.20 | Manhattan Max S2 0.8737
162 27 0.20 | 0.60 | 0.20 | Manhattan Sum S2 0.8760
163 28 0.20 | 0.65 | 0.15 | Euclidean Vector S2 0.8516
164 28 0.20 | 0.65 | 0.15 | Euclidean Max S2 0.8470
165 28 0.20 | 0.65 | 0.15 | Euclidean Sum S2 0.8525
166 28 0.20 | 0.65 | 0.15 | Manhattan Vector S2 0.8778
167 28 0.20 | 0.65 | 0.15 | Manhattan Max S2 0.8753
168 28 0.20 | 0.65 | 0.15 | Manhattan Sum S2 0.8782
169 29 0.20 | 0.70 | 0.10 | Euclidean Vector S2 0.8597
170 29 0.20 | 0.70 | 0.10 | Euclidean Max S2 0.8552
171 29 0.20 | 0.70 | 0.10 | Euclidean Sum S2 0.8606
172 29 0.20 | 0.70 | 0.10 | Manhattan Vector S2 0.8798
173 29 0.20 | 0.70 | 0.10 | Manhattan Max S2 0.8769
174 29 0.20 | 0.70 | 0.10 | Manhattan Sum S2 0.8803
175 30 0.20 | 0.75 | 0.05 | Euclidean Vector S2 0.8673
176 30 0.20 | 0.75 | 0.05 | Euclidean Max S2 0.8629
177 30 0.20 | 0.75 | 0.05 | Euclidean Sum S2 0.8682
178 30 0.20 | 0.75 | 0.05 | Manhattan Vector S2 0.8818
179 30 0.20 | 0.75 | 0.05 | Manhattan Max S2 0.8785
180 30 0.20 | 0.75 | 0.05 | Manhattan Sum S2 0.8824
181 31 0.25 | 0.50 | 0.25 | Euclidean Vector S2 0.7882
182 31 0.25 | 0.50 | 0.25 | Euclidean Max S2 0.7836
183 31 0.25 | 0.50 | 0.25 | Euclidean Sum S2 0.7890
184 31 0.25 | 0.50 | 0.25 | Manhattan Vector S2 0.8416
185 31 0.25 | 0.50 | 0.25 | Manhattan Max S2 0.8400
186 31 0.25 | 0.50 | 0.25 | Manhattan Sum S2 0.8417
187 32 0.25 | 0.55 | 0.20 | Euclidean Vector S2 0.7993
188 32 0.25 | 0.55 | 0.20 | Euclidean Max S2 0.7942
189 32 0.25 | 0.55 | 0.20 | Euclidean Sum S2 0.8003
190 32 0.25 | 0.55 | 0.20 | Manhattan Vector S2 0.8443
191 32 0.25 | 0.55 | 0.20 | Manhattan Max S2 0.8421
192 32 0.25 | 0.55 | 0.20 | Manhattan Sum S2 0.8446
193 33 0.25 | 0.60 | 0.15 | Euclidean Vector S2 0.8103
194 33 0.25 | 0.60 | 0.15 | Euclidean Max S2 0.8048
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195 33 0.25 | 0.60 | 0.15 | Euclidean Sum S2 0.8113
196 33 0.25 | 0.60 | 0.15 | Manhattan Vector S2 0.8469
197 33 0.25 | 0.60 | 0.15 | Manhattan Max S2 0.8442
198 33 0.25 | 0.60 | 0.15 | Manhattan Sum S2 0.8474
199 34 0.25 | 0.65 | 0.10 | Euclidean Vector S2 0.8207
200 34 0.25 | 0.65 | 0.10 | Euclidean Max S2 0.8153
201 34 0.25 | 0.65 | 0.10 | Euclidean Sum S2 0.8218
202 34 0.25 | 0.65 | 0.10 | Manhattan Vector S2 0.8495
203 34 0.25 | 0.65 | 0.10 | Manhattan Max S2 0.8462
204 34 0.25 | 0.65 | 0.10 | Manhattan Sum S2 0.8501
