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ABSTRACT 

 

Warehouse location selection requires the consideration of multiple, often 

conflicting criteria such as cost, space availability, and accessibility, as the warehouse 

itself plays a critical role in optimizing logistics costs and enhancing customer service. 

To accommodate the selection efforts, this study presents an integrated fuzzy multi-

criteria decision-making approach that combines the Fuzzy Best-Worst Method (FBWM) 

with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to 

identify the most suitable warehouse location. The former is employed to determine the 

relative weights of criteria, taking into account the uncertainty inherent in expert 

judgments, while the later is used to rank the alternative locations with respective to the 

criteria and its weights. 

A case study, which involves three warehouse alternatives evaluated based on 

area, rental rate, and distance to the airport is conducted to demonstrate the effectiveness 

of the proposed method. Closeness coefficients were calculated across multiple 

methodological configurations using three normalization techniques (linear vector, linear 

sum, and max) and two distance metrics (Euclidean and Manhattan).  
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To further explore the robustness of the rankings, combinations of weight 

generated using a complementary weighting strategy was experimented. From a discrete 

set of weights ranging from 0.05 to 0.90, a total of 5,832 possible combinations were 

generated. Two filtering conditions were applied to eliminate invalid weight 

combinations: all the weights must sum to one, and the weight for the rental cost criterion 

must be the largest one. This process yielded 45 valid weight combinations. These 

combinations of weight were later put into usage to evaluate the consistency of ranking 

outcomes. 

Sensitivity and robustness analyses reveal that the top-ranked warehouse 

(Alternative S2) consistently outperforms others regardless of methodological 

configurations and weights combinations. This confirms the reliability of the decision. In 

addition, Analysis of variance (ANOVA) results indicate that both weight combinations 

and distance metrics significantly affect the closeness coefficient (𝑪𝑪𝒊 ), while the 

normalization method shows minimal impact. Moreover, Manhattan distance provides 

higher discrimination among alternatives, whereas Euclidean distance offers more stable 

and consistent rankings. Overall, the proposed approach is robust and practical, providing 

decision-makers with a clear and reliable framework for selecting warehouse locations. 

 

Keywords: Warehouse selection, FBWM, TOPSIS, MCDM, Normalization techniques, 

Distance metrics, Sensitivity analysis, Robustness analysis, two-way 

ANOVA 
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CHAPTER 1 

INTRODUCTION 

 

The selection of a warehouse is a critical aspect of logistics and supply chain 

management, playing a pivotal role in ensuring operational efficiency, logistics costs, 

and service performance. Warehouses serve as essential nodes within supply chains, 

connecting suppliers, manufacturers, and customers while enabling the storage, 

handling, and distribution of goods. Beyond their functional roles, warehouses 

significantly influence broader supply chain performance by optimizing inventory 

levels, reducing transportation costs, and enhancing service quality. Despite their 

importance, warehouse selection is a complex decision-making process requiring 

careful consideration of multiple, often conflicting criteria. 

 

1.1 Background 

As supply chains become increasingly complex and customer expectations for 

speed and reliability continue to grow, the strategic role of warehouse location has 

become more significant than ever. A well-chosen warehouse location not only 

enhances operational efficiency but also contributes to cost optimization and service 

performance across the entire supply chain network (Singh et al., 2018). 

Selecting the optimal warehouse requires the consideration of multiple, often 

conflicting criteria, such as rental cost, available storage space, proximity to 

transportation infrastructure, and accessibility to markets. For instance, a location with 

lower rent may be far from distribution hubs, while a more central location might incur 

higher operating costs (Dey et al., 2016; Yang & Hung, 2007). Additionally, many of 

these factors are qualitative and subjective, relying on expert judgment, which 

introduces uncertainty and imprecision into the decision-making process. 

To address this complexity, researchers and practitioners frequently apply 

MCDM methods. In particular, fuzzy set theory, introduced by Zadeh (1965), has been 

widely adopted to manage the vagueness and subjectivity in human judgment. FBWM, 

an advancement in fuzzy MCDM techniques, enables decision-makers to identify and 

compare criteria efficiently by focusing on the most and least important ones. It reduces 
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the cognitive burden and improves consistency in the weight elicitation process (Guo 

& Zhao, 2017; Rezaei, 2015). 

Once the criteria weights are determined using FBWM, TOPSIS is often 

employed to rank alternatives. TOPSIS evaluates each option based on its geometric 

distance to an ideal and a negative-ideal solution, identifying the most favorable choice 

overall (Ocampo et al., 2020; Omrani et al., 2018).However, recent studies have 

highlighted that TOPSIS outcomes can be sensitive to methodological configurations, 

particularly the choice of normalization technique (e.g., vector, max, or sum) and 

distance metric (Euclidean vs. Manhattan). These variations can significantly affect 

closeness coefficient (𝐶𝐶𝑖) values and thus alter the final rankings (Bánhidi & Dobos, 

2024; Vafaei et al., 2021). 

To address this concern, this study develops a hybrid fuzzy MCDM framework 

that combines FBWM and TOPSIS with robustness and sensitivity analyses. Alongside 

expert-derived weights, 45 valid random weight combinations are used to examine how 

changes in decision-maker preferences affect the results. The framework systematically 

evaluates multiple normalization methods and distance metrics to assess the stability, 

reliability, and consistency of the results. This methodological approach aims to 

enhance the transparency and robustness of warehouse location decisions, particularly 

under conditions of uncertainty and subjectivity inherent in expert-based evaluations. 

 

1.2 Problem statement 

Selecting an appropriate warehouse location is a critical and complex decision 

in logistics and supply chain management. The location directly impacts operational 

costs, such as transportation and inventory holding, and influences service quality, 

delivery speed, and overall supply chain responsiveness. With growing customer 

expectations, intensified global competition, and increasing supply chain complexity, 

the importance of selecting warehouses accurately and strategically has become 

increasingly significant. 

However, warehouse location selection is inherently a multi-criteria decision-

making process, involving the assessment of both quantitative factors (e.g., rental cost, 

available space, proximity to airports) and qualitative factors (e.g., contract conditions, 

flexibility, reputation). These criteria often conflict, making trade-offs challenging to 
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evaluate using conventional methods. Furthermore, many assessments rely on 

subjective expert judgments expressed in linguistic terms, which introduce uncertainty 

and ambiguity into the decision-making process. 

Traditional MCDM methods, such as the Analytic Hierarchy Process (AHP), 

have been widely used for such evaluations, but they tend to be time-consuming and 

inconsistent when dealing with many criteria. The FBWM offers an efficient and 

consistent alternative by reducing the number of pairwise comparisons and effectively 

handling vagueness in expert input  (Guo & Zhao, 2017; Rezaei, 2015). When 

integrated with TOPSIS, this hybrid framework allows for the structured ranking of 

alternatives based on their relative closeness to an ideal solution. 

Nevertheless, studies have shown that TOPSIS results can be sensitive to the 

choice of normalization technique and distance metric, which can significantly impact 

the closeness coefficients and resulting rankings (Çelen, 2014; Shyur & Shih, 2024). 

Without addressing this sensitivity, decision-makers may unknowingly rely on rankings 

that lack robustness and consistency. 

Therefore, this research aims to fill this gap by developing a hybrid fuzzy 

MCDM framework for warehouse location selection and conducting a comprehensive 

robustness analysis. This includes exploring how different normalization techniques, 

distance metrics, and weight combinations affect ranking outcomes. The goal is to 

provide a reliable, transparent, and methodologically sound tool for warehouse 

selection under uncertainty. 

 

1.3 Research objectives 

The primary objective of this research is to develop a structured, transparent, 

and reliable decision-making framework for warehouse selection under uncertainty, 

using a hybrid fuzzy multi-criteria decision-making (MCDM) approach. Given the 

strategic importance of warehouse location in logistics and supply chain performance, 

it is necessary to systematically evaluate multiple and often conflicting decision criteria.  

This study first identifies and validates key warehouse selection criteria such as 

rental cost, storage area, and proximity to transportation hubs through expert input and 

a review of relevant literature. The relative importance of these criteria is then 

determined using FBWM, which enables experts to express preferences through fuzzy 
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linguistic terms while minimizing the number of pairwise comparisons required. By 

constructing best-to-others and others-to-worst matrices, the FBWM generates 

consistent and reliable fuzzy weight vectors for each criterion. 

These weights are then integrated into TOPSIS, which evaluates and ranks the 

warehouse alternatives according to their relative closeness to an ideal solution. To 

ensure the robustness of the ranking results, this study further investigates the effect of 

different methodological configurations, specifically, three normalization techniques 

(linear vector, linear sum, and max) and two distance metrics (Euclidean and 

Manhattan) within the TOPSIS model. 

Additionally, a set of 45 valid random weight combinations is systematically 

generated to simulate variations in expert preferences. These are used to test the 

sensitivity of the decision model. Finally, statistical analyses, including two-way 

ANOVA by general linear model (GLM), are performed to evaluate the significance of 

methodological choices on ranking outcomes. 

Through this integrated approach, the study aims to provide a practical and 

robust decision-support tool for warehouse selection that is capable of handling 

uncertainty, expert subjectivity, and methodological variability. 

 

1.4 Significance of study 

This study addresses these challenges by developing a structured decision-

making model that improves both the reliability and transparency of warehouse 

selection under uncertainty by integrating FBWM with TOPSIS. FBWM enables the 

derivation of consistent and efficient criteria weights using fuzzy linguistic input, 

thereby reducing the cognitive load on experts while maintaining high decision quality. 

These weights are then applied within the TOPSIS model to generate a rational, data-

driven ranking of warehouse alternatives, providing decision-makers with robust and 

transparent guidance. 

In addition to providing a practical decision-support tool, this study contributes 

to the literature by incorporating a comprehensive robustness and sensitivity analysis, 

an area often overlooked in traditional MCDM studies. By systematically examining 

the effects of different normalization techniques and distance metrics on the final 

rankings, the model ensures greater reliability in various decision-making contexts. 
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Furthermore, the application of statistical methods such as two-way ANOVA within 

the GLM model is used to validate the stability of the results. Ultimately, this research 

offers both academic and practical value by delivering a robust, adaptable framework 

for warehouse location decisions in real-world supply chain environments. 

 

1.5 Scope and limitations  

This study develops a structured and robust decision-making framework for 

warehouse selection using a hybrid fuzzy MCDM approach. The model integrates the 

FBWM for criteria weighting and TOPSIS for alternative ranking, supported by 

robustness and sensitivity analyses to evaluate the stability of results under varying 

methodological conditions. 

The scope of this research is limited to three key quantitative decision criteria: 

rental cost, warehouse area, and distance to the airport selected through expert 

consultation, as well as their relevance to logistics operations. The framework is 

demonstrated through a case study with three warehouse alternatives. While this 

ensures a focused and manageable analysis, it may not fully reflect the complexity of 

larger-scale or more diverse decision scenarios involving additional qualitative or 

strategic factors. 

For robustness testing, random weight combinations were generated under 

practical constraints, such as prioritizing rental cost. While this increases realism, it also 

restricts the generalizability of results to other contexts where the criteria priorities may 

differ. Similarly, although fuzzy logic helps address uncertainty in expert judgments, 

subjectivity may still arise from differences in interpreting linguistic terms. 

Two-way ANOVA was applied specifically to examine the effects of 

normalization techniques and distance metrics on closeness coefficients. These 

analyses provide useful insights but are limited to the parameters and configurations 

selected for this case study.Despite these limitations, the proposed framework offers 

both methodological and practical value. It provides a transparent and reliable 

foundation for warehouse location decisions and can be extended in future research to 

include additional criteria, alternatives, or decision contexts. decision-making contexts. 
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CHAPTER 2 

LITERATURE REVIEW 

 

As global supply chains become more dynamic and complex, selecting an 

optimal warehouse location requires a structured decision-making framework that can 

address multiple, often conflicting, criteria such as rental cost, facility size, and access 

to key transportation infrastructure. Traditional approaches, though foundational, often 

fail to adequately capture the uncertainty and subjectivity present in real-world logistics 

decisions. 

To address these limitations, MCDM methods have been widely adopted. 

Techniques such as AHP, TOPSIS, and the BWM provide structured approaches for 

evaluating and ranking alternatives based on various decision criteria. However, these 

methods frequently rely on precise numerical input, which can be unrealistic in practice. 

In response, researchers have integrated fuzzy logic into classical MCDM frameworks, 

resulting in Fuzzy MCDM models that effectively manage linguistic judgments and 

imprecise evaluations. 

Among these, the FBWM offers notable advantages by reducing the cognitive 

burden on decision-makers while maintaining consistency in pairwise comparisons. 

This hybrid framework is robust for supporting warehouse selection decisions when 

combined with TOPSIS, which ranks alternatives based on relative closeness to ideal 

solutions. 

Additionally, methodological choices within the TOPSIS process, such as 

normalization techniques (e.g., linear vector, linear sum, max) and distance metrics 

(e.g., Euclidean, Manhattan), can significantly influence the final rankings. Despite 

their impact, these elements are often overlooked in sensitivity analysis. Therefore, 

recent studies have emphasized the importance of evaluating the robustness of decision 

outcomes by analyzing how such variations affect consistency and reliability. 

This chapter critically examines the existing literature on warehouse selection, 

emphasizing the evolution of MCDM methodologies, the integration of fuzzy logic, 

and the influence of methodological parameters on decision outcomes. The review 

identifies research gaps, particularly in robustness testing through weight variation and 
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sensitivity analysis, and establishes the foundation for the hybrid FBWM–TOPSIS 

framework proposed in this study. 

 

2.1 Warehouse selection in supply chain management 

Warehouse selection is a crucial decision in supply chain management, as it 

directly impacts cost efficiency, service quality, and overall operational performance. 

A strategically located and well-equipped warehouse reduces transportation and 

operational costs and enhances a firm’s responsiveness to fluctuating market demands 

and customer expectations. With supply chains becoming increasingly complex and 

time-sensitive, identifying an optimal warehouse location requires the careful 

evaluation of multiple criteria, often involving trade-offs between cost, accessibility, 

infrastructure, and flexibility (Singh et al., 2018; Vafaei et al., 2021). 

Modern warehouses serve far more than just storage purposes; they are critical 

nodes in the logistics network, supporting operations such as cross-docking, packaging, 

and real-time inventory management. As such, selecting an appropriate warehouse 

requires careful evaluation of several key quantitative factors. These include warehouse 

area (m2), which affects storage capacity and operational layout; rental cost (THB/ 

m2/month), which influences financial viability; and distance to transportation hubs 

such as airports, which is crucial for time-sensitive deliveries (Ocampo et al., 2020). 

Additionally, material handling fees (THB/move/cu.m.) and fulfillment rates 

(THB/order) serve as important indicators of cost-efficiency and processing 

performance in warehouse operations (Dey et al., 2016)  

Due to numerous conflicting criteria and the inherent uncertainty in expert 

evaluations, traditional decision-making approaches are often insufficient. Therefore, 

MCDM methods such as AHP, TOPSIS, and BWM have gained prominence in 

academic and practical applications. These methods allow structured and systematic 

evaluation of multiple alternatives against diverse criteria. The following sections will 

explore these methodologies, with a focus on their fuzzy extensions and hybrid 

applications, particularly the integration of FBWM with TOPSIS and the use of 

robustness analysis to validate decision reliability 
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2.2 Multi-criteria decision-making (MCDM) Methods 

Warehouse selection is a complex, multi-criteria decision problem that requires 

careful evaluation of conflicting factors such as cost, accessibility, space availability, 

and operational efficiency. Traditional decision-making methods cannot often 

incorporate subjective judgments or handle the inherent uncertainty in real-world 

logistics environments. To overcome these limitations, MCDM approaches have 

become essential tools for systematically analyzing and ranking alternatives in 

warehouse selection. 

Among the widely applied MCDM techniques are the AHP, TOPSIS, and 

BWM. These methods enable decision-makers to evaluate both qualitative and 

quantitative criteria, providing a more structured and transparent approach to 

warehouse evaluation (Guo & Zhao, 2017). 

AHP structures complex decisions into a hierarchical model and utilizes 

pairwise comparisons to derive priority weights (Yang & Hung, 2007) . While effective, 

AHP becomes cumbersome with many criteria, leading to inconsistencies in judgments 

(Patil & Kant, 2014) . On the other hand, TOPSIS ranks alternatives based on their 

relative distance from an ideal and anti-ideal solution, making it suitable for balancing 

multiple trade-offs. However, its outcomes are sensitive to the choice of normalization 

technique and distance metric, which may impact the stability of final rankings (Çelen, 

2014; Vafaei et al., 2021) . 

The BWM, particularly in its fuzzy extension (FBWM), offers a more consistent 

and efficient alternative. By asking decision-makers to identify only the best and worst 

criteria and compare others relative to them, it significantly reduces the number of 

required comparisons while improving consistency (Rezaei, 2015) . Fuzzy BWM 

further enhances this method by incorporating linguistic assessments to deal with the 

vagueness in expert opinions (Guo & Zhao, 2017) . 

