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ABSTRACT

Optical Coherence Tomography (OCT) is an essential imaging technique for diag-
nosing retinal diseases. While deep learning models offer high accuracy for automated OCT
classification, their “black-box” nature limits clinical trust and adoption. Conversely, tradi-
tional machine learning methods are more interpretable but often depend on features that can
be difficult to extract or are sensitive to image quality. This thesis presents two complementary
studies to develop an accurate and interpretable machine learning framework for retinal health
classification.

The first study introduces a method based on extracting computationally simple and
clinically intuitive geometric features—specifically foveal concavity, bilateral symmetry, and
layer smoothness—from the Inner Limiting Membrane (ILM) and Retinal Pigment Epithelium
(RPE) layers. Using a Light Gradient Boosting Machine (LGBM) classifier, this approach
achieved 96% accuracy, 98% precision, and a low false negative rate of 6%, significantly out-
performing a baseline method using vertical line profile features.

The second study expands this analysis by extracting a comprehensive set of 56 fea-
tures derived from the thickness, area, and inter-layer relationships of seven segmented retinal
layers. This layer-wise approach, while achieving a slightly lower binary classification accu-
racy of 93.5% on the test set, demonstrated robust performance and provided deeper clinical

insights. Through interpretable models, this analysis revealed a hierarchical pattern of retinal
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deterioration. Key predictive features included the area ratio of specific layers to the total retina
and thickness ratios between adjacent layers, offering a more granular understanding of disease
mechanisms.

Together, these studies demonstrate that analyzing retinal layer morphology, from
simple geometries to complex inter-layer dynamics, provides a powerful and transparent frame-
work for automated disease detection. The proposed methods support ophthalmologists by im-
proving diagnostic accuracy and efficiency, contributing to the early detection and prevention of
vision loss. The initial geometric approach is ideal for rapid pre-screening, while the layer-wise
analysis enhances diagnostic insight by uncovering specific, clinically meaningful patterns of

pathology.

Keywords: Unhealthy OCT Image Detection, Machine Learning, Retinal Layer Geometry,
Retinal Layer Relationships, Interpretability, Feature Engineering.
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CHAPTER 1
INTRODUCTION

1.1 Background

OCT is a non-invasive, high-resolution imaging technique that captures cross-sectional
and volumetric images of biological tissues, particularly the retina. By utilizing low-coherence
interferometry, OCT provides micrometer-scale resolution, enabling clinicians to visualize reti-
nal layers, detect abnormalities, and monitor disease progression in real time. Due to its speed,
safety, and diagnostic precision, OCT has become a gold standard in ophthalmology for man-
aging a variety of retinal diseases, such as age-related macular degeneration (AMD), diabetic
retinopathy (DR), and macular edema. With the ability to show retinal layers, OCT imaging is
essential for early diagnosis and therapy planning.

A normal OCT scan, extending from the vitreous interface to the choroid, reveals clearly
delineated retinal layers ranging from the ILM down to the RPE. In such scans, the retinal
architecture remains intact, with no signs of fluid buildup, cystic formations, or layer dis-
organization. The foveal depression is distinctly observable in healthy scans. As shown in
Figure 1.1(A), the ILM, RPE boundary, and foveal contour are clearly marked.

Conversely, OCT scans of pathological conditions display notable deviations from this
structure. For instance, choroidal neovascularization (CNV) is characterized by hyperreflec-
tive, irregular formations beneath the RPE, often accompanied by fluid accumulation or cystic
changes. Diabetic macular edema (DME) typically presents with intraretinal cysts, diffuse
retinal thickening, and sometimes subretinal fluid, leading to a distorted retinal profile. OCT
images showing drusen often reveal elevated, hyperreflective lesions beneath the RPE with dis-
ruptions in the outer retinal layers. Figure 1.1(B) provides visual examples of these abnormal

retinal features.
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Figure 1.1 (A) Example of a normal OCT image, and (B) example of an abnormal OCT
image. Pink stripe indicates the RPE layer. The ILM layer and the bottom edge of the RPE
layer are indicated with blue and red lines, respectively.

OCT image segmentation further enhances the understanding of retinal structure by
delineating the seven internal retinal layers. When these intraretinal layers are segmented, the
smooth, regular patterns of a normal retina become evident, reflecting intact retinal architecture
and consistent layer thickness. In contrast, abnormal OCT scans exhibit severely disrupted and
irregular layer boundaries, with distortions and discontinuities that correspond to pathological
changes. This detailed segmentation allows for precise visualization of how disease processes
affect each retinal layer, aiding in diagnosis and monitoring. Figure 1.2 illustrates this contrast,
showing segmented layers of a normal OCT image in (C) with clear, continuous layers, and an

abnormal OCT image in (D) where the layered structure is markedly disturbed.