205 35 0.25 | 0.70 | 0.05 | Euclidean Vector S2 0.8306
206 35 0.25 | 0.70 | 0.05 | Euclidean Max S2 0.8252
207 35 0.25 | 0.70 | 0.05 | Euclidean Sum S2 0.8316
208 35 0.25 | 0.70 | 0.05 | Manhattan Vector S2 0.8519
209 35 0.25 | 0.70 | 0.05 | Manhattan Max S2 0.8481
210 35 0.25 | 0.70 | 0.05 | Manhattan Sum S2 0.8527
211 36 0.30 | 0.50 | 0.20 | Euclidean Vector S2 0.7541
212 36 0.30 | 0.50 | 0.20 | Euclidean Max S2 0.7485
213 36 0.30 | 0.50 | 0.20 | Euclidean Sum S2 0.7551
214 36 0.30 | 0.50 | 0.20 | Manhattan Vector S2 0.8128
215 36 0.30 | 0.50 | 0.20 | Manhattan Max S2 0.8105
216 36 0.30 | 0.50 | 0.20 | Manhattan Sum S2 0.8130
217 37 0.30 | 0.55 | 0.15 | Euclidean Vector S2 0.7674
218 37 0.30 | 0.55 | 0.15 | Euclidean Max S2 0.7613
219 37 0.30 | 0.55 | 0.15 | Euclidean Sum S2 0.7686
220 37 0.30 | 0.55 | 0.15 | Manhattan Vector S2 0.8159
221 37 0.30 | 0.55 | 0.15 | Manhattan Max S2 0.8130
222 37 0.30 | 0.55 | 0.15 | Manhattan Sum S2 0.8164
223 38 0.30 | 0.60 | 0.10 | Euclidean Vector S2 0.7803
224 38 0.30 | 0.60 | 0.10 | Euclidean Max S2 0.7740
225 38 0.30 | 0.60 | 0.10 | Euclidean Sum S2 0.7815
226 38 0.30 | 0.60 | 0.10 | Manhattan Vector S2 0.8190
227 38 0.30 | 0.60 | 0.10 | Manhattan Max S2 0.8154
228 38 0.30 | 0.60 | 0.10 | Manhattan Sum S2 0.8196
229 39 0.30 | 0.65 | 0.05 | Euclidean Vector S2 0.7924
230 39 0.30 | 0.65 | 0.05 | Euclidean Max S2 0.7862
231 39 0.30 | 0.65 | 0.05 | Euclidean Sum S2 0.7937
232 39 0.30 | 0.65 | 0.05 | Manhattan Vector S2 0.8220
233 39 0.30 | 0.65 | 0.05 | Manhattan Max S2 0.8177
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234 39 0.30 | 0.65 | 0.05 | Manhattan Sum S2 0.8228
235 40 0.35 | 0.50 | 0.15 | Euclidean Vector S2 0.7232
236 40 0.35 | 0.50 | 0.15 | Euclidean Max S2 0.7167
237 40 0.35 | 0.50 | 0.15 | Euclidean Sum S2 0.7245
238 40 0.35 | 0.50 | 0.15 | Manhattan Vector S2 0.7848
239 40 0.35 | 0.50 | 0.15 | Manhattan Max S2 0.7818
240 40 0.35 | 0.50 | 0.15 | Manhattan Sum S2 0.7853
241 41 0.35 | 0.55 | 0.10 | Euclidean Vector S2 0.7384
242 41 0.35 | 0.55 | 0.10 | Euclidean Max S2 0.7316
243 41 0.35 | 0.55 | 0.10 | Euclidean Sum S2 0.7398
244 41 0.35 | 0.55 | 0.10 | Manhattan Vector S2 0.7884
245 41 0.35 | 0.55 | 0.10 | Manhattan Max S2 0.7846
246 41 0.35 | 0.55 | 0.10 | Manhattan Sum S2 0.7891
247 42 0.35 | 0.60 | 0.05 | Euclidean Vector S2 0.7530