To leverage the strengths of multiple techniques and mitigate their limitations, 

hybrid approaches have gained popularity. One such approach, FBWM integrated with 

TOPSIS, combines robust weight determination with effective alternative ranking 

under uncertainty. Furthermore, recent studies have highlighted the importance of 

robustness and sensitivity analysis in MCDM applications. Variations in normalization 

methods (e.g., linear vector, linear sum, max) and distance metrics (e.g., Euclidean, 
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Manhattan) can significantly influence the ranking results, raising concerns about the 

reliability of decision outcomes (Bánhidi & Dobos, 2024; Shyur & Shih, 2024). To 

address this issue, the current research employs expert-derived fuzzy weights and a 

wide range of randomly generated weight combinations. This strategy supports a 

thorough sensitivity and robustness assessment, providing insights into the stability of 

the ranking under different methodological settings.  

 

2.3 Fuzzy logic in decision-making 

The Warehouse selection involves uncertainty and subjective judgments that 

traditional MCDM methods struggle to handle. Fuzzy logic, introduced by Zadeh, 

1965, provides a framework to address imprecision by expressing criteria in linguistic 

terms (e.g., low, medium, high) rather than exact numerical values. This approach 

enhances decision models by incorporating human-like reasoning, making it 

particularly useful for evaluating qualitative factors such as facility quality, contract 

conditions, and reputation (Guo & Zhao, 2017) . 

Fuzzy logic is commonly integrated with MCDM techniques like Fuzzy AHP, 

which refines pairwise comparisons by reducing inconsistencies (Patil & Kant, 2014) , 

Fuzzy TOPSIS, which ranks alternatives based on their relative closeness to an ideal 

solution, improves the evaluation of warehouse cost efficiency, fulfillment rate, and 

infrastructure quality (Sun, 2010) . FBWM, a more recent method, simplifies the 

decision-making process by prioritizing the most and least important criteria while 

minimizing subjective bias (Guo & Zhao, 2017) . 

The primary advantage of fuzzy logic is its ability to handle uncertainty and 

enhance decision accuracy (Dong et al., 2021). However, defining membership 

functions and fuzzification rules can be complex, requiring expert input and increasing 

computational intensity (Foroozesh et al., 2022) . Despite these challenges, hybrid 

fuzzy MCDM models continue to improve the robustness of warehouse selection, 

making them essential for handling real-world logistics decisions. 

 

2.4  Normalization methods in MCDM 

Normalization is a fundamental step in MCDM that transforms criteria with 

different units into a comparable scale, ensuring fair evaluation across alternatives. 
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Since MCDM techniques rely on aggregating multiple criteria, normalization helps 

mitigate bias caused by varying measurement units. The most used normalization 

methods include Linear vector normalization, Max normalization, and Linear sum 

normalization, each affecting decision outcomes differently (Vafaei et al., 2021). 

• Linear vector normalization adjusts each criterion value relative to the overall 

magnitude, ensuring that all criteria contribute proportionally to the decision 

process. This method is commonly applied in TOPSIS and other ranking-based 

techniques. 

• Linear sum normalization standardizes each criterion by dividing values by their 

total sum. While this preserves proportional relationships, extreme values can 

sometimes affect it, distorting the results. 

• Max normalization scales each criterion by dividing values by the maximum 

value in the dataset. This makes interpretation straightforward but can 

exaggerate differences among alternatives. 

The choice of normalization method significantly impacts ranking consistency 

and decision reliability in MCDM applications. Studies have shown that different 

normalization approaches can lead to rank reversal issues, affecting the final selection 

of alternatives (Çelen, 2014).  

 

2.5 Robustness and sensitivity in decision analysis 

Robustness and sensitivity analysis are essential components of decision 

analysis, especially in fuzzy MCDM frameworks, where variations can influence the 

ranking of alternatives in model parameters, weighting schemes, normalization 

techniques, or distance metrics. Mukhametzyanov & Pamucar, 2018 highlighted a key 

limitation of traditional MCDM models, the lack of formal validation mechanisms to 

assess the stability of decision outcomes. They emphasized the importance of statistical 

sensitivity analysis, particularly for strategic decisions such as warehouse location 

selection, where unstable rankings can compromise practical reliability. Bánhidi & 

Dobos, 2024 , further investigated the role of normalization techniques in TOPSIS, 

namely, Vector linear, Max, and Linear sum, and demonstrated that even minor 

differences in these methods can lead to substantial shifts in closeness coefficients 

(𝐶𝐶𝑖), thereby impacting final rankings. 
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Building on this foundation, the current study employs a hybrid FBWM–

TOPSIS approach complemented by a comprehensive robustness analysis. The study 

evaluates how methodological choices influence ranking stability by applying various 

normalization methods (linear vector, linear sum, and max), distance metrics 

(Euclidean and Manhattan), and valid random weight combinations. Statistical tools 

such as Two-Way ANOVA and GLM quantify the sensitivity of closeness coefficients 

to these variations. 

 

2.6 Research gaps and justification for the study 

 Despite the growing application of fuzzy MCDM techniques in logistics and 

warehouse selection, several critical gaps persist in the literature. Although FBWM and 

TOPSIS have been successfully applied to facility location problems, few studies have 

integrated these methods into a unified framework incorporating robustness and 

sensitivity analysis. While FBWM enhances efficiency and consistency in criteria 

weighting, its application with TOPSIS has primarily been limited to case-specific 

studies, without systematic evaluation under different methodological assumptions. 

A significant gap in the literature concerns the limited investigation of 

methodological parameters within TOPSIS, specifically normalization methods (Linear 

vector, linear sum, and max) and distance metrics (Euclidean, Manhattan) that affect 

the final rankings. Existing studies (Bánhidi & Dobos, 2024; Çelen, 2014; Shyur & 

Shih, 2024) have shown that these components can significantly alter closeness 

coefficient values (𝐶𝐶𝑖), yet few have examined their combined effect within a fuzzy 

decision-making framework. Furthermore, the interaction between these 

methodological parameters and fuzzy-derived weights remains underexplored in 

warehouse selection contexts, where accuracy and consistency are crucial for strategic 

decision-making. 

Another underexplored area is large-scale random weight combinations to 

capture decision variability and evaluate model robustness. Most existing MCDM 

applications rely exclusively on expert-derived weights, which may not reflect the full 

range of decision-making scenarios encountered in practice. Incorporating valid weight 

sets provides a more comprehensive understanding of how changes in criteria 

importance influence alternative rankings. Furthermore, while robustness is a core 
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concern in real-world applications, many studies still lack formal statistical testing to 

validate model stability. Techniques like two-way ANOVA are rarely applied, resulting 

in limited insights into the statistical significance of methodological choices.  

To address these gaps, this study proposes a hybrid fuzzy MCDM framework 

that integrates FBWM with TOPSIS, supported by systematic testing of normalization 

methods and distance metrics. The framework incorporates valid random weight 

combinations and applies statistical analysis through ANOVA and GLM. This 

approach aims to deliver a transparent, robust, and adaptable decision-support model 

for warehouse selection, capable of addressing uncertainty, subjectivity, and 

methodological variation in real-world supply chain environments. 
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CHAPTER 3 

METHODOLOGY 

 

This chapter describes the research design and methodological framework used 

to solve the warehouse location selection problem. The approach integrates two 

weighting methods, the Fuzzy Best-Worst Method (FBWM) and random weight 

generation with TOPSIS. As shown in Figure 3.1, the methodology begins with 

identifying decision criteria based on expert input and market observations. Next, the 

criteria are assigned weights using FBWM and random weight combinations, and the 

alternatives are evaluated to generate the normalized comparison matrix. The results 

are then processed through TOPSIS to calculate the closeness coefficient  𝐶𝐶𝑖  values, 

which are compared to assess ranking robustness.  

 

 

Figure 3.1 Framework for research methodology 
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3.1 Research Framework 

This study adopts a hybrid multi-criteria decision-making approach to evaluate 

and rank warehouse alternatives under uncertain and variable conditions. The objective 

is to combine expert judgment with structured mathematical techniques to ensure 

accuracy and robustness in the selection process. The research design can be divided 

into three broad stages: 

• Criteria definition and weighting: Identify relevant decision criteria and 

determine their weights. 

• Alternative evaluation: Compute a ranking of the warehouse location using 

TOPSIS. 

• Robustness analysis: Test the stability of the rankings by varying input weights 

of the criteria and methodological parameters. 

 

The process begins by identifying the decision criteria through literature review 

and expert consultation. For this warehouse selection case, three quantitative criteria 

were chosen based on their practical importance: warehouse area, rental rate, and 

distance to the airport. Data for each alternative on these criteria was obtained through 

market surveys and expert estimates, reflecting real-world conditions. 

To determine the relative importance of each criterion, two weighting strategies 

were applied. The first method uses FBWM, incorporating expert input expressed 

through linguistic comparisons. F-BWM is particularly effective in handling imprecise 

judgments and translating them into structured fuzzy weights using triangular fuzzy 

numbers (TFNs). In addition to the expert-derived weights, a second strategy involving 

randomly generated weight combinations was employed to assess the robustness of the 

methodology.  

Once the criteria weights are established, the warehouse alternatives are 

evaluated using TOPSIS method. In this study, TOPSIS is configured in several ways: 

three normalization techniques (linear vector, linear sum, and max normalization) and 

two distance metrics (Euclidean and Manhattan) are applied to evaluate the ranking.  

A robustness analysis was performed to validate the stability of the outcomes. 

This involved applying the randomly generated weight sets to the TOPSIS framework 
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and statistically analyzing the variation in rankings. A two-way ANOVA, applied 

within the General Linear Model (GLM) framework used to examine the effects of 

different normalization and distance methods on the closeness coefficient of each 

alternative. This statistical analysis helps identify which methodological configurations 

yield the most consistent and reliable rankings. 

The research design integrates expert knowledge, fuzzy logic, and statistical 

validation into a comprehensive decision-making framework. It ensures that the 

selected warehouse alternative is optimal based on expert judgment and robust across 

a wide range of input scenarios.  

 

3.2 Selection of criteria and alternatives 

This study involves a Thai logistics service provider seeking a warehouse to 

support its regional distribution operations. There are three candidate locations (S1, S2, 

and S3) for the warehouse. These facilities are located within the Bangkok metropolitan 

area. The company seeks to lease one of these warehouses. The evaluation is based on 

three quantitative criteria selected to reflect key operational aspects: area (C1, measured 

in m²), rental rate (C2, in THB/m²/month), and distance to the airport (C3, in km). The 

area is classified as a benefit criterion, with which higher values are preferred, while 

rental rate and distance to the airport are regarded as cost criteria, where lower values 

are more desirable. As summarized in Table 3.1, the three criteria are initially identified 

through a review of relevant literature and later retained through expert consultations 

with logistics practitioners and academic researchers to ensure both theoretical validity 

and practical relevance. 

 

Table 3.1 Criteria for warehouse selection 

Code Criteria Description 

C1 Area Physical size of the warehouse (m²). 

C2 Rental rate 
Cost associated with leasing the warehouse 

space (THB/m²/month). 

C3 Distance to airport Proximity to major transportation hubs (km). 

 

In addition, expert evaluations of the relative importance of these criteria are 

conducted using fuzzy linguistic terms, such as “Equally Important (EI),” “Weakly 
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Important (WI),” and “Fairly Important (FI).” These qualitative judgments are then 

translated into TFNs, which serve as inputs to the fuzzy MCDM framework employed 

in this study. 

The finalized criteria are listed in Table 3.1, forming the foundation for the 

evaluation process. These are organized hierarchically to reflect the structure of the 

decision-making model as shown in Figure 3.2. 

 

 
Figure 3.2 Overview of criteria hierarchy. 

 

3.3 Weighting approaches for criteria  

3.3.1 Fuzzy set theory 

Expert opinions often expressed using linguistic terms such as “equally 

important (EI)”, “weakly important (WI)”, “fairly important (FI)” (see Table 3-2), can 

be translated into TFNs, preserving the vagueness of human judgment. A TFN, denoted 

as 𝐴̃ = (𝑙,𝑚, 𝑢), is a special type of fuzzy set represented by a triplet of values: the 

lower bound (𝑙), the most likely or modal value (𝑚), and the upper bound (𝑢). The 

membership function 𝜇𝐴̃(𝑥) of a TFN is defined by Zadeh, 1965 as: 

 

𝜇𝐴̃(𝑥) =

{
 
 

 
 

0, 𝑥 < 𝑙
𝑥 − 𝑙

𝑚 − 𝑙
, 𝑙 ≤ 𝑥 ≤ 𝑚  

𝑢 − 𝑥

𝑢 − 𝑚
,𝑚 ≤ 𝑥 ≤ 𝑢

0, 𝑥 > 𝑚

 (3.1) 
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Table 3.2 Linguistic terms and corresponding TFNs 

Symbol Linguistic term Scale Triangular fuzzy scale 

EI Equally important 1̃ (1,1,1) 

WI Weakly important 2̃ (2/3 ,1,3/2) 

FI Fairly Important 3̃ (3/2 ,2,5/2) 

VI Very important 4̃ (5/2 ,3,7/2) 

AI Absolutely important 5̃ (7/2 ,4,9/2) 

 

To obtain crisp values from fuzzy evaluations, defuzzification is applied to 

convert fuzzy numbers into representative real values. One widely used method is the 

graded mean integration representation (GMIR), first introduced by (Chen & Hsieh, 

2000), which ranks TFNs by computing a weighted average emphasizing the most 

likely value. 

For a TFN of 𝐴̃ = (𝑙𝑖, 𝑚𝑖, 𝑢𝑖), the defuzzified value 𝑅(𝐴̃)  is calculated using the 

following equation: 

𝑅(𝐴̃) =
𝑙𝑖 + 4𝑚𝑖 + 𝑢𝑖

6
 (3.2) 

The GMIR approach has been successfully applied in fuzzy MCDM contexts, including 

FAHP and FBWM, due to its computational simplicity, clarity, and effectiveness in 

handling imprecise evaluations. 

 

3.3.2 Criteria weighting using FBWM 

FBWM is employed to derive the weights of decision criteria using fuzzy theory 

and an optimization model. The following steps summarize the FBWM procedure: 

Step 1: Construct a set of decision criteria {𝐶1, 𝐶2, … , 𝐶𝑛} 

Step 2: Determine the most important criteria (best) and the least important (worst) 

criteria. 

Step 3: Construct fuzzy best-to-others (BO) and fuzzy others-to-worst (OW) vectors. 

The best criterion is compared with all other criteria using linguistic terms (see Table 

2). Each linguistic term is converted into a TFN: 𝑎̃𝐵,𝑗 = (𝑙𝐵,𝑗, 𝑚𝐵,𝑗 , 𝑢𝐵,𝑗), where 𝑎̃𝐵,𝑗 

represents the fuzzy preference of the best criteria over the criteria 𝑗. The fuzzy BO 

vector is then constructed as: 𝐴̃𝐵 = (𝑎̃𝐵,1, 𝑎̃𝐵,2, . . . , 𝑎̃𝐵,𝑛). Similarly, each criterion 𝑗 is 
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compared to the worst criterion using linguistic terms, resulting in: 𝑎̃𝑗,𝑤 =

(𝑙𝑗,𝑊,𝑚𝑗,𝑊, 𝑢𝑗,𝑊), where 𝑎̃𝑗,𝑤 represents the fuzzy preference of criterion 𝑗 over the 

worst criteria. The fuzzy OW vector is then constructed as: 𝐴̃𝑊 =

(𝑎̃1,𝑊, 𝑎̃2,𝑊, . . . , 𝑎̃𝑛,𝑊). 

Step 4: Compute fuzzy weights by optimization.  

The fuzzy weights 𝑤̃𝑗 = (𝑤𝑗
𝑙, 𝑤𝑗

𝑚, 𝑤𝑗
𝑢) for each criterion are computed by solving the 

following optimization model adopted from Dong et al., 2021: 

 

min 𝑘∗ 

𝑠. 𝑡

{
 
 
 
 
 

 
 
 
 
 |
𝑤̃𝐵
𝑤̃𝑗
− 𝑎̃𝐵,𝑗| ≤ 𝑘∗

|
𝑤̃𝑗

𝑤̃𝑊
− 𝑎̃𝑗,𝑤| ≤ 𝑘

∗

∑𝑅(𝑤̃𝑗) = 1

𝑛

𝑗=1

𝑤𝑗
𝑙 ≤ 𝑤𝑗

𝑚 ≤ 𝑤𝑗
𝑢

𝑤𝑗
𝑙 ≥ 0

𝑗 = 1,2, … , 𝑛

 
(3.3) 

 

 𝑅(𝑤̃𝑗) can be calculated by using the GMIR method as shown below: 

 

𝑅(𝑤̃𝑗) =
𝑤𝑗
𝑙 + 4𝑤𝑗

𝑚 + 𝑤𝑗
𝑢

6
 (3.4) 

 

Step 5: Consistency Ratio (𝐶𝑅) is computed as follows: 

 

𝐶𝑅 =
𝑘∗

𝐶𝐼𝑚𝑎𝑥
 (3.5) 

 

where 𝐶𝐼𝑚𝑎𝑥 is obtained as per Table 3. If 𝐶𝑅 < threshold (e.g., 0.1 or 0.05), the 

comparisons are deemed consistent. Otherwise, the decision-maker must revise the 

judgments. 
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Table 3. 3 Consistency index (𝐶𝐼𝑚𝑎𝑥) values 

Linguistic 

Terms 

Equally 

important (EI) 

Weakly 

important 

(WI) 

Fairly 

Important 

(FI) 

Very 

important 

(VI) 

Absolutely 

Important 

(AI) 

𝑎̃𝐵𝑊 (1,1,1) (2/3 ,1,3/2) (3/2 ,2,5/2) (5/2 ,3,7/2) (7/2 ,4,9/2) 

𝐶𝐼𝑚𝑎𝑥 3.00 3.80 5.29 6.69 8.04 

 

3.3.3 Criteria weighting using random weight combinations. 

 In addition to the expert-derived FBWM weights, this study incorporates a 

complementary approach based on random weight combinations to perform a 

structured sensitivity and robustness analysis. This method allows for the exploration 

of how variations in criteria importance can influence the final rankings of warehouse 

alternatives 

In this approach, three criteria weights 𝑤1, 𝑤2, 𝑤3  were assigned values from a 

discrete set ranging from 0.05 to 0.90 in increments of 0.05, resulting in 18 possible 

values for each criterion, as 𝑤𝑗 = {0.10,0.15,0.20,… ,0.90}, ∀ 𝑗 = 1,2, . . . , 𝑛. This 

produced a total of 183 = 5,832 potential weight combinations. To ensure that these 

combinations were both valid and meaningful, two constraints were applied. First, the 

weights had to sum to one, as shown in Equation (3.6).  