(A) (B)

Background

ILM

INL

" ONL-ISM——
ISE
OS-RPE

(C) (D)

Figure 1.2 (A) Example of a normal OCT image, and (B) example of an abnormal OCT
image. (C) Segmented layers of a normal OCT image, and (D) segmented layers of an
abnormal OCT image.
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1.2 Problem Statement

OCT is a vital diagnostic tool in ophthalmology, enabling high-resolution cross-sectional
imaging of retinal structures. However, manual interpretation of OCT scans by medical pro-
fessionals is time-consuming, subjective, and prone to inter-observer variability. To address
these challenges, numerous ML and DL approaches have been proposed for the automated
classification of retinal OCT images into healthy and pathological categories.

Although DL-based methods such as Convolutional Neural Networks (CNNs), ResNet,
and VGG have demonstrated high accuracy in OCT classification, they suffer from several crit-
ical limitations. These models operate as complex, opaque systems—commonly referred to as
having a ’black-box” nature—making it difficult for clinicians to understand how decisions are
made. This lack of interpretability reduces trust in automated systems, particularly in medical
diagnostics where explainability is essential. Furthermore, DL models require large annotated
datasets for training, which are often limited in medical imaging due to privacy concerns and
the need for expert labeling. Additionally, many DL architectures demand substantial compu-
tational resources, making them challenging to deploy in resource-constrained clinical settings.

In contrast, traditional feature-based ML models, such as Support Vector Machines
(SVM) and Random Forests, rely on handcrafted features based on texture, geometry, and in-
tensity descriptors. These models are generally more interpretable with feature importance and
more computationally efficient. However, many existing ML approaches still face significant
challenges, including limited generalizability across diverse OCT datasets, difficulty in select-
ing optimal features to maximize classification performance, and the need for better integration

of domain knowledge into model design.

1.3 Research Objective

This study aims to advance the understanding and automated analysis of retinal OCT
images by integrating two complementary approaches. First, it seeks to develop an interpretable
machine learning system that classifies retinal OCT images as healthy or unhealthy based on ge-
ometric features of the ILM and RPE layers, emphasizing clinical relevance and transparency.
Second, it expands the scope by extracting and analyzing features derived from retinal layer
thickness and area measurements, investigating the relationships and insights between individ-
ual retinal layers and overall retinal health.

The key objectives are:

e To extract and analyze interpretable geometric features of the ILM and RPE layers (e.g.,

symmetry, smoothness, layer thickness variations) that correlate with retinal abnormali-
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ties, ensuring clinical relevance and transparency in decision-making.

e To extract quantitative features based on retinal layer thickness and area, and to explore

the relationships and insights between these layers and retinal health status.

e To compare the performance of the retinal layer-wise relationship feature approach with

the geometric feature approach, demonstrating improvements or complementary strengths.

e To validate the clinical utility of the integrated system by assessing its suitability for pre-
screening applications, aiming to reduce ophthalmologists’ workload while maintaining

diagnostic reliability.

e To provide an open and reproducible framework adaptable to different OCT datasets,

facilitating future research in retinal disease detection and interpretation.

1.4 Overview of the Thesis

This thesis is organized into six chapters to systematically develop and evaluate ma-
chine learning methods for retinal OCT image analysis. Following this introduction, Chapter
2 reviews previous research on OCT imaging and classification techniques. Chapter 3 details
the two main methodologies used: first, the extraction of simple geometric features from the
ILM and RPE layers, and second, a more comprehensive analysis based on thickness and area
relationships across all seven retinal layers. Chapter 4 describes the experiments, presenting the
performance results for both feature sets and comparing them against existing methods. Chap-
ter 5 provides a unified discussion of these results, analyzing the complementary strengths of

each approach. Finally, Chapter 6 concludes the thesis by summarizing the key findings.
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CHAPTER 2
LITERATURE REVIEW

Recent advancements in ML and DL have significantly improved the automated de-
tection of retinal abnormalities in OCT images. This chapter reviews key studies in the field,

focusing on existing feature-based ML approaches and their limitations.

2.1 Structural Feature-Based Approaches for OCT Classification

Several studies have demonstrated that structural and geometric features derived from
retinal anatomy can effectively classify OCT images with high accuracy while maintaining
interpretability.