248 42 0.35 | 0.60 | 0.05 | Euclidean Max S2 0.7461
249 42 0.35 | 0.60 | 0.05 | Euclidean Sum S2 0.7544
250 42 0.35 | 0.60 | 0.05 | Manhattan Vector S2 0.7919
251 42 0.35 | 0.60 | 0.05 | Manhattan Max S2 0.7873
252 42 0.35 | 0.60 | 0.05 | Manhattan Sum S2 0.7928
253 43 0.40 | 0.50 | 0.10 | Euclidean Vector S2 0.6956
254 43 0.40 | 0.50 | 0.10 | Euclidean Max S2 0.6884
255 43 0.40 | 0.50 | 0.10 | Euclidean Sum S2 0.6970
256 43 0.40 | 0.50 | 0.10 | Manhattan Vector S2 0.7577
257 43 0.40 | 0.50 | 0.10 | Manhattan Max S2 0.7538
258 43 0.40 | 0.50 | 0.10 | Manhattan Sum S2 0.7584
259 44 0.40 | 0.55 | 0.05 | Euclidean Vector S2 0.7125
260 44 0.40 | 0.55 | 0.05 | Euclidean Max S2 0.7052
261 44 0.40 | 0.55 | 0.05 | Euclidean Sum S2 0.7139
262 44 0.40 | 0.55 | 0.05 | Manhattan Vector S2 0.7617
263 44 0.40 | 0.55 | 0.05 | Manhattan Max S2 0.7570
264 44 0.40 | 0.55 | 0.05 | Manhattan Sum S2 0.7626
265 45 0.45 | 0.50 | 0.05 | Euclidean Vector S2 0.6712
266 45 0.45 | 0.50 | 0.05 | Euclidean Max S2 0.6636
267 45 0.45 | 0.50 | 0.05 | Euclidean Sum S2 0.6727
268 45 0.45 | 0.50 | 0.05 | Manhattan Vector S2 0.7314
269 45 0.45 | 0.50 | 0.05 | Manhattan Max S2 0.7266
270 45 0.45 | 0.50 | 0.05 | Manhattan Sum S1 0.7323
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1 1 0.05 0.50 0.45 Euclidean Vector S3 0.5510
2 1 0.05 0.50 0.45 Euclidean Max S3 0.5294
3 1 0.05 0.50 0.45 Euclidean Sum S3 0.5568
4 1 0.05 0.50 0.45 Manhattan Vector S3 0.4681
5 1 0.05 0.50 0.45 Manhattan Max S3 0.4507
6 1 0.05 0.50 0.45 Manhattan Sum S3 0.4727
7 2 0.05 0.55 0.40 Euclidean Vector S3 0.5965
8 2 0.05 0.55 0.40 Euclidean Max S3 0.5764
9 2 0.05 0.55 0.40 Euclidean Sum S3 0.6018
10 2 0.05 0.55 0.40 Manhattan Vector S3 0.5055
11 2 0.05 0.55 0.40 Manhattan Max S3 0.4889
12 2 0.05 0.55 0.40 Manhattan Sum S3 0.5099
13 3 0.05 0.60 0.35 Euclidean Vector S3 0.6390
14 3 0.05 0.60 0.35 Euclidean Max S3 0.6210
15 3 0.05 0.60 0.35 Euclidean Sum S3 0.6438
16 3 0.05 0.60 0.35 Manhattan Vector S3 0.5415
17 3 0.05 0.60 0.35 Manhattan Max S3 0.5260
18 3 0.05 0.60 0.35 Manhattan Sum S3 0.5456
19 4 0.05 0.65 0.30 Euclidean Vector S3 0.6781
20 4 0.05 0.65 0.30 Euclidean Max S3 0.6627
21 4 0.05 0.65 0.30 Euclidean Sum S3 0.6821
22 4 0.05 0.65 0.30 Manhattan Vector S3 0.5763
23 4 0.05 0.65 0.30 Manhattan Max S3 0.5622
24 4 0.05 0.65 0.30 Manhattan Sum S3 0.5799
25 5 0.05 0.70 0.25 Euclidean Vector S3 0.7128