 

∑𝑤𝑗

𝑛

𝑗=1

= 1 (3.6) 

 

Second, to reflect the assumption that rental cost is the most important criterion in 

the decision-making process, the condition 𝑤2 ≥ 𝑤1 and 𝑤2 ≥ 𝑤3  was applied. Only 

the weight combinations that satisfied both conditions were applied for analysis. These 

valid weight combinations were later used in the TOPSIS model to perform a 

comparative assessment of decision robustness across different weighting scenarios. 

 

3.4 TOPSIS evaluation  

In this phase, TOPSIS is applied to evaluate and rank warehouse alternatives based 

on their proximity to the ideal solution.  
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Step 1: Establish alternatives, criteria, and construct the decision matrix. 

The alternatives 𝑆𝑖 are evaluated against a set of quantitative criteria that include area 

(m²), rental rate (THB/m²/month), and distance to the airport (km). These criteria are 

categorized into benefit criteria (e.g., area where higher values are preferred) and cost 

criteria (e.g., rental rate, where lower values are selected). Let 𝐴 = [𝑥𝑖𝑗] be the decision 

matrix consisting of 𝑝 alternatives and 𝑛 criteria, where 𝑥𝑖𝑗  denotes the performance 

score of alternatives 𝑖 with respect to the criteria 𝑗, for 𝑖 = 1,2,3, … , 𝑝  and 𝑗 =

1,2,3, … 𝑛. The matrix is structured as follows: 

𝐴 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑛
𝑥21 𝑥22 ⋯ 𝑥2𝑛
⋮ ⋮ ⋱ ⋮
𝑥𝑝1 𝑥𝑝2 ⋯ 𝑥𝑝𝑛

], where 𝑖 = 1,2,3, … , 𝑝  and 𝑗 = 1,2,3, … 𝑛. 

Step 2: The decision matrix defined in Step 1 is normalized by using either of the three 

following techniques. 

Linear vector normalization: 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑝

𝑖=1

, 𝑗 = 1,2,3, … 𝑛, where 𝑖 = 1,2,3, … , 𝑝   
(3.7) 

Linear sum normalization: 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

∑  𝑥𝑖𝑗
𝑝
𝑖=1

, 𝑗 = 1,2,3, … 𝑛, where 𝑖 = 1,2,3, … , 𝑝   (3.8) 

Max normalization: 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

max 𝑥𝑖𝑗
, 𝑗 = 1,2,3, … 𝑛, 𝑖 = 1,2,3, … , 𝑝 (3.9) 

 

Here, 𝑟𝑖𝑗 represents the normalized value of the criterion 𝑗 for alternative 𝑖, while 𝑥𝑖𝑗

denotes the raw value of the criterion 𝑗 for alternative 𝑖. 

Step 3: Construction of the weighted normalized decision matrix. 

The weighted normalized values are calculated using the equation: 

𝑣𝑖𝑗 = 𝑟𝑖𝑗 ⋅ 𝑤𝑗,   𝑖 = 1,2,3, … , 𝑝  and 𝑗 = 1,2,3, … 𝑛 (3.10) 
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Here, 𝑣𝑖𝑗 is the weighted normalized value of the criteria 𝑗 for alternative 𝑖, and 𝑤𝑗 

represents the weight for the criteria 𝑗.  

Step 4: Determination of positive and negative ideal solutions 

The positive ideal solution (PIS) and negative ideal solution (NIS) are determined for 

each criterion based on their nature: 

 

For benefit criteria, 

𝑣𝑗
+ = max

𝑖
{𝑣𝑖𝑗} ,  𝑗 = 1,2, … , 𝑛 

𝑣𝑗
− = min

𝑖
{𝑣𝑖𝑗} ,  𝑗 = 1,2, … , 𝑛 

(3.11) 

For cost criteria, 

𝑣𝑗
+ = min{ 𝑣𝑖𝑗},  𝑗 = 1,2, … , 𝑛 

𝑣𝑗
− = max{ 𝑣𝑖𝑗},  𝑗 = 1,2, … , 𝑛 

(3.12) 

For beneficial criteria, such as area, the maximum value is selected as the ideal solution. 

For non-beneficial criteria, such as cost, the minimum value is selected. 

Step 5: Calculation of distances to ideal solutions. 

Each alternative’s distance from the ideal solutions is calculated using both the 

Euclidean and Manhattan distance formulas. The Euclidean distance quantifies the 

straight-line distance from each alternative to the ideal solution and is computed as 

follows: 

Euclidean distance calculation. 

𝑑𝑖
+ = √∑(𝑣𝑖𝑗 − 𝑣𝑗

+)
2

𝑛

𝑗=1

,   𝑖 = 1,2,3, … , 𝑝 (3.13) 

𝑑𝑖
− = √∑(𝑣𝑖𝑗 − 𝑣𝑗

−)
2

𝑛

𝑗=1

,   𝑖 = 1,2,3, … , 𝑝 (3.14) 
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The Manhattan distance is calculated by summing the absolute differences between 

each alternative. 

Manhattan distance calculation 

𝑑𝑖
+ =∑|𝑣𝑖𝑗 − 𝑣𝑗

+|

𝑛

𝑗=1

,   𝑖 = 1,2,3, … , 𝑝 (3.15) 

𝑑𝑖
− =∑|𝑣𝑖𝑗 − 𝑣𝑗

−|

𝑛

𝑗=1

,   𝑖 = 1,2,3, … , 𝑝 (3.16) 

Step 6: Closeness coefficient calculation 

The closeness coefficient (CC𝑖), indicating the relative proximity of each alternative to 

the ideal solution, was calculated using: 

 

CC𝑖 =
𝑑𝑖
−

(𝑑𝑖
+ + 𝑑𝑖

−)
,   𝑖 = 1,2,3, … , 𝑝 (3.17) 

A higher CC𝑖 value indicates a closer proximity to the PIS, reflecting better 

performance. 

Step 7: Ranking of alternatives 

The alternatives are ranked based on their CC𝑖 values, with the highest CC𝑖 

corresponding to the most suitable warehouse location. 

 

3.5 Robustness and sensitivity analysis 

A comprehensive robustness and sensitivity analysis was conducted to evaluate 

the proposed decision-making framework's reliability. The analysis examined how 

variations in criterion weights, normalization techniques, and distance metrics 

influence the final rankings of warehouse alternatives. 

Robustness was assessed by comparing 𝐶𝐶𝑖 values across different 

methodological configurations, which combined two weighting approaches (FBWM 

and random weights generation ), three normalization methods (linear vector, linear 

sum, and max), and two distance metrics (Euclidean and Manhattan). For each 

configuration, the 𝐶𝐶𝑖  values were calculated, and the resulting rankings were analyzed 

for consistency. 
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Sensitivity analysis focused on how normalization methods and distance 

metrics affected the TOPSIS results. Each combination was applied to the weighted 

decision matrices, and changes in 𝐶𝐶𝑖 values were used to observe shifts in rankings. 

Finally, a two-way ANOVA was performed within the General Linear Model 

(GLM) framework to test the effects of these methodological variations statistically. 

The factors analyzed were weight combinations, normalization method, and distance 

metric, with 𝐶𝐶𝑖 as the response variable. Significant main and interaction effects were 

further examined using Tukey’s post-hoc tests to identify which specific configurations 

produced statistically distinct results. This approach provides deeper insight into the 

model's sensitivity and highlights the methodological choices that lead to more stable 

and discriminative rankings. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

This chapter presents the results of the proposed approach to warehouse location 

selection. The approach consists of three stages: (1) determining the importance of 

criteria using the Fuzzy Best-Worst Method (FBWM) and random weight generation, 

(2) ranking the warehouse alternatives using TOPSIS under various methodological 

settings, and (3) conducting a robustness analysis to evaluate the stability of the results 

across different configurations. Furthermore, a sensitivity analysis is performed to 

investigate how methodological variations influence the final rankings.  

 

4.1 Fuzzy Best-Worst method (FBWM) 

The FBWM is applied to derive the importance weights of the three criteria: 

Area (C1), Rental rate (C2), and Distance to airport (C3). Rental rate (C2) is identified 

as the most important criterion, while Distance to airport (C3) is considered the least 

important based on the decision context. Linguistic preferences are expressed by expert 

judgments and converted into TFNs to form comparison matrices. The best-to-others 

(BO) vector represents the relative importance of the best criterion (C2) over the other 

criteria.  

Table 4.1 Best-to-others (BO) fuzzy comparison matrix 

Best-to-Others (BO) C1 C2 C3 

C2 

Linguistic Scale FI EI AI 

TFNs (𝑎𝐵,𝑗) (3/2 ,2,5/2) (1,1,1) (7/2 ,4,9/2) 

Lower (𝑙𝐵,𝑗) 3/2  1 7/2  

Medium (𝑚𝐵,𝑗) 2 1 4 

Upper (𝑢𝐵,𝑗) 5/2 1 9/2 

 

Table 4.1 shows that C2 is “Fairly important” over C1, “Equally important” to 

itself, and “Absolutely important” over C3. These linguistic terms correspond to the 

TFNs (1.5, 2, 2.5), (1, 1, 1), and (3.5, 4, 4.5), respectively. The others-to-worst (OW) 

vector reflects the importance of each criterion relative to the worst one (C3). As 

presented in Table 4.2, C1 is considered “Weakly important” compared to C3, C2 is 
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“Absolutely important,” and C3 is “Equally important” to itself. The corresponding 

TFNs are (0.666, 1, 1.5), (3.5, 4, 4.5), and (1, 1, 1), respectively. 

 

Table 4.2 Others-to-worst (OW) fuzzy comparison matrix 

Others-to-Worst 

(OW) 

C3 

Linguistic 

Scale 

TFNs 

(𝑎̃𝑗,𝑊) 
Lower 

(𝑙𝑗,𝑊) 
Medium 

(𝑚𝑗,𝑊) 
Upper 

(𝑢𝑗,𝑊) 

C1 WI (2/3 ,1,3/2) 2/3  1 3/2 

C2 AI (7/2 ,4,9/2) 7/2  4 9/2 

C3 EI (1,1,1) 1 1 1 

 

These fuzzy comparisons are then used to construct the fuzzy optimization 

model as shown in Equation (3.3). The results obtained from solving the model are as 

follows: the weight of Area (C1) is 0.250, Rental rate (C2) is 0.593, and Distance to 

airport (C3) is 0.157. These weights reflect the relative importance of each criterion and 

are used in the next phase for alternative ranking via TOPSIS.  

To ensure the reliability of the expert judgments used in the FBWM model, a 

consistency check is conducted using the approach proposed by (Dong et al., 2021). 

The consistency ratio (CR) is calculated as the ratio between the maximum deviation 

value  𝑘∗ obtained from the optimization model and the corresponding 𝐶𝐼𝑚𝑎𝑥, which is 

determined based on the fuzzy linguistic scale used in the comparisons, as shown in 

Table 3.3.  

In this study, the maximum deviation 𝑘∗ = 0.07 , and the value of 𝑘∗ is obtained 

from the optimal solution of the FBWM optimization model (solved using Excel 

Solver), which minimizes the maximum deviation between the derived weights and the 

expert comparison ratio. The corresponding 𝐶𝐼𝑚𝑎𝑥 = 8.04, and CR was computed 

using Equation (3.5). Since the 𝐶𝑅 = 0.07/8.04 = 0.0087 is significantly lower than 

the commonly accepted threshold of 0.1, the comparisons are considered consistent, 

and the derived fuzzy weights are valid for further analysis.  

 

4.2 Alternatives ranking using TOPSIS 

To evaluate the alternatives, a decision matrix was constructed based on three 

alternatives 𝑆𝑖 = {𝑆1, 𝑆2, 𝑆3 } and three criteria: Area (𝐶1, 𝑏𝑒𝑛𝑒𝑓𝑖𝑡), Rental Rate 
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(𝐶2, 𝑐𝑜𝑠𝑡), and Distance to Airport (𝐶3, 𝑐𝑜𝑠𝑡).  The evaluation matrix is presented in 

Table 4.3, which serves as the input for the TOPSIS procedure. 

 

Table 4.3 Evaluation matrix for warehouse alternatives 

Alternative (𝑆𝑖) 
Benefit Criteria Cost Criteria Cost Criteria 

C1 C2 C3 

S1 1000.00 159.00 30.00 

S2 700.00 79.50 25.00 

S3 500.00 95.40 40.00 

 

Table 4.4 Normalized matrix by linear vector normalization 

Alternative (𝑆𝑖) 
Benefit Criteria Cost Criteria Cost Criteria 

C1 C2 C3 

S1 0.758 0.788 0.537 

S2 0.531 0.394 0.447 

S3 0.379 0.473 0.716 

 

Table 4.5 Normalized matrix by linear sum normalization 

Alternative (𝑆𝑖) 
Benefit Criteria Cost Criteria Cost Criteria 

C1 C2 C3 

S1 0.455 0.476 0.316 

S2 0.318 0.238 0.263 

S3 0.227 0.286 0.421 

 

Table 4.6  Normalized matrix by max normalization 

Alternative (𝑆𝑖) 
Benefit Criteria Cost Criteria Cost Criteria 

C1 C2 C3 

S1 1.000 1.000 0.750 

S2 0.700 0.500 0.625 

S3 0.500 0.600 1.000 

 

The matrix was normalized using linear vector, linear sum, and max 

normalization as defined in Equations (3.7) to (3.9). Tables 4.4, 4.5, and 4.6 present the 

corresponding normalized values for each method, respectively.  

Next, the normalized values 𝑟𝑖𝑗 were multiplied by the previously obtained 

fuzzy weights 𝑤𝑗  (from FBWM), to obtain the weighted normalized values 𝑣𝑖𝑗 , using 

Equation (3.10). The weighted normalized values were then used to compute the 
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distances of each alternative from the PIS and NIS, based on whether the criteria were 

classified as benefit or cost types, as shown in Equations (3.11) and (3.12). Tables (4.7) 

– (4.9) present the weighted normalized matrices for linear vector, linear sum, and max 

normalization methods, along with the corresponding PIS and NIS values for each 

criterion. Two distance metrics were applied: Euclidean distance, computed using 

Equations (3.13) and (3.14), and Manhattan distance, based on Equations (3.15) and 

(3.16). Finally, CC𝑖 is computed using Equation (3.17).  

 

Table 4.7 Weighted normalized matrix using linear vector normalization 

Alternative (𝑆𝑖) 
Benefit Criteria Cost Criteria Cost Criteria 

C1 C2 C3 

S1 0.190 0.467 0.084 

S2 0.133 0.234 0.070 

S3 0.095 0.280 0.112 

PIS 0.190 0.234 0.070 

NIS 0.095 0.467 0.112 

 

 Table 4.8 Weighted normalized matrix using linear sum normalization 

Alternative (𝑆𝑖) 
Benefit Criteria Cost Criteria Cost Criteria 

C1 C2 C3 

S1 0.114 0.282 0.050 

S2 0.080 0.141 0.041 

S3 0.057 0.169 0.066 

PIS 0.114 0.141 0.041 

NIS 0.057 0.282 0.066 

 

Table 4.9 Weighted normalized matrix using max normalization 

Alternative (𝑆𝑖) 
Benefit Criteria Cost Criteria Cost Criteria 

C1 C2 C3 

S1 0.900 0.050 0.038 

S2 0.630 0.025 0.031 

S3 0.450 0.030 0.050 

PIS 0.900 0.025 0.031 

NIS 0.450 0.050 0.050 
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The final ranking results of the three alternatives using TOPSIS under all 

combinations of three normalization techniques (linear vector, linear sum, and max) 

and two distance metrics (Euclidean and Manhattan) are presented in Table 4.10. 