Hussain et al. (2018) demonstrated that retinal layer-based features—such as thickness,
curvature, and pathology-associated volumes—offer superior discriminative capability and are
more robust to noise compared to traditional intensity- or texture-based features. Texture de-
scriptors, while widely used, tend to be highly sensitive to image noise and exhibit significant
variability across different OCT devices due to inconsistencies in intensity scaling and resolu-
tion. In contrast, structural features remain relatively invariant across devices, improving gen-
eralizability. Their study employed a Random Forest Classifier (RFC), achieving an accuracy
exceeding 96% in classifying normal, AMD, and DME cases. Furthermore, the Outer Segment
Layer (OSL) thickness was found to be significantly reduced in early AMD cases, reinforcing
the importance of fine structural measurements as early biomarkers for retinal degeneration.

Khalid et al. (2017) employed a multi-layered SVM classifier based on nine retinal
features, including thickness and cyst/drusen presence, achieving an exceptional 99.92% accu-
racy in classifying healthy, Retinal Edema (RE), Central Serous Chorioretinopathy (CSC), and
AMD cases.

Syed et al. (2016) introduced a 3D retinal surface reconstruction approach using co-
herent tensors, extracting features like thickness profiles and cyst space information. Their
SVM-based model achieved 98.88% accuracy in detecting healthy, Central Serous Retinopathy
(CSR), and Macular Edema (ME) images.

While these methods demonstrate strong performance, retinal thickness-based features

have limitations:

e Sensitivity to image quality: Variations in scan conditions (e.g., noise, motion artifacts)

can degrade layer segmentation accuracy.
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¢ Dependency on high-quality data: Many existing techniques require accurate segmen-
tation of retinal layers, which can be unreliable in the presence of severe retinal patholo-

gies.

¢ Reduced robustness in severe pathologies: Diseased retinas often exhibit distorted lay-

ers, making thickness measurements unreliable.

2.2 Alternative Feature-Based Approaches for OCT Classification

To address these challenges, researchers have explored alternative feature extraction
techniques.

Salaheldin et al. (2024) combined DL with traditional ML, using InceptionV3 for fea-
ture extraction followed by classifiers (SVM, k-Nearest Neighbors (kNN), Decision Tree).
Their hybrid model attained over 97% accuracy in classifying CNV, DME, drusen, and healthy
cases.

Numsonthi et al. (2025) proposed a computationally efficient method using vertical
line-profile features which utilize intensity of the images for binary classification (healthy vs.
unhealthy). Their approach achieved 91% accuracy with lower computational costs but was
sensitive to noise and struggled with small pathological regions.

Chanpipattanachai et al. (2026), building on Numsonthi et al. (2025)’s work, has de-
veloped a machine learning framework using features from horizontal, vertical, and combined
intensity line profiles. The model using combined horizontal and vertical profiles yielded the
highest accuracy of 94%, an improvement of 2-3% over a prior state-of-the-art method that used
only vertical profiles. Although horizontal features alone performed poorly, their integration
with vertical features enhanced classification metrics by 1-2%. This combined approach offers
an efficient and interpretable method for large-scale OCT screening, though misclassifications
occurred due to image distortions and the features’ limitations in capturing certain structural
anomalies.

Despite their success, existing methods face critical challenges:

e Interpretability vs. performance trade-off: The more advanced feature extraction
techniques often achieve high accuracy but are harder to understand, making them diffi-
cult to interpret and limiting their acceptance in clinical settings. In contrast, structural
feature-based features offer greater interpretability but may have difficulty generalizing

across diverse datasets.

e Computational efficiency: Feature extraction using DL approaches typically demand

significant computational resources, while also producing hard-to-interpret features.
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2.3 Research Gap and Proposed Contribution

This study addresses these gaps by:

e Leveraging geometric features of the ILM and RPE—such as symmetry and smooth-
ness—that are computationally simple to extract and meaningful to clinicians, while still

achieving strong classification performance.

e Designing a lightweight ML framework that balances diagnostic accuracy and computa-

tional efficiency, making it suitable for real-world clinical use.

e Conducting a comprehensive comparison with more complex feature-based models to

demonstrate the effectiveness and practical benefits of using simpler features.
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CHAPTER 3
METHODOLOGY

The methodology presented in this study follows the straightforward guidelines illus-
trated in Figure 3.1. This workflow provides a clear framework for the sequential steps in-
volved.

For feature processing, we proposed two methods. The first method involves using the
area between the ILM and RPE boundaries to extract features, while the second method utilizes
each layer individually in addition to the first. Details of each one is described in the sections
3.1 and 3.2.