26 5 0.05 0.70 0.25 Euclidean Max S3 0.7006
27 5 0.05 0.70 0.25 Euclidean Sum S3 0.7159
28 5 0.05 0.70 0.25 Manhattan Vector S3 0.6098
29 5 0.05 0.70 0.25 Manhattan Max S3 0.5973
30 5 0.05 0.70 0.25 Manhattan Sum S3 0.6130
31 6 0.05 0.75 0.20 Euclidean Vector S3 0.7424
32 6 0.05 0.75 0.20 Euclidean Max S3 0.7335
33 6 0.05 0.75 0.20 Euclidean Sum S3 0.7446
34 6 0.05 0.75 0.20 Manhattan Vector S3 0.6422
35 6 0.05 0.75 0.20 Manhattan Max S3 0.6316
36 6 0.05 0.75 0.20 Manhattan Sum S3 0.6449
37 7 0.05 0.80 0.15 Euclidean Vector S3 0.7657
38 7 0.05 0.80 0.15 Euclidean Max S3 0.7602
39 7 0.05 0.80 0.15 Euclidean Sum S3 0.7671
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40 7 0.05 0.80 0.15 Manhattan Vector S3 0.6735
41 7 0.05 0.80 0.15 Manhattan Max S3 0.6649
42 7 0.05 0.80 0.15 Manhattan Sum S3 0.6757
43 8 0.05 0.85 0.10 Euclidean Vector S3 0.7822
44 8 0.05 0.85 0.10 Euclidean Max S3 0.7794
45 8 0.05 0.85 0.10 Euclidean Sum S3 0.7829
46 8 0.05 0.85 0.10 Manhattan Vector S3 0.7038
47 8 0.05 0.85 0.10 Manhattan Max S3 0.6974
48 8 0.05 0.85 0.10 Manhattan Sum S3 0.7054
49 9 0.05 0.90 0.05 Euclidean Vector S3 0.7917
50 9 0.05 0.90 0.05 Euclidean Max S3 0.7907
51 9 0.05 0.90 0.05 Euclidean Sum S3 0.7919
52 9 0.05 0.90 0.05 Manhattan Vector S3 0.7331
53 9 0.05 0.90 0.05 Manhattan Max S3 0.7291
54 9 0.05 0.90 0.05 Manhattan Sum S3 0.7340
55 10 0.10 0.50 0.40 Euclidean Vector S3 0.5668
56 10 0.10 0.50 0.40 Euclidean Max S3 0.5467
57 10 0.10 0.50 0.40 Euclidean Sum S3 0.5721
58 10 0.10 0.50 0.40 Manhattan Vector S3 0.4605
59 10 0.10 0.50 0.40 Manhattan Max S3 0.4444
60 10 0.10 0.50 0.40 Manhattan Sum S3 0.4647
61 11 0.10 0.55 0.35 Euclidean Vector S3 0.6115
62 11 0.10 0.55 0.35 Euclidean Max S3 0.5933
63 11 0.10 0.55 0.35 Euclidean Sum S3 0.6162
64 11 0.10 0.55 0.35 Manhattan Vector S3 0.4974
65 11 0.10 0.55 0.35 Manhattan Max S3 0.4822
66 11 0.10 0.55 0.35 Manhattan Sum S3 0.5014
67 12 0.10 0.60 0.30 Euclidean Vector S3 0.6524
68 12 0.10 0.60 0.30 Euclidean Max S3 0.6367
69 12 0.10 0.60 0.30 Euclidean Sum S3 0.6565
70 12 0.10 0.60 0.30 Manhattan Vector S3 0.5331
71 12 0.10 0.60 0.30 Manhattan Max S3 0.5189
72 12 0.10 0.60 0.30 Manhattan Sum S3 0.5367
73 13 0.10 0.65 0.25 Euclidean Vector S3 0.6889
74 13 0.10 0.65 0.25 Euclidean Max S3 0.6761
75 13 0.10 0.65 0.25 Euclidean Sum S3 0.6921
76 13 0.10 0.65 0.25 Manhattan Vector S3 0.5674