 

Table 4.10 Ranking results of alternatives using FBWM and TOPSIS 

Ranking by FBWM and TOPSIS 

Normalizati-

on Method 
𝑆𝑖 

Euclidean Distance Manhattan Distance 

𝑑𝑖
+ 𝑑𝑖

− CC𝑖 Rank 𝑑𝑖
+ 𝑑𝑖

− CC𝑖 Rank 

Linear 

vector  

S1 0.234 0.099 0.297 3 0.248 0.123 0.332 3 

S2 0.057 0.240 0.809 1 0.057 0.314 0.847 1 

S3 0.114 0.187 0.622 2 0.184 0.187 0.504 2 

Linear  

sum  

S1 0.141 0.059 0.295 3 0.149 0.073 0.329 3 

S2 0.034 0.145 0.810 1 0.034 0.189 0.847 1 

S3 0.068 0.113 0.624 2 0.110 0.113 0.507 2 

Max 

S1 0.297 0.131 0.306 3 0.316 0.164 0.342 3 

S2 0.075 0.306 0.803 1 0.075 0.405 0.844 1 

S3 0.150 0.237 0.612 2 0.243 0.237 0.494 2 

 

4.3 Analysis of FBWM–TOPSIS rankings across normalization and distance 

methods 

The rankings derived from applying FBWM weights within the TOPSIS 

framework are presented in Table 4.10. The results compare the impact of three 

normalization methods (linear vector, linear sum, and max normalization) and two 

distance measures (Euclidean and Manhattan) on the final warehouse rankings. 

Across all configurations, alternative S2 consistently ranked first, with 

closeness coefficient (𝐶𝐶𝑖) values ranging from 0.803 to 0.847. This stability across all 

normalization and distance methods confirms S2 as the most robust and preferred 

option. Warehouse alternative (S1) consistently ranked last, with 𝐶𝐶𝑖 values between 

0.295 and 0.342. Warehouse alternative (S3) ranked in second place across all methods 

but showed more variation in results than S2 and S1. Specifically, under linear vector 

normalization, its 𝐶𝐶𝑖  dropped from 0.622 with Euclidean distance to 0.504 with 

Manhattan distance. Under linear sum normalization, the variation was smaller, with 

𝐶𝐶𝑖 values between 0.612 and 0.624. These differences indicate that S3’s ranking is 

moderately affected by the choice of normalization and distance method. 
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In terms of distance metrics, the Manhattan distance generally produces higher 

𝐶𝐶𝑖  values across alternatives compared to Euclidean distance. Additionally, 

Manhattan distance showed greater discrimination between top and bottom-ranked 

alternatives, particularly under the linear sum normalization. This indicates that 

Manhattan distance is more sensitive to variations in normalized performance values. 

Regarding normalization techniques, linear vector normalization and linear sum 

normalization presented similar ranking patterns, with slightly more pronounced 

differences in 𝐶𝐶𝑖. These small deviations highlight the importance of carefully 

selecting a normalization technique, as even small computational differences can 

influence how alternatives are distinguished. 

Overall, while the top and bottom rankings remained stable across all methods 

(S2 and S1, respectively), the middle-ranked alternative (S3) demonstrated some degree 

of sensitivity. This highlights that the choice of normalization and distance methods can 

influence the differentiation between alternatives, particularly those that are closely 

matched in performance, when methodological choices are varied. 

 

4.4 Evaluation using valid weight combinations 

To evaluate the robustness of the decision-making model beyond expert-derived 

FBWM weights, an additional analysis was conducted using systematically generated 

random weight combinations. A total of 5,832 potential weight combinations were 

generated by assigning discrete values ranging from 0.05 to 0.90 (in increments of 0.05) 

to each of the three criteria (𝑤1, 𝑤2, 𝑤3). To ensure only meaningful and realistic 

configurations, two filtering conditions were applied: 

(1) The weights must sum to one (𝑤1 + 𝑤2 + 𝑤3 = 1)  

(2) the weight assigned to the rental rate (𝑤2) must be greater than or equal to 

the weights of the other two criteria (𝑤2 ≥ 𝑤1, 𝑤2 ≥ 𝑤3). After applying these 

constraints, 45 valid weight distributions remained, as in Table 4.11. 

These were then applied in the TOPSIS framework across all combinations of 

normalization (linear vector, linear sum, and max) and distance methods (Euclidean 

and Manhattan). This procedure allowed for 270 evaluation runs (45 weight 
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combinations × 3 normalization methods × 2 distance metrics)  for each alternative, 

enabling a detailed assessment of how rankings respond to varying inputs. 

The closeness coefficient (𝐶𝐶𝑖) was calculated for each alternative under every 

scenario, and the resulting rankings were recorded. This approach provided a rich 

dataset for understanding the sensitivity of warehouse rankings to weight for 

identifying patterns of consistency across different methodological settings. 

 

Table 4.11 Valid weight combinations 

Weight 

Comb- 

ination 

W1 W2 W3  

Weight 

Comb- 

ination 

W1 W2 W3  

Weight 

Comb- 

ination 

W1 W2 W3 

1 0.05 0.50 0.45  16 0.10 0.80 0.10  31 0.25 0.50 0.25 

2 0.05 0.55 0.40  17 0.10 0.85 0.05  32 0.25 0.55 0.20 

3 0.05 0.6 0.35  18 0.15 0.50 0.35  33 0.25 0.6 0.15 

4 0.05 0.65 0.30  19 0.15 0.55 0.30  34 0.25 0.65 0.10 

5 0.05 0.70 0.25  20 0.15 0.60 0.25  35 0.25 0.70 0.05 

6 0.05 0.75 0.20  21 0.15 0.65 0.20  36 0.30 0.50 0.20 

7 0.05 0.80 0.15  22 0.15 0.70 0.15  37 0.30 0.55 0.15 

8 0.05 0.85 0.10  23 0.15 0.75 0.10  38 0.30 0.60 0.10 

9 0.05 0.90 0.05  24 0.15 0.80 0.05  39 0.30 0.65 0.05 

10 0.10 0.50 0.40  25 0.20 0.50 0.30  40 0.35 0.50 0.15 

11 0.10 0.55 0.35  26 0.20 0.55 0.25  41 0.35 0.55 0.10 

12 0.10 0.60 0.30  27 0.20 0.60 0.20  42 0.35 0.60 0.05 

13 0.10 0.65 0.25  28 0.20 0.65 0.15  43 0.40 0.50 0.10 

14 0.10 0.70 0.20  29 0.20 0.70 0.10  44 0.40 0.55 0.05 

15 0.10 0.75 0.15  30 0.20 0.75 0.05  45 0.45 0.50 0.05 

 

Table 4.12 Dataset components used for robustness and sensitivity analysis. 

Component Description Quantity 

Alternatives Warehouse location options (S1, S2, S3) 3 

Valid weight 

combinations 

Valid weight sets generated for 

robustness analysis 
45 

Normalization methods 
Linear vector, linear sum, and max 

normalization 
3 

Distance metrics 
Euclidean and Manhattan distance 

calculations 
2 

Closeness coefficient 

values 
Total number of  𝐶𝐶𝑖values computed 810 
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The full dataset consists of 810 closeness coefficient values (denoted as 𝐶𝐶𝑖 ), 

covering every alternative (S1, S2, S3) across the 270 scenarios. For each evaluation, 

the following parameters were recorded in Table 4.12. 

 

4.5 Statistical analysis of ranking robustness 

To evaluate the influence of methodological variation on warehouse selection 

outcomes, a two-way ANOVA was conducted in Minitab. The analysis examined the 

effects of three factors: valid weight combinations, normalization method (linear 

vector, linear sum, and max), and distance metric (Euclidean and Manhattan) on the 

𝐶𝐶𝑖 of each warehouse alternative. The dataset consisted of 810 𝐶𝐶𝑖 values, generated 

from 45 valid weight combinations across all methodological configurations. Residual 

analysis indicated no major violations of normality or homogeneity, confirming the 

suitability of the model. Finally, Tukey post-hoc tests were performed to identify 

specific method pairs with significant differences in their impact on 𝐶𝐶𝑖. The analysis 

included the following three factors, as shown in Table 4.13. 

 

Table 4.13 Factor information for S1, S2 and S3 for ANOVA model 

Factor Type Levels Values 

Weight Combination Fixed 45 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 16,17, 18, 19, 20, 21, 22, 23, 24, 

25, 26, 27, 28, 29, 30,31, 32, 33, 34, 35, 

36, 37, 38, 39, 40, 41, 42, 43, 44,45 

Distance Calculation Fixed 2 Euclidean, Manhattan 

Normalization Method Fixed 3 Max, Sum, Vector 

 

4.5.1 Statistical analysis of results for alternative 1 (S1) 

The evaluation shows that weight combination, distance metric, and 

normalization method all have a substantial impact on the 𝐶𝐶𝑖 values for Alternative 1 

(S1). The ANOVA results demonstrated that all three factors significantly influenced  

𝐶𝐶𝑖  values of S1, with p-values less than 0.001, indicating strong statistical significance 

(see Table 4.14). 
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Table 4.14 Analysis of variance for alternative 1 (S1) 

Source DF Adj SS Adj MS F-Value P-Value 

Weight Combination 44 2.62660 0.059695 1120.51 0.000 

Distance Calculation 1 0.05553 0.055526 1042.25 0.000 

Normalization Method 2 0.00767 0.003836 72.01 0.000 

Error 222 0.01183 0.000053   

Total 269 2.70162    

 

The model summary metrics further confirmed the strength of the analysis. The 

adjusted R-squared value was 99.47%, indicating that the model explained nearly all of 

the variation in 𝐶𝐶𝑖  values. The predicted R-squared was also high at 99.35%, 

suggesting strong predictive accuracy in Table 4.15. 

 

Table 4.15 Model summary for alternative 1 (S1) 

S R-sq R-sq(adj) R-sq(pred) 

0.0072990 99.56% 99.47% 99.35% 

 

To further identify which specific factor differed significantly, Tukey’s post-

hoc pairwise comparisons were conducted for both distance metrics and normalization 

methods in Tables 4.16 and 4.17.  

 

Table 4.16 Tukey pairwise comparisons: distance calculation for alternative 1 (S1) 

Grouping Information Using the Tukey Method and 95% Confidence 

Distance Calculation N Mean Grouping 

Manhattan 135 0.280956 A  

Euclidean 135 0.252275  B 

 

Table 4.17 Tukey pairwise comparisons: normalization method for alternative 1 (S1) 

Grouping Information Using the Tukey Method and 95% Confidence 

Normalization Method N Mean Grouping 

Max 90 0.274036 A  

Vector 90 0.264059  B 

Sum 90 0.261752  B 

 

For alternative S1, the Manhattan distance produced a significantly higher mean 

𝐶𝐶𝑖 (0.280956) than the Euclidean distance (0.252275), as indicated by their different 
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statistical groupings A and B. This suggests that Manhattan distance offers greater 

discriminative power in differentiating performance. Regarding normalization 

methods, max normalization yielded the highest mean 𝐶𝐶𝑖  (0.274036), significantly 

above both Vector (0.264059) and Sum (0.261752) normalization, which were 

statistically similar and as in grouped together. 

The normal probability plot of residuals (Figure 4.1) supports the validity of the 

ANOVA assumptions, with residuals closely following a straight line, indicating 

approximate normality and homoscedasticity. 

 

 

Figure 4.1 Normal probability plot of residuals for alternative 1(S1) 

 

The statistical analysis confirms that the selection of distance metric, and weight 

combination significantly influences the closeness coefficient (𝐶𝐶𝑖) values for 

Alternative 1 (S1).  

 

4.5.2 Statistical analysis of results for alternative 2 (S2) 

To evaluate the sensitivity and robustness of the ranking outcome for 

Alternative 2 (S2), a two-way ANOVA was performed in Minitab, considering the 

same factors outlined in Table 4.13. The ANOVA results, presented in Table 4.18, show 

that weight combination  and distance metric  are statistically significant effects on 𝐶𝐶𝑖. 
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In contrast, the normalization method had only a marginal effect , indicating a weaker 

influence compared to the other factors. 

 As shown in the model summary in Table 4.19, the R-squared value is 98.60%, 

with an adjusted R-squared at 98.30% and predicted R-squared at 97.92%. It indicates 

that the model is statistically valid and provides a reliable fit for analyzing 𝐶𝐶𝑖 in 

alternative 2. 

Tukey’s pairwise comparisons (Tables 4.20 and 4.21) show that Alternative 2 

(S2) is strongly influenced by distance metrics, while normalization methods have no 

significant effect. 

 

Table 4.18 Analysis of variance for alternative 2 (S2) 

Source DF Adj SS Adj MS F-Value P-Value 

Weight Combination 44 1.50545 0.034215 342.99 0.000 

Distance Calculation 1 0.04957 0.049569 496.91 0.000 

Normalization Method 2 0.00059 0.000296 2.97 0.053 

Error 222 0.02215 0.000100   

Total 269 1.57776    

 

Table 4.19 Model summary for alternative2 (S2) 

S R-sq R-sq(adj) R-sq(pred) 

0.0099877 98.60% 98.30% 97.92% 

 

Table 4.20 Tukey pairwise comparisons: distance calculation for alternative 2 (S2) 

Grouping Information Using the Tukey Method and 95% Confidence 

Distance Calculation N Mean Grouping 

Manhattan 135 0.887083 A - 

Euclidean 135 0.859984 - B 

 

Table 4.21 Tukey pairwise comparisons: normalization method for alternative 2 (S2) 

Grouping Information Using the Tukey Method and 95% Confidence 

Normalization Method N Mean Grouping 

Max 90 0.874825 A - 

Vector 90 0.874317 A - 

Sum 90 0.871458 A - 
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Figure 4.2 Normal probability plot of residuals for alternative 2(S2). 

 

The normal probability plot of residuals (Figure 4.2) confirms that the 

assumption of normality was satisfied. 

 

4.5.3 Statistical analysis of results for alternative 3 (S3) 

For alternative 3 (S3), the same statistical approach was applied, using the GLM 

as the response variable and the same factors listed in Table 4.13. The ANOVA results 

are presented in Table 4.22. All three factors exhibited statistically significant effects 

on the 𝐶𝐶𝑖  values, as indicated by their p-values being less than 0.05. The model 

summary in Table 4.23 reveals a high goodness-of-fit, with an R-squared value of 

99.03%, adjusted R-squared of 98.82%, and predicted R-squared of 98.56%, 

confirming that the model explains nearly all variability in the data. 

 

Table 4.22 Analysis of variance for alternative 3 (S3) 

Source DF Adj SS Adj MS F-Value P-Value 

Weight Combination 44 1.84942 0.042032 367.46 0.000 

Distance Calculation 1 0.72113 0.721133 6304.32 0.000 

Normalization Method 2 0.00877 0.004384 38.33 0.000 

Error 222 0.02539 0.000114   

Total 269 2.60471    
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Table 4.23 Model summary for alternative3 (S3) 

S R-sq R-sq(adj) R-sq(pred) 

0.0099877 99.03% 98.82% 98.56% 

 

Post-hoc comparisons using Tukey's test were conducted to examine pairwise 

differences between levels of the distance and normalization methods. For the distance 

calculation method comparison, there is a significant influence on 𝐶𝐶𝑖  for S3, as 

indicated by their assignment to distinct groups (A and B, respectively) in Table 4.24.  

 

Table 4.24 Tukey pairwise comparisons: distance calculation for alternative 3 (S3)  

Grouping Information Using the Tukey Method and 95% Confidence 

Distance Calculation N Mean Grouping 

Manhattan 135 0.641491 A - 

Euclidean 135 0.538130 - B 

 

Table 4.25 Tukey pairwise comparisons: normalization method for alternative 3 (S3) 

Grouping Information Using the Tukey Method and 95% Confidence 

Normalization Method N Mean Grouping 

Max 90 0.595045 A - 

Vector 90 0.592501 A - 

Sum 90 0.581887 - B 

 

 

Figure 4.3 Normal probability plot of residuals for alternative 3 (S3). 
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Table 4.25 shows a comparison of the normalization methods, which were not 

significantly different, even though the results are in groups A and B. Furthermore, the 

normal probability plot of residuals (Figure 4.3) confirms that the residuals follow a 

normal distribution, supporting the validity of the ANOVA assumptions.  

 

4.6 Interpretation of sensitivity and robustness 

The sensitivity and robustness analysis shows that the overall ranking pattern is 

stable, with S2 consistently in the top-ranked position. However, the variations 𝐶𝐶𝑖 

values and the magnitude difference between alternatives were changed depending on 

the weight combinations, normalization methods, and distance metrics used. These 

results highlight the importance of sensitivity analysis in MCDM, particularly in real-

world situations where judgments and methodological choices can vary. 

The robustness of the proposed decision-making framework is substantiated 

through evaluation, using 45 weight combinations, and statistical analysis via two-way 

ANOVA. The findings reveal that weight combinations and distance metrics are 

statistically significant effects on 𝐶𝐶𝑖 values across all three alternatives. Among the 

distance metrics, the Manhattan distance demonstrated greater discriminatory 

capability by generating a wider dispersion of 𝐶𝐶𝑖 scores, whereas the Euclidean 

distance yielded more stable and consistent rankings across methodological variations. 