77 13 0.10 0.65 0.25 Manhattan Max S3 0.5547
78 13 0.10 0.65 0.25 Manhattan Sum S3 0.5706
79 14 0.10 0.70 0.20 Euclidean Vector S3 0.7201
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80 14 0.10 0.70 0.20 Euclidean Max S3 0.7104
81 14 0.10 0.70 0.20 Euclidean Sum S3 0.7224
82 14 0.10 0.70 0.20 Manhattan Vector S3 0.6006
83 14 0.10 0.70 0.20 Manhattan Max S3 0.5895
84 14 0.10 0.70 0.20 Manhattan Sum S3 0.6034
85 15 0.10 0.75 0.15 Euclidean Vector S3 0.7450
86 15 0.10 0.75 0.15 Euclidean Max S3 0.7385
87 15 0.10 0.75 0.15 Euclidean Sum S3 0.7465
88 15 0.10 0.75 0.15 Manhattan Vector S3 0.6327
89 15 0.10 0.75 0.15 Manhattan Max S3 0.6234
90 15 0.10 0.75 0.15 Manhattan Sum S3 0.6350
91 16 0.10 0.80 0.10 Euclidean Vector S3 0.7631
92 16 0.10 0.80 0.10 Euclidean Max S3 0.7592
93 16 0.10 0.80 0.10 Euclidean Sum S3 0.7639
94 16 0.10 0.80 0.10 Manhattan Vector S3 0.6637
95 16 0.10 0.80 0.10 Manhattan Max S3 0.6564
96 16 0.10 0.80 0.10 Manhattan Sum S3 0.6654
97 17 0.10 0.85 0.05 Euclidean Vector S3 0.7742
98 17 0.10 0.85 0.05 Euclidean Max S3 0.7721
99 17 0.10 0.85 0.05 Euclidean Sum S3 0.7747
100 17 0.10 0.85 0.05 Manhattan Vector S3 0.6937
101 17 0.10 0.85 0.05 Manhattan Max S3 0.6886
102 17 0.10 0.85 0.05 Manhattan Sum S3 0.6949
103 18 0.15 0.50 0.35 Euclidean Vector S3 0.5747
104 18 0.15 0.50 0.35 Euclidean Max S3 0.5568
105 18 0.15 0.50 0.35 Euclidean Sum S3 0.5793
106 18 0.15 0.50 0.35 Manhattan Vector S3 0.4532
107 18 0.15 0.50 0.35 Manhattan Max S3 0.4384
108 18 0.15 0.50 0.35 Manhattan Sum S3 0.4570
109 19 0.15 0.55 0.30 Euclidean Vector S3 0.6169
110 19 0.15 0.55 0.30 Euclidean Max S3 0.6011
111 19 0.15 0.55 0.30 Euclidean Sum S3 0.6209
112 19 0.15 0.55 0.30 Manhattan Vector S3 0.4897
113 19 0.15 0.55 0.30 Manhattan Max S3 0.4757
114 19 0.15 0.55 0.30 Manhattan Sum S3 0.4932
115 20 0.15 0.60 0.25 Euclidean Vector S3 0.6545
116 20 0.15 0.60 0.25 Euclidean Max S3 0.6413
117 20 0.15 0.60 0.25 Euclidean Sum S3 0.6577
118 20 0.15 0.60 0.25 Manhattan Vector S3 0.5249
119 20 0.15 0.60 0.25 Manhattan Max S3 0.5120
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120 20 0.15 0.60 0.25 Manhattan Sum S3 0.5281
121 21 0.15 0.65 0.20 Euclidean Vector S3 0.6867
122 21 0.15 0.65 0.20 Euclidean Max S3 0.6764
123 21 0.15 0.65 0.20 Euclidean Sum S3 0.6892
124 21 0.15 0.65 0.20 Manbhattan Vector S3 0.5589
125 21 0.15 0.65 0.20 Manhattan Max S3 0.5474
126 21 0.15 0.65 0.20 Manhattan Sum S3 0.5617
127 22 0.15 0.70 0.15 Euclidean Vector S3 0.7129
128 22 0.15 0.70 0.15 Euclidean Max S3 0.7053
129 22 0.15 0.70 0.15 Euclidean Sum S3 0.7147
130 22 0.15 0.70 0.15 Manhattan Vector S3 0.5917
131 22 0.15 0.70 0.15 Manhattan Max S3 0.5818
132 22 0.15 0.70 0.15 Manhattan Sum S3 0.5941
133 23 0.15 0.75 0.10 Euclidean Vector S3 0.7326
134 23 0.15 0.75 0.10 Euclidean Max S3 0.7273
135 23 0.15 0.75 0.10 Euclidean Sum S3 0.7338
136 23 0.15 0.75 0.10 Manhattan Vector S3 0.6235
137 23 0.15 0.75 0.10 Manhattan Max S3 0.6154
138 23 0.15 0.75 0.10 Manhattan Sum S3 0.6253
139 24 0.15 0.80 0.05 Euclidean Vector S3 0.7458
140 24 0.15 0.80 0.05 Euclidean Max S3 0.7420
141 24 0.15 0.80 0.05 Euclidean Sum S3 0.7466
142 24 0.15 0.80 0.05 Manhattan Vector S3 0.6542
143 24 0.15 0.80 0.05 Manhattan Max S3 0.6481
144 24 0.15 0.80 0.05 Manhattan Sum S3 0.6555
145 25 0.20 0.50 0.30 Euclidean Vector S3 0.5732
146 25 0.20 0.50 0.30 Euclidean Max S3 0.5577
147 25 0.20 0.50 0.30 Euclidean Sum S3 0.5769
148 25 0.20 0.50 0.30 Manhattan Vector S3 0.4461
149 25 0.20 0.50 0.30 Manhattan Max S3 0.4324
150 25 0.20 0.50 0.30 Manhattan Sum S3 0.4495
151 26 0.20 0.55 0.25 Euclidean Vector S3 0.6116
152 26 0.20 0.55 0.25 Euclidean Max S3 0.5983
153 26 0.20 0.55 0.25 Euclidean Sum S3 0.6147
154 26 0.20 0.55 0.25 Manhattan Vector S3 0.4821
155 26 0.20 0.55 0.25 Manhattan Max S3 0.4693
156 26 0.20 0.55 0.25 Manhattan Sum S3 0.4853
157 27 0.20 0.60 0.20 Euclidean Vector S3 0.6447
158 27 0.20 0.60 0.20 Euclidean Max S3 0.6338
159 27 0.20 0.60 0.20 Euclidean Sum S3 0.6472
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160 27 0.20 0.60 0.20 Manhattan Vector S3 0.5169
161 27 0.20 0.60 0.20 Manhattan Max S3 0.5053
162 27 0.20 0.60 0.20 Manhattan Sum S3 0.5197
163 28 0.20 0.65 0.15 Euclidean Vector S3 0.6721
164 28 0.20 0.65 0.15 Euclidean Max S3 0.6635
165 28 0.20 0.65 0.15 Euclidean Sum S3 0.6740
166 28 0.20 0.65 0.15 Manhattan Vector S3 0.5505
167 28 0.20 0.65 0.15 Manhattan Max S3 0.5403
168 28 0.20 0.65 0.15 Manhattan Sum S3 0.5530
169 29 0.20 0.70 0.10 Euclidean Vector S3 0.6935
170 29 0.20 0.70 0.10 Euclidean Max S3 0.6868
171 29 0.20 0.70 0.10 Euclidean Sum S3 0.6949
172 29 0.20 0.70 0.10 Manhattan Vector S3 0.5830
173 29 0.20 0.70 0.10 Manhattan Max S3 0.5744