In contrast, normalization methods did not exhibit a statistically significant influence, 

suggesting their negligible effect on 𝐶𝐶𝑖 values. Overall, the results demonstrate that 

the TOPSIS-based framework ensures reliable and adaptable warehouse location 

decisions, even under varying inputs and methodological settings.  
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CHAPTER 5 

CONCLUSION 

 

This study developed a hybrid fuzzy multi-criteria decision-making framework 

for warehouse location selection, integrating the FBWM for criteria weighting with the 

TOPSIS for alternative ranking. The approach was designed to address the uncertainty 

inherent in expert judgments and the variability in methodological configurations. A 

case study involving three warehouse candidates (S1, S2, and S3) within the Bangkok 

metropolitan area was conducted, evaluated against three quantitative criteria: 

warehouse area, rental cost, and distance to the airport. 

In addition to expert-derived weights from FBWM, the study applied 45 valid 

random weight combinations to simulate variations in decision-maker preferences. 

Rankings were generated under three normalization methods (linear vector, linear sum, 

and max) and two distance metrics (Euclidean and Manhattan), followed by robustness 

and sensitivity analysis using Two-Way ANOVA. 

 

5.1 Key findings and contributions 

The results demonstrated that alternative S2 consistently ranked as the most 

suitable warehouse location across all evaluation scenarios, with closeness coefficient 

values ranging from 0.803 to 0.847. Alternative S1 consistently ranked last, while S3 

ranked second. 

Robustness analysis confirmed that variations in criteria weights and distance 

metrics significantly influenced closeness coefficients, whereas normalization methods 

had minimal effect. Manhattan distance provided greater discrimination among 

alternatives, while Euclidean distance yielded more stable results.  

This research contributes to theory by demonstrating the integration of FBWM 

and TOPSIS within a warehouse location selection context, and by incorporating a 

comprehensive robustness and sensitivity analysis supported by statistical validation. 

Practically, it offers decision-makers a transparent and replicable framework capable 

of producing reliable results under varying decision preferences. 
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5.2 Limitations and recommendations for future research 

The study was limited to three quantitative criteria, excluding qualitative 

considerations such as facility condition, contract flexibility, and accessibility to labor 

markets. The case study involved only three alternatives within a single metropolitan 

area, limiting generalizability. The robustness analysis assumed rental cost to be the 

most important criterion, which may not hold in all contexts. Finally, while FBWM 

accounted for fuzziness in weighting, the TOPSIS stage used deterministic performance 

scores. 

Future research could integrate fuzzy TOPSIS in the ranking stage, expand the 

criteria set to include qualitative and sustainability-related factors, apply the framework 

to a broader range of alternatives and contexts, and use real-time data for dynamic 

decision-making. 
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APPENDIX A 

Dataset of 𝐶𝐶𝑖 Values for Alternative S1 

S/N 

Weigh

t 

Combi

nation 

𝑤1 𝑤2 𝑤3 
Distance 

Calculation 

Normaliz

ation 
𝑆𝑖 𝐶𝐶𝑖 

1 1 0.05 0.50 0.45 Euclidean Vector S1 0.2914 

2 1 0.05 0.50 0.45 Euclidean Max S1 0.3102 

3 1 0.05 0.50 0.45 Euclidean Sum S1 0.2864 

4 1 0.05 0.50 0.45 Manhattan Vector S1 0.2953 

5 1 0.05 0.50 0.45 Manhattan Max S1 0.3099 

6 1 0.05 0.50 0.45 Manhattan Sum S1 0.2915 

7 2 0.05 0.55 0.40 Euclidean Vector S1 0.2520 

8 2 0.05 0.55 0.40 Euclidean Max S1 0.2694 

9 2 0.05 0.55 0.40 Euclidean Sum S1 0.2474 

10 2 0.05 0.55 0.40 Manhattan Vector S1 0.2639 

11 2 0.05 0.55 0.40 Manhattan Max S1 0.2778 

12 2 0.05 0.55 0.40 Manhattan Sum S1 0.2602 

13 3 0.05 0.60 0.35 Euclidean Vector S1 0.2152 

14 3 0.05 0.60 0.35 Euclidean Max S1 0.2309 

15 3 0.05 0.60 0.35 Euclidean Sum S1 0.2111 

16 3 0.05 0.60 0.35 Manhattan Vector S1 0.2335 

17 3 0.05 0.60 0.35 Manhattan Max S1 0.2466 

18 3 0.05 0.60 0.35 Manhattan Sum S1 0.2301 

19 4 0.05 0.65 0.30 Euclidean Vector S1 0.1810 

20 4 0.05 0.65 0.30 Euclidean Max S1 0.1946 

21 4 0.05 0.65 0.30 Euclidean Sum S1 0.1775 

22 4 0.05 0.65 0.30 Manhattan Vector S1 0.2042 

23 4 0.05 0.65 0.30 Manhattan Max S1 0.2162 

24 4 0.05 0.65 0.30 Manhattan Sum S1 0.2011 

25 5 0.05 0.70 0.25 Euclidean Vector S1 0.1493 

26 5 0.05 0.70 0.25 Euclidean Max S1 0.1608 

27 5 0.05 0.70 0.25 Euclidean Sum S1 0.1464 

28 5 0.05 0.70 0.25 Manhattan Vector S1 0.1760 

29 5 0.05 0.70 0.25 Manhattan Max S1 0.1867 

30 5 0.05 0.70 0.25 Manhattan Sum S1 0.1732 

31 6 0.05 0.75 0.20 Euclidean Vector S1 0.1203 

32 6 0.05 0.75 0.20 Euclidean Max S1 0.1295 

33 6 0.05 0.75 0.20 Euclidean Sum S1 0.1180 

34 6 0.05 0.75 0.20 Manhattan Vector S1 0.1487 

35 6 0.05 0.75 0.20 Manhattan Max S1 0.1579 

36 6 0.05 0.75 0.20 Manhattan Sum S1 0.1463 

37 7 0.05 0.80 0.15 Euclidean Vector S1 0.0943 
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S/N 

Weigh

t 

Combi

nation 

𝑤1 𝑤2 𝑤3 
Distance 

Calculation 

Normaliz

ation 
𝑆𝑖 𝐶𝐶𝑖 

38 7 0.05 0.80 0.15 Euclidean Max S1 0.1012 

39 7 0.05 0.80 0.15 Euclidean Sum S1 0.0926 

40 7 0.05 0.80 0.15 Manhattan Vector S1 0.1223 

41 7 0.05 0.80 0.15 Manhattan Max S1 0.1299 

42 7 0.05 0.80 0.15 Manhattan Sum S1 0.1204 

43 8 0.05 0.85 0.10 Euclidean Vector S1 0.0722 

44 8 0.05 0.85 0.10 Euclidean Max S1 0.0768 

45 8 0.05 0.85 0.10 Euclidean Sum S1 0.0711 

46 8 0.05 0.85 0.10 Manhattan Vector S1 0.0968 

47 8 0.05 0.85 0.10 Manhattan Max S1 0.1026 

48 8 0.05 0.85 0.10 Manhattan Sum S1 0.0954 

49 9 0.05 0.90 0.05 Euclidean Vector S1 0.0558 

50 9 0.05 0.90 0.05 Euclidean Max S1 0.0585 

51 9 0.05 0.90 0.05 Euclidean Sum S1 0.0552 

52 9 0.05 0.90 0.05 Manhattan Vector S1 0.0721 

53 9 0.05 0.90 0.05 Manhattan Max S1 0.0759 

54 9 0.05 0.90 0.05 Manhattan Sum S1 0.0712 

55 10 0.10 0.50 0.40 Euclidean Vector S1 0.2879 

56 10 0.10 0.50 0.40 Euclidean Max S1 0.3048 

57 10 0.10 0.50 0.40 Euclidean Sum S1 0.2836 

58 10 0.10 0.50 0.40 Manhattan Vector S1 0.3198 

59 10 0.10 0.50 0.40 Manhattan Max S1 0.3333 

60 10 0.10 0.50 0.40 Manhattan Sum S1 0.3164 

61 11 0.10 0.55 0.35 Euclidean Vector S1 0.2505 

62 11 0.10 0.55 0.35 Euclidean Max S1 0.2657 

63 11 0.10 0.55 0.35 Euclidean Sum S1 0.2466 

64 11 0.10 0.55 0.35 Manhattan Vector S1 0.2884 

65 11 0.10 0.55 0.35 Manhattan Max S1 0.3014 

66 11 0.10 0.55 0.35 Manhattan Sum S1 0.2851 

67 12 0.10 0.60 0.30 Euclidean Vector S1 0.2164 

68 12 0.10 0.60 0.30 Euclidean Max S1 0.2297 

69 12 0.10 0.60 0.30 Euclidean Sum S1 0.2130 

70 12 0.10 0.60 0.30 Manhattan Vector S1 0.2581 

71 12 0.10 0.60 0.30 Manhattan Max S1 0.2703 

72 12 0.10 0.60 0.30 Manhattan Sum S1 0.2550 

73 13 0.10 0.65 0.25 Euclidean Vector S1 0.1857 

74 13 0.10 0.65 0.25 Euclidean Max S1 0.1969 

75 13 0.10 0.65 0.25 Euclidean Sum S1 0.1829 

76 13 0.10 0.65 0.25 Manhattan Vector S1 0.2288 

77 13 0.10 0.65 0.25 Manhattan Max S1 0.2400 
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𝑤1 𝑤2 𝑤3 
Distance 

Calculation 

Normaliz

ation 
𝑆𝑖 𝐶𝐶𝑖 

78 13 0.10 0.65 0.25 Manhattan Sum S1 0.2260 

79 14 0.10 0.70 0.20 Euclidean Vector S1 0.1586 

80 14 0.10 0.70 0.20 Euclidean Max S1 0.1677 

81 14 0.10 0.70 0.20 Euclidean Sum S1 0.1565 

82 14 0.10 0.70 0.20 Manhattan Vector S1 0.2005 

83 14 0.10 0.70 0.20 Manhattan Max S1 0.2105 

84 14 0.10 0.70 0.20 Manhattan Sum S1 0.1981 

85 15 0.10 0.75 0.15 Euclidean Vector S1 0.1357 

86 15 0.10 0.75 0.15 Euclidean Max S1 0.1427 

87 15 0.10 0.75 0.15 Euclidean Sum S1 0.1341 

88 15 0.10 0.75 0.15 Manhattan Vector S1 0.1732 

89 15 0.10 0.75 0.15 Manhattan Max S1 0.1818 

90 15 0.10 0.75 0.15 Manhattan Sum S1 0.1712 

91 16 0.10 0.80 0.10 Euclidean Vector S1 0.1173 

92 16 0.10 0.80 0.10 Euclidean Max S1 0.1226 

93 16 0.10 0.80 0.10 Euclidean Sum S1 0.1162 

94 16 0.10 0.80 0.10 Manhattan Vector S1 0.1468 

95 16 0.10 0.80 0.10 Manhattan Max S1 0.1538 

96 16 0.10 0.80 0.10 Manhattan Sum S1 0.1452 

97 17 0.10 0.85 0.05 Euclidean Vector S1 0.1042 

98 17 0.10 0.85 0.05 Euclidean Max S1 0.1081 

99 17 0.10 0.85 0.05 Euclidean Sum S1 0.1033 

100 17 0.10 0.85 0.05 Manhattan Vector S1 0.1213 

101 17 0.10 0.85 0.05 Manhattan Max S1 0.1266 

102 17 0.10 0.85 0.05 Manhattan Sum S1 0.1201 

103 18 0.15 0.50 0.35 Euclidean Vector S1 0.2977 

104 18 0.15 0.50 0.35 Euclidean Max S1 0.3123 

105 18 0.15 0.50 0.35 Euclidean Sum S1 0.2941 

106 18 0.15 0.50 0.35 Manhattan Vector S1 0.3435 

107 18 0.15 0.50 0.35 Manhattan Max S1 0.3562 

108 18 0.15 0.50 0.35 Manhattan Sum S1 0.3404 

109 19 0.15 0.55 0.30 Euclidean Vector S1 0.2636 

110 19 0.15 0.55 0.30 Euclidean Max S1 0.2765 

111 19 0.15 0.55 0.30 Euclidean Sum S1 0.2605 

112 19 0.15 0.55 0.30 Manhattan Vector S1 0.3121 

113 19 0.15 0.55 0.30 Manhattan Max S1 0.3243 

114 19 0.15 0.55 0.30 Manhattan Sum S1 0.3092 

115 20 0.15 0.60 0.25 Euclidean Vector S1 0.2335 

116 20 0.15 0.60 0.25 Euclidean Max S1 0.2445 

117 20 0.15 0.60 0.25 Euclidean Sum S1 0.2309 
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𝑤1 𝑤2 𝑤3 
Distance 
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Normaliz

ation 
𝑆𝑖 𝐶𝐶𝑖 

118 20 0.15 0.60 0.25 Manhattan Vector S1 0.2819 

119 20 0.15 0.60 0.25 Manhattan Max S1 0.2933 

120 20 0.15 0.60 0.25 Manhattan Sum S1 0.2791 

121 21 0.15 0.65 0.20 Euclidean Vector S1 0.2074 

122 21 0.15 0.65 0.20 Euclidean Max S1 0.2166 

123 21 0.15 0.65 0.20 Euclidean Sum S1 0.2053 

124 21 0.15 0.65 0.20 Manhattan Vector S1 0.2526 

125 21 0.15 0.65 0.20 Manhattan Max S1 0.2632 

126 21 0.15 0.65 0.20 Manhattan Sum S1 0.2502 

127 22 0.15 0.70 0.15 Euclidean Vector S1 0.1854 

128 22 0.15 0.70 0.15 Euclidean Max S1 0.1931 

129 22 0.15 0.70 0.15 Euclidean Sum S1 0.1838 

130 22 0.15 0.70 0.15 Manhattan Vector S1 0.2244 

131 22 0.15 0.70 0.15 Manhattan Max S1 0.2338 

132 22 0.15 0.70 0.15 Manhattan Sum S1 0.2222 

133 23 0.15 0.75 0.10 Euclidean Vector S1 0.1678 

134 23 0.15 0.75 0.10 Euclidean Max S1 0.1740 

135 23 0.15 0.75 0.10 Euclidean Sum S1 0.1665 

136 23 0.15 0.75 0.10 Manhattan Vector S1 0.1971 

137 23 0.15 0.75 0.10 Manhattan Max S1 0.2051 

138 23 0.15 0.75 0.10 Manhattan Sum S1 0.1953 

139 24 0.15 0.80 0.05 Euclidean Vector S1 0.1544 

140 24 0.15 0.80 0.05 Euclidean Max S1 0.1597 

141 24 0.15 0.80 0.05 Euclidean Sum S1 0.1533 

142 24 0.15 0.80 0.05 Manhattan Vector S1 0.1707 

143 24 0.15 0.80 0.05 Manhattan Max S1 0.1772 

144 24 0.15 0.80 0.05 Manhattan Sum S1 0.1693 

145 25 0.20 0.50 0.30 Euclidean Vector S1 0.3184 

146 25 0.20 0.50 0.30 Euclidean Max S1 0.3309 

147 25 0.20 0.50 0.30 Euclidean Sum S1 0.3155 

148 25 0.20 0.50 0.30 Manhattan Vector S1 0.3664 

149 25 0.20 0.50 0.30 Manhattan Max S1 0.3784 

150 25 0.20 0.50 0.30 Manhattan Sum S1 0.3636 

151 26 0.20 0.55 0.25 Euclidean Vector S1 0.2877 

152 26 0.20 0.55 0.25 Euclidean Max S1 0.2988 

153 26 0.20 0.55 0.25 Euclidean Sum S1 0.2852 

154 26 0.20 0.55 0.25 Manhattan Vector S1 0.3352 

155 26 0.20 0.55 0.25 Manhattan Max S1 0.3467 

156 26 0.20 0.55 0.25 Manhattan Sum S1 0.3325 

157 27 0.20 0.60 0.20 Euclidean Vector S1 0.2612 
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Calculation 