174 29 0.20 0.70 0.10 Manhattan Sum S3 0.5850
175 30 0.20 0.75 0.05 Euclidean Vector S3 0.7090
176 30 0.20 0.75 0.05 Euclidean Max S3 0.7036
177 30 0.20 0.75 0.05 Euclidean Sum S3 0.7100
178 30 0.20 0.75 0.05 Manhattan Vector S3 0.6145
179 30 0.20 0.75 0.05 Manhattan Max S3 0.6076
180 30 0.20 0.75 0.05 Manhattan Sum S3 0.6160
181 31 0.25 0.50 0.25 Euclidean Vector S3 0.5625
182 31 0.25 0.50 0.25 Euclidean Max S3 0.5494
183 31 0.25 0.50 0.25 Euclidean Sum S3 0.5655
184 31 0.25 0.50 0.25 Manhattan Vector S3 0.4392
185 31 0.25 0.50 0.25 Manhattan Max S3 0.4267
186 31 0.25 0.50 0.25 Manhattan Sum S3 0.4423
187 32 0.25 0.55 0.20 Euclidean Vector S3 0.5966
188 32 0.25 0.55 0.20 Euclidean Max S3 0.5854
189 32 0.25 0.55 0.20 Euclidean Sum S3 0.5992
190 32 0.25 0.55 0.20 Manhattan Vector S3 0.4748
191 32 0.25 0.55 0.20 Manhattan Max S3 0.4632
192 32 0.25 0.55 0.20 Manhattan Sum S3 0.4776
193 33 0.25 0.60 0.15 Euclidean Vector S3 0.6254
194 33 0.25 0.60 0.15 Euclidean Max S3 0.6160
195 33 0.25 0.60 0.15 Euclidean Sum S3 0.6274
196 33 0.25 0.60 0.15 Manhattan Vector S3 0.5092
197 33 0.25 0.60 0.15 Manhattan Max S3 0.4987
198 33 0.25 0.60 0.15 Manhattan Sum S3 0.5117
199 34 0.25 0.65 0.10 Euclidean Vector S3 0.6486
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200 34 0.25 0.65 0.10 Euclidean Max S3 0.6407
201 34 0.25 0.65 0.10 Euclidean Sum S3 0.6502
202 34 0.25 0.65 0.10 Manhattan Vector S3 0.5425
203 34 0.25 0.65 0.10 Manhattan Max S3 0.5333
204 34 0.25 0.65 0.10 Manhattan Sum S3 0.5445
205 35 0.25 0.70 0.05 Euclidean Vector S3 0.6664
206 35 0.25 0.70 0.05 Euclidean Max S3 0.6596
207 35 0.25 0.70 0.05 Euclidean Sum S3 0.6677
208 35 0.25 0.70 0.05 Manhattan Vector S3 0.5746
209 35 0.25 0.70 0.05 Manhattan Max S3 0.5671
210 35 0.25 0.70 0.05 Manhattan Sum S3 0.5763
211 36 0.30 0.50 0.20 Euclidean Vector S3 0.5447
212 36 0.30 0.50 0.20 Euclidean Max S3 0.5333
213 36 0.30 0.50 0.20 Euclidean Sum S3 0.5472
214 36 0.30 0.50 0.20 Manhattan Vector S3 0.4325
215 36 0.30 0.50 0.20 Manhattan Max S3 0.4211
216 36 0.30 0.50 0.20 Manhattan Sum S3 0.4353
217 37 0.30 0.55 0.15 Euclidean Vector S3 0.5750
218 37 0.30 0.55 0.15 Euclidean Max S3 0.5650
219 37 0.30 0.55 0.15 Euclidean Sum S3 0.5771
220 37 0.30 0.55 0.15 Manhattan Vector S3 0.4677
221 37 0.30 0.55 0.15 Manhattan Max S3 0.4571
222 37 0.30 0.55 0.15 Manhattan Sum S3 0.4702