Normaliz

ation 
𝑆𝑖 𝐶𝐶𝑖 

158 27 0.20 0.60 0.20 Euclidean Max S1 0.2708 

159 27 0.20 0.60 0.20 Euclidean Sum S1 0.2591 

160 27 0.20 0.60 0.20 Manhattan Vector S1 0.3050 

161 27 0.20 0.60 0.20 Manhattan Max S1 0.3158 

162 27 0.20 0.60 0.20 Manhattan Sum S1 0.3025 

163 28 0.20 0.65 0.15 Euclidean Vector S1 0.2387 

164 28 0.20 0.65 0.15 Euclidean Max S1 0.2470 

165 28 0.20 0.65 0.15 Euclidean Sum S1 0.2369 

166 28 0.20 0.65 0.15 Manhattan Vector S1 0.2758 

167 28 0.20 0.65 0.15 Manhattan Max S1 0.2857 

168 28 0.20 0.65 0.15 Manhattan Sum S1 0.2735 

169 29 0.20 0.70 0.10 Euclidean Vector S1 0.2201 

170 29 0.20 0.70 0.10 Euclidean Max S1 0.2274 

171 29 0.20 0.70 0.10 Euclidean Sum S1 0.2186 

172 29 0.20 0.70 0.10 Manhattan Vector S1 0.2476 

173 29 0.20 0.70 0.10 Manhattan Max S1 0.2564 

174 29 0.20 0.70 0.10 Manhattan Sum S1 0.2456 

175 30 0.20 0.75 0.05 Euclidean Vector S1 0.2053 

176 30 0.20 0.75 0.05 Euclidean Max S1 0.2118 

177 30 0.20 0.75 0.05 Euclidean Sum S1 0.2040 

178 30 0.20 0.75 0.05 Manhattan Vector S1 0.2203 

179 30 0.20 0.75 0.05 Manhattan Max S1 0.2278 

180 30 0.20 0.75 0.05 Manhattan Sum S1 0.2187 

181 31 0.25 0.50 0.25 Euclidean Vector S1 0.3457 

182 31 0.25 0.50 0.25 Euclidean Max S1 0.3568 

183 31 0.25 0.50 0.25 Euclidean Sum S1 0.3433 

184 31 0.25 0.50 0.25 Manhattan Vector S1 0.3887 

185 31 0.25 0.50 0.25 Manhattan Max S1 0.4000 

186 31 0.25 0.50 0.25 Manhattan Sum S1 0.3861 

187 32 0.25 0.55 0.20 Euclidean Vector S1 0.3178 

188 32 0.25 0.55 0.20 Euclidean Max S1 0.3278 

189 32 0.25 0.55 0.20 Euclidean Sum S1 0.3156 

190 32 0.25 0.55 0.20 Manhattan Vector S1 0.3575 

191 32 0.25 0.55 0.20 Manhattan Max S1 0.3684 

192 32 0.25 0.55 0.20 Manhattan Sum S1 0.3550 

193 33 0.25 0.60 0.15 Euclidean Vector S1 0.2937 

194 33 0.25 0.60 0.15 Euclidean Max S1 0.3027 

195 33 0.25 0.60 0.15 Euclidean Sum S1 0.2919 

196 33 0.25 0.60 0.15 Manhattan Vector S1 0.3274 

197 33 0.25 0.60 0.15 Manhattan Max S1 0.3377 
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𝑤1 𝑤2 𝑤3 
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ation 
𝑆𝑖 𝐶𝐶𝑖 

198 33 0.25 0.60 0.15 Manhattan Sum S1 0.3251 

199 34 0.25 0.65 0.10 Euclidean Vector S1 0.2734 

200 34 0.25 0.65 0.10 Euclidean Max S1 0.2816 

201 34 0.25 0.65 0.10 Euclidean Sum S1 0.2718 

202 34 0.25 0.65 0.10 Manhattan Vector S1 0.2982 

203 34 0.25 0.65 0.10 Manhattan Max S1 0.3077 

204 34 0.25 0.65 0.10 Manhattan Sum S1 0.2962 

205 35 0.25 0.70 0.05 Euclidean Vector S1 0.2565 

206 35 0.25 0.70 0.05 Euclidean Max S1 0.2641 

207 35 0.25 0.70 0.05 Euclidean Sum S1 0.2550 

208 35 0.25 0.70 0.05 Manhattan Vector S1 0.2701 

209 35 0.25 0.70 0.05 Manhattan Max S1 0.2785 

210 35 0.25 0.70 0.05 Manhattan Sum S1 0.2683 

211 36 0.30 0.50 0.20 Euclidean Vector S1 0.3760 

212 36 0.30 0.50 0.20 Euclidean Max S1 0.3862 

213 36 0.30 0.50 0.20 Euclidean Sum S1 0.3739 

214 36 0.30 0.50 0.20 Manhattan Vector S1 0.4102 

215 36 0.30 0.50 0.20 Manhattan Max S1 0.4211 

216 36 0.30 0.50 0.20 Manhattan Sum S1 0.4078 

217 37 0.30 0.55 0.15 Euclidean Vector S1 0.3498 

218 37 0.30 0.55 0.15 Euclidean Max S1 0.3594 

219 37 0.30 0.55 0.15 Euclidean Sum S1 0.3479 

220 37 0.30 0.55 0.15 Manhattan Vector S1 0.3791 

221 37 0.30 0.55 0.15 Manhattan Max S1 0.3896 

222 37 0.30 0.55 0.15 Manhattan Sum S1 0.3769 

223 38 0.30 0.60 0.10 Euclidean Vector S1 0.3273 

224 38 0.30 0.60 0.10 Euclidean Max S1 0.3362 

225 38 0.30 0.60 0.10 Euclidean Sum S1 0.3255 

226 38 0.30 0.60 0.10 Manhattan Vector S1 0.3491 

227 38 0.30 0.60 0.10 Manhattan Max S1 0.3590 

228 38 0.30 0.60 0.10 Manhattan Sum S1 0.3470 

229 39 0.30 0.65 0.05 Euclidean Vector S1 0.3081 

230 39 0.30 0.65 0.05 Euclidean Max S1 0.3165 

231 39 0.30 0.65 0.05 Euclidean Sum S1 0.3064 

232 39 0.30 0.65 0.05 Manhattan Vector S1 0.3200 

233 39 0.30 0.65 0.05 Manhattan Max S1 0.3291 

234 39 0.30 0.65 0.05 Manhattan Sum S1 0.3182 

235 40 0.35 0.50 0.15 Euclidean Vector S1 0.4067 

236 40 0.35 0.50 0.15 Euclidean Max S1 0.4165 

237 40 0.35 0.50 0.15 Euclidean Sum S1 0.4047 
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238 40 0.35 0.50 0.15 Manhattan Vector S1 0.4311 

239 40 0.35 0.50 0.15 Manhattan Max S1 0.4416 

240 40 0.35 0.50 0.15 Manhattan Sum S1 0.4289 

241 41 0.35 0.55 0.10 Euclidean Vector S1 0.3816 

242 41 0.35 0.55 0.10 Euclidean Max S1 0.3910 

243 41 0.35 0.55 0.10 Euclidean Sum S1 0.3797 

244 41 0.35 0.55 0.10 Manhattan Vector S1 0.4002 

245 41 0.35 0.55 0.10 Manhattan Max S1 0.4103 

246 41 0.35 0.55 0.10 Manhattan Sum S1 0.3980 

247 42 0.35 0.60 0.05 Euclidean Vector S1 0.3599 

248 42 0.35 0.60 0.05 Euclidean Max S1 0.3690 

249 42 0.35 0.60 0.05 Euclidean Sum S1 0.3581 

250 42 0.35 0.60 0.05 Manhattan Vector S1 0.3702 

251 42 0.35 0.60 0.05 Manhattan Max S1 0.3797 

252 42 0.35 0.60 0.05 Manhattan Sum S1 0.3683 

253 43 0.40 0.50 0.10 Euclidean Vector S1 0.4363 

254 43 0.40 0.50 0.10 Euclidean Max S1 0.4461 

255 43 0.40 0.50 0.10 Euclidean Sum S1 0.4344 

256 43 0.40 0.50 0.10 Manhattan Vector S1 0.4514 

257 43 0.40 0.50 0.10 Manhattan Max S1 0.4615 

258 43 0.40 0.50 0.10 Manhattan Sum S1 0.4493 

259 44 0.40 0.55 0.05 Euclidean Vector S1 0.4120 

260 44 0.40 0.55 0.05 Euclidean Max S1 0.4215 

261 44 0.40 0.55 0.05 Euclidean Sum S1 0.4101 

262 44 0.40 0.55 0.05 Manhattan Vector S1 0.4206 

263 44 0.40 0.55 0.05 Manhattan Max S1 0.4304 

264 44 0.40 0.55 0.05 Manhattan Sum S1 0.4186 

265 45 0.45 0.50 0.05 Euclidean Vector S1 0.4643 

266 45 0.45 0.50 0.05 Euclidean Max S1 0.4740 

267 45 0.45 0.50 0.05 Euclidean Sum S1 0.4624 

268 45 0.45 0.50 0.05 Manhattan Vector S1 0.4712 

269 45 0.45 0.50 0.05 Manhattan Max S1 0.4810 

270 45 0.45 0.50 0.05 Manhattan Sum S1 0.4691 
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1 1 0.05 0.50 0.45 Euclidean Vector S2 0.9531 

2 1 0.05 0.50 0.45 Euclidean Max S2 0.9526 

3 1 0.05 0.50 0.45 Euclidean Sum S2 0.9531 

4 1 0.05 0.50 0.45 Manhattan Vector S2 0.9662 

5 1 0.05 0.50 0.45 Manhattan Max S2 0.9662 

6 1 0.05 0.50 0.45 Manhattan Sum S2 0.9662 

7 2 0.05 0.55 0.40 Euclidean Vector S2 0.9551 

8 2 0.05 0.55 0.40 Euclidean Max S2 0.9543 

9 2 0.05 0.55 0.40 Euclidean Sum S2 0.9552 

10 2 0.05 0.55 0.40 Manhattan Vector S2 0.9668 

11 2 0.05 0.55 0.40 Manhattan Max S2 0.9667 

12 2 0.05 0.55 0.40 Manhattan Sum S2 0.9668 

13 3 0.05 0.60 0.35 Euclidean Vector S2 0.9572 

14 3 0.05 0.60 0.35 Euclidean Max S2 0.9562 

15 3 0.05 0.60 0.35 Euclidean Sum S2 0.9574 

16 3 0.05 0.60 0.35 Manhattan Vector S2 0.9674 

17 3 0.05 0.60 0.35 Manhattan Max S2 0.9671 

18 3 0.05 0.60 0.35 Manhattan Sum S2 0.9675 

19 4 0.05 0.65 0.30 Euclidean Vector S2 0.9594 

20 4 0.05 0.65 0.30 Euclidean Max S2 0.9582 

21 4 0.05 0.65 0.30 Euclidean Sum S2 0.9596 

22 4 0.05 0.65 0.30 Manhattan Vector S2 0.9680 

23 4 0.05 0.65 0.30 Manhattan Max S2 0.9676 

24 4 0.05 0.65 0.30 Manhattan Sum S2 0.9681 

25 5 0.05 0.70 0.25 Euclidean Vector S2 0.9615 

26 5 0.05 0.70 0.25 Euclidean Max S2 0.9603 

27 5 0.05 0.70 0.25 Euclidean Sum S2 0.9617 

28 5 0.05 0.70 0.25 Manhattan Vector S2 0.9686 

29 5 0.05 0.70 0.25 Manhattan Max S2 0.9680 

30 5 0.05 0.70 0.25 Manhattan Sum S2 0.9687 

31 6 0.05 0.75 0.20 Euclidean Vector S2 0.9635 

32 6 0.05 0.75 0.20 Euclidean Max S2 0.9623 

33 6 0.05 0.75 0.20 Euclidean Sum S2 0.9638 

34 6 0.05 0.75 0.20 Manhattan Vector S2 0.9691 

35 6 0.05 0.75 0.20 Manhattan Max S2 0.9684 

36 6 0.05 0.75 0.20 Manhattan Sum S2 0.9692 

37 7 0.05 0.80 0.15 Euclidean Vector S2 0.9655 

38 7 0.05 0.80 0.15 Euclidean Max S2 0.9642 

Ref. code: 25686622040100WQY
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39 7 0.05 0.80 0.15 Euclidean Sum S2 0.9657 

40 7 0.05 0.80 0.15 Manhattan Vector S2 0.9696 

41 7 0.05 0.80 0.15 Manhattan Max S2 0.9688 

42 7 0.05 0.80 0.15 Manhattan Sum S2 0.9698 

43 8 0.05 0.85 0.10 Euclidean Vector S2 0.9673 

44 8 0.05 0.85 0.10 Euclidean Max S2 0.9660 

45 8 0.05 0.85 0.10 Euclidean Sum S2 0.9675 

46 8 0.05 0.85 0.10 Manhattan Vector S2 0.9701 

47 8 0.05 0.85 0.10 Manhattan Max S2 0.9692 

48 8 0.05 0.85 0.10 Manhattan Sum S2 0.9703 

49 9 0.05 0.90 0.05 Euclidean Vector S2 0.9690 

50 9 0.05 0.90 0.05 Euclidean Max S2 0.9678 

51 9 0.05 0.90 0.05 Euclidean Sum S2 0.9692 

52 9 0.05 0.90 0.05 Manhattan Vector S2 0.9706 

53 9 0.05 0.90 0.05 Manhattan Max S2 0.9696 

54 9 0.05 0.90 0.05 Manhattan Sum S2 0.9708 

55 10 0.10 0.50 0.40 Euclidean Vector S2 0.9082 

56 10 0.10 0.50 0.40 Euclidean Max S2 0.9069 

57 10 0.10 0.50 0.40 Euclidean Sum S2 0.9083 

58 10 0.10 0.50 0.40 Manhattan Vector S2 0.9336 

59 10 0.10 0.50 0.40 Manhattan Max S2 0.9333 

60 10 0.10 0.50 0.40 Manhattan Sum S2 0.9335 

61 11 0.10 0.55 0.35 Euclidean Vector S2 0.9123 

62 11 0.10 0.55 0.35 Euclidean Max S2 0.9105 

63 11 0.10 0.55 0.35 Euclidean Sum S2 0.9126 

64 11 0.10 0.55 0.35 Manhattan Vector S2 0.9347 

65 11 0.10 0.55 0.35 Manhattan Max S2 0.9342 

66 11 0.10 0.55 0.35 Manhattan Sum S2 0.9347 

67 12 0.10 0.60 0.30 Euclidean Vector S2 0.9167 

68 12 0.10 0.60 0.30 Euclidean Max S2 0.9145 

69 12 0.10 0.60 0.30 Euclidean Sum S2 0.9171 

70 12 0.10 0.60 0.30 Manhattan Vector S2 0.9359 

71 12 0.10 0.60 0.30 Manhattan Max S2 0.9351 

72 12 0.10 0.60 0.30 Manhattan Sum S2 0.9360 

73 13 0.10 0.65 0.25 Euclidean Vector S2 0.9210 

74 13 0.10 0.65 0.25 Euclidean Max S2 0.9187 

75 13 0.10 0.65 0.25 Euclidean Sum S2 0.9215 

76 13 0.10 0.65 0.25 Manhattan Vector S2 0.9370 

77 13 0.10 0.65 0.25 Manhattan Max S2 0.9360 

Ref. code: 25686622040100WQY
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78 13 0.10 0.65 0.25 Manhattan Sum S2 0.9371 

79 14 0.10 0.70 0.20 Euclidean Vector S2 0.9252 

80 14 0.10 0.70 0.20 Euclidean Max S2 0.9228 

81 14 0.10 0.70 0.20 Euclidean Sum S2 0.9257 

82 14 0.10 0.70 0.20 Manhattan Vector S2 0.9381 

83 14 0.10 0.70 0.20 Manhattan Max S2 0.9368 

84 14 0.10 0.70 0.20 Manhattan Sum S2 0.9383 

85 15 0.10 0.75 0.15 Euclidean Vector S2 0.9292 

86 15 0.10 0.75 0.15 Euclidean Max S2 0.9268 

87 15 0.10 0.75 0.15 Euclidean Sum S2 0.9297 

88 15 0.10 0.75 0.15 Manhattan Vector S2 0.9391 

89 15 0.10 0.75 0.15 Manhattan Max S2 0.9377 

90 15 0.10 0.75 0.15 Manhattan Sum S2 0.9394 

91 16 0.10 0.80 0.10 Euclidean Vector S2 0.9330 

92 16 0.10 0.80 0.10 Euclidean Max S2 0.9306 

93 16 0.10 0.80 0.10 Euclidean Sum S2 0.9335 

94 16 0.10 0.80 0.10 Manhattan Vector S2 0.9401 

95 16 0.10 0.80 0.10 Manhattan Max S2 0.9385 

96 16 0.10 0.80 0.10 Manhattan Sum S2 0.9405 

97 17 0.10 0.85 0.05 Euclidean Vector S2 0.9365 

98 17 0.10 0.85 0.05 Euclidean Max S2 0.9342 

99 17 0.10 0.85 0.05 Euclidean Sum S2 0.9370 

100 17 0.10 0.85 0.05 Manhattan Vector S2 0.9411 

101 17 0.10 0.85 0.05 Manhattan Max S2 0.9392 

102 17 0.10 0.85 0.05 Manhattan Sum S2 0.9415 

103 18 0.15 0.50 0.35 Euclidean Vector S2 0.8655 

104 18 0.15 0.50 0.35 Euclidean Max S2 0.8632 

105 18 0.15 0.50 0.35 Euclidean Sum S2 0.8658 

106 18 0.15 0.50 0.35 Manhattan Vector S2 0.9019 

107 18 0.15 0.50 0.35 Manhattan Max S2 0.9014 

108 18 0.15 0.50 0.35 Manhattan Sum S2 0.9019 

109 19 0.15 0.55 0.30 Euclidean Vector S2 0.8720 

110 19 0.15 0.55 0.30 Euclidean Max S2 0.8690 

111 19 0.15 0.55 0.30 Euclidean Sum S2 0.8725 

112 19 0.15 0.55 0.30 Manhattan Vector S2 0.9037 

113 19 0.15 0.55 0.30 Manhattan Max S2 0.9027 

114 19 0.15 0.55 0.30 Manhattan Sum S2 0.9037 

115 20 0.15 0.60 0.25 Euclidean Vector S2 0.8786 

116 20 0.15 0.60 0.25 Euclidean Max S2 0.8753 

Ref. code: 25686622040100WQY
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117 20 0.15 0.60 0.25 Euclidean Sum S2 0.8792 

118 20 0.15 0.60 0.25 Manhattan Vector S2 0.9053 

119 20 0.15 0.60 0.25 Manhattan Max S2 0.9040 

120 20 0.15 0.60 0.25 Manhattan Sum S2 0.9055 

121 21 0.15 0.65 0.20 Euclidean Vector S2 0.8851 

122 21 0.15 0.65 0.20 Euclidean Max S2 0.8815 

123 21 0.15 0.65 0.20 Euclidean Sum S2 0.8857 

124 21 0.15 0.65 0.20 Manhattan Vector S2 0.9070 

125 21 0.15 0.65 0.20 Manhattan Max S2 0.9053 

126 21 0.15 0.65 0.20 Manhattan Sum S2 0.9072 

127 22 0.15 0.70 0.15 Euclidean Vector S2 0.8913 

128 22 0.15 0.70 0.15 Euclidean Max S2 0.8877 

129 22 0.15 0.70 0.15 Euclidean Sum S2 0.8920 

130 22 0.15 0.70 0.15 Manhattan Vector S2 0.9085 

131 22 0.15 0.70 0.15 Manhattan Max S2 0.9065 

132 22 0.15 0.70 0.15 Manhattan Sum S2 0.9089 

133 23 0.15 0.75 0.10 Euclidean Vector S2 0.8972 

134 23 0.15 0.75 0.10 Euclidean Max S2 0.8936 

135 23 0.15 0.75 0.10 Euclidean Sum S2 0.8979 

136 23 0.15 0.75 0.10 Manhattan Vector S2 0.9100 

137 23 0.15 0.75 0.10 Manhattan Max S2 0.9077 

138 23 0.15 0.75 0.10 Manhattan Sum S2 0.9105 

139 24 0.15 0.80 0.05 Euclidean Vector S2 0.9027 

140 24 0.15 0.80 0.05 Euclidean Max S2 0.8992 

141 24 0.15 0.80 0.05 Euclidean Sum S2 0.9033 

142 24 0.15 0.80 0.05 Manhattan Vector S2 0.9115 

143 24 0.15 0.80 0.05 Manhattan Max S2 0.9089 

144 24 0.15 0.80 0.05 Manhattan Sum S2 0.9120 

145 25 0.20 0.50 0.30 Euclidean Vector S2 0.8254 

146 25 0.20 0.50 0.30 Euclidean Max S2 0.8220 

147 25 0.20 0.50 0.30 Euclidean Sum S2 0.8259 

148 25 0.20 0.50 0.30 Manhattan Vector S2 0.8713 

149 25 0.20 0.50 0.30 Manhattan Max S2 0.8703 

150 25 0.20 0.50 0.30 Manhattan Sum S2 0.8713 

151 26 0.20 0.55 0.25 Euclidean Vector S2 0.8342 

152 26 0.20 0.55 0.25 Euclidean Max S2 0.8302 

153 26 0.20 0.55 0.25 Euclidean Sum S2 0.8350 

154 26 0.20 0.55 0.25 Manhattan Vector S2 0.8735 

155 26 0.20 0.55 0.25 Manhattan Max S2 0.8720 

Ref. code: 25686622040100WQY
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156 26 0.20 0.55 0.25 Manhattan Sum S2 0.8737 

157 27 0.20 0.60 0.20 Euclidean Vector S2 0.8431 

158 27 0.20 0.60 0.20 Euclidean Max S2 0.8386 

159 27 0.20 0.60 0.20 Euclidean Sum S2 0.8439 

160 27 0.20 0.60 0.20 Manhattan Vector S2 0.8757 

161 27 0.20 0.60 0.20 Manhattan Max S2 0.8737 

162 27 0.20 0.60 0.20 Manhattan Sum S2 0.8760 

163 28 0.20 0.65 0.15 Euclidean Vector S2 0.8516 

164 28 0.20 0.65 0.15 Euclidean Max S2 0.8470 

165 28 0.20 0.65 0.15 Euclidean Sum S2 0.8525 

166 28 0.20 0.65 0.15 Manhattan Vector S2 0.8778 

167 28 0.20 0.65 0.15 Manhattan Max S2 0.8753 

168 28 0.20 0.65 0.15 Manhattan Sum S2 0.8782 

169 29 0.20 0.70 0.10 Euclidean Vector S2 0.8597 

170 29 0.20 0.70 0.10 Euclidean Max S2 0.8552 

171 29 0.20 0.70 0.10 Euclidean Sum S2 0.8606 

172 29 0.20 0.70 0.10 Manhattan Vector S2 0.8798 

173 29 0.20 0.70 0.10 Manhattan Max S2 0.8769 

174 29 0.20 0.70 0.10 Manhattan Sum S2 0.8803 

175 30 0.20 0.75 0.05 Euclidean Vector S2 0.8673 

176 30 0.20 0.75 0.05 Euclidean Max S2 0.8629 

177 30 0.20 0.75 0.05 Euclidean Sum S2 0.8682 

178 30 0.20 0.75 0.05 Manhattan Vector S2 0.8818 

179 30 0.20 0.75 0.05 Manhattan Max S2 0.8785 

180 30 0.20 0.75 0.05 Manhattan Sum S2 0.8824 

181 31 0.25 0.50 0.25 Euclidean Vector S2 0.7882 

182 31 0.25 0.50 0.25 Euclidean Max S2 0.7836 

183 31 0.25 0.50 0.25 Euclidean Sum S2 0.7890 

184 31 0.25 0.50 0.25 Manhattan Vector S2 0.8416 

185 31 0.25 0.50 0.25 Manhattan Max S2 0.8400 

186 31 0.25 0.50 0.25 Manhattan Sum S2 0.8417 

187 32 0.25 0.55 0.20 Euclidean Vector S2 0.7993 

188 32 0.25 0.55 0.20 Euclidean Max S2 0.7942 

189 32 0.25 0.55 0.20 Euclidean Sum S2 0.8003 

190 32 0.25 0.55 0.20 Manhattan Vector S2 0.8443 

191 32 0.25 0.55 0.20 Manhattan Max S2 0.8421 

192 32 0.25 0.55 0.20 Manhattan Sum S2 0.8446 

193 33 0.25 0.60 0.15 Euclidean Vector S2 0.8103 

194 33 0.25 0.60 0.15 Euclidean Max S2 0.8048 

Ref. code: 25686622040100WQY
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195 33 0.25 0.60 0.15 Euclidean Sum S2 0.8113 

196 33 0.25 0.60 0.15 Manhattan Vector S2 0.8469 

197 33 0.25 0.60 0.15 Manhattan Max S2 0.8442 

198 33 0.25 0.60 0.15 Manhattan Sum S2 0.8474 

199 34 0.25 0.65 0.10 Euclidean Vector S2 0.8207 

200 34 0.25 0.65 0.10 Euclidean Max S2 0.8153 

201 34 0.25 0.65 0.10 Euclidean Sum S2 0.8218 

202 34 0.25 0.65 0.10 Manhattan Vector S2 0.8495 

203 34 0.25 0.65 0.10 Manhattan Max S2 0.8462 

204 34 0.25 0.65 0.10 Manhattan Sum S2 0.8501 

205 35 0.25 0.70 0.05 Euclidean Vector S2 0.8306 

206 35 0.25 0.70 0.05 Euclidean Max S2 0.8252 

207 35 0.25 0.70 0.05 Euclidean Sum S2 0.8316 

208 35 0.25 0.70 0.05 Manhattan Vector S2 0.8519 

209 35 0.25 0.70 0.05 Manhattan Max S2 0.8481 

210 35 0.25 0.70 0.05 Manhattan Sum S2 0.8527 

211 36 0.30 0.50 0.20 Euclidean Vector S2 0.7541 

212 36 0.30 0.50 0.20 Euclidean Max S2 0.7485 

213 36 0.30 0.50 0.20 Euclidean Sum S2 0.7551 

214 36 0.30 0.50 0.20 Manhattan Vector S2 0.8128 

215 36 0.30 0.50 0.20 Manhattan Max S2 0.8105 

216 36 0.30 0.50 0.20 Manhattan Sum S2 0.8130 

217 37 0.30 0.55 0.15 Euclidean Vector S2 0.7674 

218 37 0.30 0.55 0.15 Euclidean Max S2 0.7613 

219 37 0.30 0.55 0.15 Euclidean Sum S2 0.7686 

220 37 0.30 0.55 0.15 Manhattan Vector S2 0.8159 

221 37 0.30 0.55 0.15 Manhattan Max S2 0.8130 

222 37 0.30 0.55 0.15 Manhattan Sum S2 0.8164 

223 38 0.30 0.60 0.10 Euclidean Vector S2 0.7803 

224 38 0.30 0.60 0.10 Euclidean Max S2 0.7740 

225 38 0.30 0.60 0.10 Euclidean Sum S2 0.7815 

226 38 0.30 0.60 0.10 Manhattan Vector S2 0.8190 

227 38 0.30 0.60 0.10 Manhattan Max S2 0.8154 

228 38 0.30 0.60 0.10 Manhattan Sum S2 0.8196 

229 39 0.30 0.65 0.05 Euclidean Vector S2 0.7924 

230 39 0.30 0.65 0.05 Euclidean Max S2 0.7862 

231 39 0.30 0.65 0.05 Euclidean Sum S2 0.7937 

232 39 0.30 0.65 0.05 Manhattan Vector S2 0.8220 

233 39 0.30 0.65 0.05 Manhattan Max S2 0.8177 

Ref. code: 25686622040100WQY
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234 39 0.30 0.65 0.05 Manhattan Sum S2 0.8228 

235 40 0.35 0.50 0.15 Euclidean Vector S2 0.7232 

236 40 0.35 0.50 0.15 Euclidean Max S2 0.7167 

237 40 0.35 0.50 0.15 Euclidean Sum S2 0.7245 

238 40 0.35 0.50 0.15 Manhattan Vector S2 0.7848 

239 40 0.35 0.50 0.15 Manhattan Max S2 0.7818 

240 40 0.35 0.50 0.15 Manhattan Sum S2 0.7853 

241 41 0.35 0.55 0.10 Euclidean Vector S2 0.7384 

242 41 0.35 0.55 0.10 Euclidean Max S2 0.7316 

243 41 0.35 0.55 0.10 Euclidean Sum S2 0.7398 

244 41 0.35 0.55 0.10 Manhattan Vector S2 0.7884 

245 41 0.35 0.55 0.10 Manhattan Max S2 0.7846 

246 41 0.35 0.55 0.10 Manhattan Sum S2 0.7891 

247 42 0.35 0.60 0.05 Euclidean Vector S2 0.7530 

248 42 0.35 0.60 0.05 Euclidean Max S2 0.7461 

249 42 0.35 0.60 0.05 Euclidean Sum S2 0.7544 

250 42 0.35 0.60 0.05 Manhattan Vector S2 0.7919 

251 42 0.35 0.60 0.05 Manhattan Max S2 0.7873 

252 42 0.35 0.60 0.05 Manhattan Sum S2 0.7928 

253 43 0.40 0.50 0.10 Euclidean Vector S2 0.6956 

254 43 0.40 0.50 0.10 Euclidean Max S2 0.6884 

255 43 0.40 0.50 0.10 Euclidean Sum S2 0.6970 

256 43 0.40 0.50 0.10 Manhattan Vector S2 0.7577 

257 43 0.40 0.50 0.10 Manhattan Max S2 0.7538 

258 43 0.40 0.50 0.10 Manhattan Sum S2 0.7584 

259 44 0.40 0.55 0.05 Euclidean Vector S2 0.7125 

260 44 0.40 0.55 0.05 Euclidean Max S2 0.7052 

261 44 0.40 0.55 0.05 Euclidean Sum S2 0.7139 

262 44 0.40 0.55 0.05 Manhattan Vector S2 0.7617 

263 44 0.40 0.55 0.05 Manhattan Max S2 0.7570 

264 44 0.40 0.55 0.05 Manhattan Sum S2 0.7626 

265 45 0.45 0.50 0.05 Euclidean Vector S2 0.6712 

266 45 0.45 0.50 0.05 Euclidean Max S2 0.6636 

267 45 0.45 0.50 0.05 Euclidean Sum S2 0.6727 

268 45 0.45 0.50 0.05 Manhattan Vector S2 0.7314 

269 45 0.45 0.50 0.05 Manhattan Max S2 0.7266 

270 45 0.45 0.50 0.05 Manhattan Sum S1 0.7323 

 

 

Ref. code: 25686622040100WQY
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1 1 0.05 0.50 0.45 Euclidean Vector S3 0.5510 

2 1 0.05 0.50 0.45 Euclidean Max S3 0.5294 

3 1 0.05 0.50 0.45 Euclidean Sum S3 0.5568 

4 1 0.05 0.50 0.45 Manhattan Vector S3 0.4681 

5 1 0.05 0.50 0.45 Manhattan Max S3 0.4507 

6 1 0.05 0.50 0.45 Manhattan Sum S3 0.4727 

7 2 0.05 0.55 0.40 Euclidean Vector S3 0.5965 

8 2 0.05 0.55 0.40 Euclidean Max S3 0.5764 

9 2 0.05 0.55 0.40 Euclidean Sum S3 0.6018 

10 2 0.05 0.55 0.40 Manhattan Vector S3 0.5055 

11 2 0.05 0.55 0.40 Manhattan Max S3 0.4889 

12 2 0.05 0.55 0.40 Manhattan Sum S3 0.5099 

13 3 0.05 0.60 0.35 Euclidean Vector S3 0.6390 

14 3 0.05 0.60 0.35 Euclidean Max S3 0.6210 

15 3 0.05 0.60 0.35 Euclidean Sum S3 0.6438 

16 3 0.05 0.60 0.35 Manhattan Vector S3 0.5415 

17 3 0.05 0.60 0.35 Manhattan Max S3 0.5260 

18 3 0.05 0.60 0.35 Manhattan Sum S3 0.5456 

19 4 0.05 0.65 0.30 Euclidean Vector S3 0.6781 

20 4 0.05 0.65 0.30 Euclidean Max S3 0.6627 

21 4 0.05 0.65 0.30 Euclidean Sum S3 0.6821 

22 4 0.05 0.65 0.30 Manhattan Vector S3 0.5763 

23 4 0.05 0.65 0.30 Manhattan Max S3 0.5622 

24 4 0.05 0.65 0.30 Manhattan Sum S3 0.5799 

25 5 0.05 0.70 0.25 Euclidean Vector S3 0.7128 

26 5 0.05 0.70 0.25 Euclidean Max S3 0.7006 

27 5 0.05 0.70 0.25 Euclidean Sum S3 0.7159 

28 5 0.05 0.70 0.25 Manhattan Vector S3 0.6098 

29 5 0.05 0.70 0.25 Manhattan Max S3 0.5973 

30 5 0.05 0.70 0.25 Manhattan Sum S3 0.6130 

31 6 0.05 0.75 0.20 Euclidean Vector S3 0.7424 

32 6 0.05 0.75 0.20 Euclidean Max S3 0.7335 

33 6 0.05 0.75 0.20 Euclidean Sum S3 0.7446 

34 6 0.05 0.75 0.20 Manhattan Vector S3 0.6422 

35 6 0.05 0.75 0.20 Manhattan Max S3 0.6316 

36 6 0.05 0.75 0.20 Manhattan Sum S3 0.6449 

37 7 0.05 0.80 0.15 Euclidean Vector S3 0.7657 

38 7 0.05 0.80 0.15 Euclidean Max S3 0.7602 

39 7 0.05 0.80 0.15 Euclidean Sum S3 0.7671 

Ref. code: 25686622040100WQY
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40 7 0.05 0.80 0.15 Manhattan Vector S3 0.6735 