223 38 0.30 0.60 0.10 Euclidean Vector S3 0.6001
224 38 0.30 0.60 0.10 Euclidean Max S3 0.5914
225 38 0.30 0.60 0.10 Euclidean Sum S3 0.6019
226 38 0.30 0.60 0.10 Manhattan Vector S3 0.5017
227 38 0.30 0.60 0.10 Manhattan Max S3 0.4923
228 38 0.30 0.60 0.10 Manhattan Sum S3 0.5038
229 39 0.30 0.65 0.05 Euclidean Vector S3 0.6203
230 39 0.30 0.65 0.05 Euclidean Max S3 0.6124
231 39 0.30 0.65 0.05 Euclidean Sum S3 0.6218
232 39 0.30 0.65 0.05 Manhattan Vector S3 0.5346
233 39 0.30 0.65 0.05 Manhattan Max S3 0.5266
234 39 0.30 0.65 0.05 Manhattan Sum S3 0.5363
235 40 0.35 0.50 0.15 Euclidean Vector S3 0.5224
236 40 0.35 0.50 0.15 Euclidean Max S3 0.5122
237 40 0.35 0.50 0.15 Euclidean Sum S3 0.5245
238 40 0.35 0.50 0.15 Manhattan Vector S3 0.4261
239 40 0.35 0.50 0.15 Manhattan Max S3 0.4156
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240 40 0.35 0.50 0.15 Manhattan Sum S3 0.4285
241 41 0.35 0.55 0.10 Euclidean Vector S3 0.5495
242 41 0.35 0.55 0.10 Euclidean Max S3 0.5402
243 41 0.35 0.55 0.10 Euclidean Sum S3 0.5514
244 41 0.35 0.55 0.10 Manbhattan Vector S3 0.4608
245 41 0.35 0.55 0.10 Manhattan Max S3 0.4513
246 41 0.35 0.55 0.10 Manhattan Sum S3 0.4630
247 42 0.35 0.60 0.05 Euclidean Vector S3 0.5721
248 42 0.35 0.60 0.05 Euclidean Max S3 0.5634
249 42 0.35 0.60 0.05 Euclidean Sum S3 0.5738
250 42 0.35 0.60 0.05 Manhattan Vector S3 0.4945
251 42 0.35 0.60 0.05 Manhattan Max S3 0.4861
252 42 0.35 0.60 0.05 Manhattan Sum S3 0.4963
253 43 0.40 0.50 0.10 Euclidean Vector S3 0.4979
254 43 0.40 0.50 0.10 Euclidean Max S3 0.4884
255 43 0.40 0.50 0.10 Euclidean Sum S3 0.4999
256 43 0.40 0.50 0.10 Manhattan Vector S3 0.4198
257 43 0.40 0.50 0.10 Manhattan Max S3 0.4103
258 43 0.40 0.50 0.10 Manhattan Sum S3 0.4219
259 44 0.40 0.55 0.05 Euclidean Vector S3 0.5228
260 44 0.40 0.55 0.05 Euclidean Max S3 0.5137
261 44 0.40 0.55 0.05 Euclidean Sum S3 0.5246
262 44 0.40 0.55 0.05 Manhattan Vector S3 0.4542
263 44 0.40 0.55 0.05 Manhattan Max S3 0.4456
264 44 0.40 0.55 0.05 Manhattan Sum S3 0.4560
265 45 0.45 0.50 0.05 Euclidean Vector S3 0.4731
266 45 0.45 0.50 0.05 Euclidean Max S3 0.4638
267 45 0.45 0.50 0.05 Euclidean Sum S3 0.4749
268 45 0.45 0.50 0.05 Manhattan Vector S3 0.4137
269 45 0.45 0.50 0.05 Manhattan Max S3 0.4051
270 45 0.45 0.50 0.05 Manhattan Sum S3 0.4155
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