41 7 0.05 0.80 0.15 Manhattan Max S3 0.6649 

42 7 0.05 0.80 0.15 Manhattan Sum S3 0.6757 

43 8 0.05 0.85 0.10 Euclidean Vector S3 0.7822 

44 8 0.05 0.85 0.10 Euclidean Max S3 0.7794 

45 8 0.05 0.85 0.10 Euclidean Sum S3 0.7829 

46 8 0.05 0.85 0.10 Manhattan Vector S3 0.7038 

47 8 0.05 0.85 0.10 Manhattan Max S3 0.6974 

48 8 0.05 0.85 0.10 Manhattan Sum S3 0.7054 

49 9 0.05 0.90 0.05 Euclidean Vector S3 0.7917 

50 9 0.05 0.90 0.05 Euclidean Max S3 0.7907 

51 9 0.05 0.90 0.05 Euclidean Sum S3 0.7919 

52 9 0.05 0.90 0.05 Manhattan Vector S3 0.7331 

53 9 0.05 0.90 0.05 Manhattan Max S3 0.7291 

54 9 0.05 0.90 0.05 Manhattan Sum S3 0.7340 

55 10 0.10 0.50 0.40 Euclidean Vector S3 0.5668 

56 10 0.10 0.50 0.40 Euclidean Max S3 0.5467 

57 10 0.10 0.50 0.40 Euclidean Sum S3 0.5721 

58 10 0.10 0.50 0.40 Manhattan Vector S3 0.4605 

59 10 0.10 0.50 0.40 Manhattan Max S3 0.4444 

60 10 0.10 0.50 0.40 Manhattan Sum S3 0.4647 

61 11 0.10 0.55 0.35 Euclidean Vector S3 0.6115 

62 11 0.10 0.55 0.35 Euclidean Max S3 0.5933 

63 11 0.10 0.55 0.35 Euclidean Sum S3 0.6162 

64 11 0.10 0.55 0.35 Manhattan Vector S3 0.4974 

65 11 0.10 0.55 0.35 Manhattan Max S3 0.4822 

66 11 0.10 0.55 0.35 Manhattan Sum S3 0.5014 

67 12 0.10 0.60 0.30 Euclidean Vector S3 0.6524 

68 12 0.10 0.60 0.30 Euclidean Max S3 0.6367 

69 12 0.10 0.60 0.30 Euclidean Sum S3 0.6565 

70 12 0.10 0.60 0.30 Manhattan Vector S3 0.5331 

71 12 0.10 0.60 0.30 Manhattan Max S3 0.5189 

72 12 0.10 0.60 0.30 Manhattan Sum S3 0.5367 

73 13 0.10 0.65 0.25 Euclidean Vector S3 0.6889 

74 13 0.10 0.65 0.25 Euclidean Max S3 0.6761 

75 13 0.10 0.65 0.25 Euclidean Sum S3 0.6921 

76 13 0.10 0.65 0.25 Manhattan Vector S3 0.5674 

77 13 0.10 0.65 0.25 Manhattan Max S3 0.5547 

78 13 0.10 0.65 0.25 Manhattan Sum S3 0.5706 

79 14 0.10 0.70 0.20 Euclidean Vector S3 0.7201 

Ref. code: 25686622040100WQY
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80 14 0.10 0.70 0.20 Euclidean Max S3 0.7104 

81 14 0.10 0.70 0.20 Euclidean Sum S3 0.7224 

82 14 0.10 0.70 0.20 Manhattan Vector S3 0.6006 

83 14 0.10 0.70 0.20 Manhattan Max S3 0.5895 

84 14 0.10 0.70 0.20 Manhattan Sum S3 0.6034 

85 15 0.10 0.75 0.15 Euclidean Vector S3 0.7450 

86 15 0.10 0.75 0.15 Euclidean Max S3 0.7385 

87 15 0.10 0.75 0.15 Euclidean Sum S3 0.7465 

88 15 0.10 0.75 0.15 Manhattan Vector S3 0.6327 

89 15 0.10 0.75 0.15 Manhattan Max S3 0.6234 

90 15 0.10 0.75 0.15 Manhattan Sum S3 0.6350 

91 16 0.10 0.80 0.10 Euclidean Vector S3 0.7631 

92 16 0.10 0.80 0.10 Euclidean Max S3 0.7592 

93 16 0.10 0.80 0.10 Euclidean Sum S3 0.7639 

94 16 0.10 0.80 0.10 Manhattan Vector S3 0.6637 

95 16 0.10 0.80 0.10 Manhattan Max S3 0.6564 

96 16 0.10 0.80 0.10 Manhattan Sum S3 0.6654 

97 17 0.10 0.85 0.05 Euclidean Vector S3 0.7742 

98 17 0.10 0.85 0.05 Euclidean Max S3 0.7721 

99 17 0.10 0.85 0.05 Euclidean Sum S3 0.7747 

100 17 0.10 0.85 0.05 Manhattan Vector S3 0.6937 

101 17 0.10 0.85 0.05 Manhattan Max S3 0.6886 

102 17 0.10 0.85 0.05 Manhattan Sum S3 0.6949 

103 18 0.15 0.50 0.35 Euclidean Vector S3 0.5747 

104 18 0.15 0.50 0.35 Euclidean Max S3 0.5568 

105 18 0.15 0.50 0.35 Euclidean Sum S3 0.5793 

106 18 0.15 0.50 0.35 Manhattan Vector S3 0.4532 

107 18 0.15 0.50 0.35 Manhattan Max S3 0.4384 

108 18 0.15 0.50 0.35 Manhattan Sum S3 0.4570 

109 19 0.15 0.55 0.30 Euclidean Vector S3 0.6169 

110 19 0.15 0.55 0.30 Euclidean Max S3 0.6011 

111 19 0.15 0.55 0.30 Euclidean Sum S3 0.6209 

112 19 0.15 0.55 0.30 Manhattan Vector S3 0.4897 

113 19 0.15 0.55 0.30 Manhattan Max S3 0.4757 

114 19 0.15 0.55 0.30 Manhattan Sum S3 0.4932 

115 20 0.15 0.60 0.25 Euclidean Vector S3 0.6545 

116 20 0.15 0.60 0.25 Euclidean Max S3 0.6413 

117 20 0.15 0.60 0.25 Euclidean Sum S3 0.6577 

118 20 0.15 0.60 0.25 Manhattan Vector S3 0.5249 

119 20 0.15 0.60 0.25 Manhattan Max S3 0.5120 
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120 20 0.15 0.60 0.25 Manhattan Sum S3 0.5281 

121 21 0.15 0.65 0.20 Euclidean Vector S3 0.6867 

122 21 0.15 0.65 0.20 Euclidean Max S3 0.6764 

123 21 0.15 0.65 0.20 Euclidean Sum S3 0.6892 

124 21 0.15 0.65 0.20 Manhattan Vector S3 0.5589 

125 21 0.15 0.65 0.20 Manhattan Max S3 0.5474 

126 21 0.15 0.65 0.20 Manhattan Sum S3 0.5617 

127 22 0.15 0.70 0.15 Euclidean Vector S3 0.7129 

128 22 0.15 0.70 0.15 Euclidean Max S3 0.7053 

129 22 0.15 0.70 0.15 Euclidean Sum S3 0.7147 

130 22 0.15 0.70 0.15 Manhattan Vector S3 0.5917 

131 22 0.15 0.70 0.15 Manhattan Max S3 0.5818 

132 22 0.15 0.70 0.15 Manhattan Sum S3 0.5941 

133 23 0.15 0.75 0.10 Euclidean Vector S3 0.7326 

134 23 0.15 0.75 0.10 Euclidean Max S3 0.7273 

135 23 0.15 0.75 0.10 Euclidean Sum S3 0.7338 

136 23 0.15 0.75 0.10 Manhattan Vector S3 0.6235 

137 23 0.15 0.75 0.10 Manhattan Max S3 0.6154 

138 23 0.15 0.75 0.10 Manhattan Sum S3 0.6253 

139 24 0.15 0.80 0.05 Euclidean Vector S3 0.7458 

140 24 0.15 0.80 0.05 Euclidean Max S3 0.7420 

141 24 0.15 0.80 0.05 Euclidean Sum S3 0.7466 

142 24 0.15 0.80 0.05 Manhattan Vector S3 0.6542 

143 24 0.15 0.80 0.05 Manhattan Max S3 0.6481 

144 24 0.15 0.80 0.05 Manhattan Sum S3 0.6555 

145 25 0.20 0.50 0.30 Euclidean Vector S3 0.5732 

146 25 0.20 0.50 0.30 Euclidean Max S3 0.5577 

147 25 0.20 0.50 0.30 Euclidean Sum S3 0.5769 

148 25 0.20 0.50 0.30 Manhattan Vector S3 0.4461 

149 25 0.20 0.50 0.30 Manhattan Max S3 0.4324 

150 25 0.20 0.50 0.30 Manhattan Sum S3 0.4495 

151 26 0.20 0.55 0.25 Euclidean Vector S3 0.6116 

152 26 0.20 0.55 0.25 Euclidean Max S3 0.5983 

153 26 0.20 0.55 0.25 Euclidean Sum S3 0.6147 

154 26 0.20 0.55 0.25 Manhattan Vector S3 0.4821 

155 26 0.20 0.55 0.25 Manhattan Max S3 0.4693 

156 26 0.20 0.55 0.25 Manhattan Sum S3 0.4853 

157 27 0.20 0.60 0.20 Euclidean Vector S3 0.6447 

158 27 0.20 0.60 0.20 Euclidean Max S3 0.6338 

159 27 0.20 0.60 0.20 Euclidean Sum S3 0.6472 
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160 27 0.20 0.60 0.20 Manhattan Vector S3 0.5169 

161 27 0.20 0.60 0.20 Manhattan Max S3 0.5053 

162 27 0.20 0.60 0.20 Manhattan Sum S3 0.5197 

163 28 0.20 0.65 0.15 Euclidean Vector S3 0.6721 

164 28 0.20 0.65 0.15 Euclidean Max S3 0.6635 

165 28 0.20 0.65 0.15 Euclidean Sum S3 0.6740 

166 28 0.20 0.65 0.15 Manhattan Vector S3 0.5505 

167 28 0.20 0.65 0.15 Manhattan Max S3 0.5403 

168 28 0.20 0.65 0.15 Manhattan Sum S3 0.5530 

169 29 0.20 0.70 0.10 Euclidean Vector S3 0.6935 

170 29 0.20 0.70 0.10 Euclidean Max S3 0.6868 

171 29 0.20 0.70 0.10 Euclidean Sum S3 0.6949 

172 29 0.20 0.70 0.10 Manhattan Vector S3 0.5830 

173 29 0.20 0.70 0.10 Manhattan Max S3 0.5744 

174 29 0.20 0.70 0.10 Manhattan Sum S3 0.5850 

175 30 0.20 0.75 0.05 Euclidean Vector S3 0.7090 

176 30 0.20 0.75 0.05 Euclidean Max S3 0.7036 

177 30 0.20 0.75 0.05 Euclidean Sum S3 0.7100 

178 30 0.20 0.75 0.05 Manhattan Vector S3 0.6145 

179 30 0.20 0.75 0.05 Manhattan Max S3 0.6076 

180 30 0.20 0.75 0.05 Manhattan Sum S3 0.6160 

181 31 0.25 0.50 0.25 Euclidean Vector S3 0.5625 

182 31 0.25 0.50 0.25 Euclidean Max S3 0.5494 

183 31 0.25 0.50 0.25 Euclidean Sum S3 0.5655 

184 31 0.25 0.50 0.25 Manhattan Vector S3 0.4392 

185 31 0.25 0.50 0.25 Manhattan Max S3 0.4267 

186 31 0.25 0.50 0.25 Manhattan Sum S3 0.4423 

187 32 0.25 0.55 0.20 Euclidean Vector S3 0.5966 

188 32 0.25 0.55 0.20 Euclidean Max S3 0.5854 

189 32 0.25 0.55 0.20 Euclidean Sum S3 0.5992 

190 32 0.25 0.55 0.20 Manhattan Vector S3 0.4748 

191 32 0.25 0.55 0.20 Manhattan Max S3 0.4632 

192 32 0.25 0.55 0.20 Manhattan Sum S3 0.4776 

193 33 0.25 0.60 0.15 Euclidean Vector S3 0.6254 

194 33 0.25 0.60 0.15 Euclidean Max S3 0.6160 

195 33 0.25 0.60 0.15 Euclidean Sum S3 0.6274 

196 33 0.25 0.60 0.15 Manhattan Vector S3 0.5092 

197 33 0.25 0.60 0.15 Manhattan Max S3 0.4987 

198 33 0.25 0.60 0.15 Manhattan Sum S3 0.5117 

199 34 0.25 0.65 0.10 Euclidean Vector S3 0.6486 
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200 34 0.25 0.65 0.10 Euclidean Max S3 0.6407 

201 34 0.25 0.65 0.10 Euclidean Sum S3 0.6502 

202 34 0.25 0.65 0.10 Manhattan Vector S3 0.5425 

203 34 0.25 0.65 0.10 Manhattan Max S3 0.5333 

204 34 0.25 0.65 0.10 Manhattan Sum S3 0.5445 

205 35 0.25 0.70 0.05 Euclidean Vector S3 0.6664 

206 35 0.25 0.70 0.05 Euclidean Max S3 0.6596 

207 35 0.25 0.70 0.05 Euclidean Sum S3 0.6677 

208 35 0.25 0.70 0.05 Manhattan Vector S3 0.5746 

209 35 0.25 0.70 0.05 Manhattan Max S3 0.5671 

210 35 0.25 0.70 0.05 Manhattan Sum S3 0.5763 

211 36 0.30 0.50 0.20 Euclidean Vector S3 0.5447 

212 36 0.30 0.50 0.20 Euclidean Max S3 0.5333 

213 36 0.30 0.50 0.20 Euclidean Sum S3 0.5472 

214 36 0.30 0.50 0.20 Manhattan Vector S3 0.4325 

215 36 0.30 0.50 0.20 Manhattan Max S3 0.4211 

216 36 0.30 0.50 0.20 Manhattan Sum S3 0.4353 

217 37 0.30 0.55 0.15 Euclidean Vector S3 0.5750 

218 37 0.30 0.55 0.15 Euclidean Max S3 0.5650 

219 37 0.30 0.55 0.15 Euclidean Sum S3 0.5771 

220 37 0.30 0.55 0.15 Manhattan Vector S3 0.4677 

221 37 0.30 0.55 0.15 Manhattan Max S3 0.4571 

222 37 0.30 0.55 0.15 Manhattan Sum S3 0.4702 

223 38 0.30 0.60 0.10 Euclidean Vector S3 0.6001 

224 38 0.30 0.60 0.10 Euclidean Max S3 0.5914 

225 38 0.30 0.60 0.10 Euclidean Sum S3 0.6019 

226 38 0.30 0.60 0.10 Manhattan Vector S3 0.5017 

227 38 0.30 0.60 0.10 Manhattan Max S3 0.4923 

228 38 0.30 0.60 0.10 Manhattan Sum S3 0.5038 

229 39 0.30 0.65 0.05 Euclidean Vector S3 0.6203 

230 39 0.30 0.65 0.05 Euclidean Max S3 0.6124 

231 39 0.30 0.65 0.05 Euclidean Sum S3 0.6218 

232 39 0.30 0.65 0.05 Manhattan Vector S3 0.5346 

233 39 0.30 0.65 0.05 Manhattan Max S3 0.5266 

234 39 0.30 0.65 0.05 Manhattan Sum S3 0.5363 

235 40 0.35 0.50 0.15 Euclidean Vector S3 0.5224 

236 40 0.35 0.50 0.15 Euclidean Max S3 0.5122 

237 40 0.35 0.50 0.15 Euclidean Sum S3 0.5245 

238 40 0.35 0.50 0.15 Manhattan Vector S3 0.4261 

239 40 0.35 0.50 0.15 Manhattan Max S3 0.4156 
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240 40 0.35 0.50 0.15 Manhattan Sum S3 0.4285 

241 41 0.35 0.55 0.10 Euclidean Vector S3 0.5495 

242 41 0.35 0.55 0.10 Euclidean Max S3 0.5402 

243 41 0.35 0.55 0.10 Euclidean Sum S3 0.5514 

244 41 0.35 0.55 0.10 Manhattan Vector S3 0.4608 

245 41 0.35 0.55 0.10 Manhattan Max S3 0.4513 

246 41 0.35 0.55 0.10 Manhattan Sum S3 0.4630 

247 42 0.35 0.60 0.05 Euclidean Vector S3 0.5721 

248 42 0.35 0.60 0.05 Euclidean Max S3 0.5634 

249 42 0.35 0.60 0.05 Euclidean Sum S3 0.5738 

250 42 0.35 0.60 0.05 Manhattan Vector S3 0.4945 

251 42 0.35 0.60 0.05 Manhattan Max S3 0.4861 

252 42 0.35 0.60 0.05 Manhattan Sum S3 0.4963 

253 43 0.40 0.50 0.10 Euclidean Vector S3 0.4979 

254 43 0.40 0.50 0.10 Euclidean Max S3 0.4884 

255 43 0.40 0.50 0.10 Euclidean Sum S3 0.4999 

256 43 0.40 0.50 0.10 Manhattan Vector S3 0.4198 

257 43 0.40 0.50 0.10 Manhattan Max S3 0.4103 

258 43 0.40 0.50 0.10 Manhattan Sum S3 0.4219 

259 44 0.40 0.55 0.05 Euclidean Vector S3 0.5228 

260 44 0.40 0.55 0.05 Euclidean Max S3 0.5137 

261 44 0.40 0.55 0.05 Euclidean Sum S3 0.5246 

262 44 0.40 0.55 0.05 Manhattan Vector S3 0.4542 

263 44 0.40 0.55 0.05 Manhattan Max S3 0.4456 

264 44 0.40 0.55 0.05 Manhattan Sum S3 0.4560 

265 45 0.45 0.50 0.05 Euclidean Vector S3 0.4731 

266 45 0.45 0.50 0.05 Euclidean Max S3 0.4638 

267 45 0.45 0.50 0.05 Euclidean Sum S3 0.4749 

268 45 0.45 0.50 0.05 Manhattan Vector S3 0.4137 

269 45 0.45 0.50 0.05 Manhattan Max S3 0.4051 

270 45 0.45 0.50 0.05 Manhattan Sum S3 0.4155 
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