OCT images
p——

—_—
U

(Pre-Processing)

Feature
Processing

(Layer Segmentation)

(Feature Iéxtraction)

Classification

Normal Abnormal

Figure 3.1 General workflow of our methodology.

3.1 Machine learning Using Geometrical Feature

For ease, we call this method that uses layer geometry as LG. Details of the method are

as follows.

3.1.1 Pre-processing

The initial step in image pre-processing involves preparing the OCT scans to ensure
visual clarity and structural consistency. To begin, any surrounding white margins are re-

moved. Since this operation may result in irregular image shapes, a perspective transformation
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(Szeliski, 2022) is applied to redefine a standard rectangular region. To improve image qual-
ity, a two-stage denoising process is carried out. Fast non-local means denoising (Gonzalez &
Woods, 2008) is first applied to reduce random noise, followed by bilateral filtering (Gonzalez

& Woods, 2008) to preserve edges and structural details while smoothing homogeneous areas.

3.1.2 Segmentation of ILM and RPE Layers

The ILM and the lower boundary of the RPE layer (Abhishek et al., 2014) are chosen as
the primary anatomical landmarks due to their consistent visibility across all images, including
those with pathological features.

For ILM segmentation, Otsu’s thresholding method (Yousefi, 2011) is used. This method
selects a threshold 7 that minimizes the intra-class variance between foreground and background

pixels, as defined in Equation 3.1.

min - wo(Nog(1) + w1 (D). (3.1)

where wq and w; represent the class probabilities, and 0'(2)(t) and O'%(l‘) are the class variances.
This segmentation process effectively identifies the uppermost boundary separating the dark
background and the brighter retinal region, which corresponds to the ILM layer.

The RPE layer is characterized by a bright, thick profile near the bottom of the image.
To segment it accurately, contrast enhancement is first applied using Contrast Limited Adaptive
Histogram Equalization (CLAHE) and gamma correction (Gonzalez & Woods, 2008). These
operations enhance the distinction between the RPE and adjacent layers. Otsu’s thresholding is
then employed again to extract the lower edge of the RPE.

Once both boundaries are segmented, the image is rotated so that the ILM and RPE
layers lie approximately parallel to the horizontal axis. The required rotation angle is computed
using linear regression on the RPE boundary points, and each point is rotated using the 2D

rotation formula. This alignment standardizes the orientation of all images.
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Figure 3.2 Illustration of normal (left) and abnormal (right) images after each processing step.
(A)-(B): Post-denoising; (C)-(D): ILM segmentation via Otsu’s method;
(E)-(F): RPE segmentation; (G)-(H): Rotated layers.

3.1.3 Feature Extraction

Four features are extracted to characterize foveal geometry and layer symmetry.
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3.1.3.1 Foveal Concavity

Foveal concavity is a binary feature: “concave” or “convex”. The ILM boundary is
smoothed using an adaptive moving average filter (Press et al., 2007), and the foveal location is
detected as the nearest local extremum. Two reference points are placed symmetrically at 10%
of the image width on either side. If the foveal point lies below both references, it is classified

as concave; otherwise, convex.

Figure 3.3 (A) Concave fovea: foveal point lies below reference points. (B) Convex fovea:
foveal point lies above at least one reference point. Red dot: fovea; green dots: references.

3.1.3.2 Bilateral Symmetry

Symmetry of ILM and RPE layers is evaluated by comparing the left half with the mir-
rored right half across the vertical foveal line. Root Mean Square Error (RMSE) is calculated

using:

n

n il N2
RMSE = J Z w, (3.2)

i

where L; is the i y-coordinate on the left, and RR; is the mirrored coordinate from the right

side. Only overlapping regions are used when left and right segments differ in length.
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Figure 3.4 Bilateral symmetry evaluation: (A)-(B) splitting at foveal center; (C)-(D)
comparison with mirrored right halves. Left: normal; Right: abnormal.

3.1.3.3 RPE Smoothness

RPE smoothness is measured by fitting the layer to a quadratic curve:

y:ax2+bx+c, (3.3)

where a, b, and c are constants fitted to minimize the squared error. RMSE is computed between
the actual RPE boundary and its quadratic fit. Lower RMSE implies higher smoothness, which

typically correlates with healthy retinal conditions.

(A)

TR L
-_-_';..:'.:‘:“".; AfnS e

Figure 3.5 RPE (blue) and its quadratic fit (pink) for (A) normal and (B) abnormal cases.
Normal profiles show tighter adherence to the fitted curve.

3.2 Machine Learning Using Layer Structural and Relational Features

We name this method that uses layer structural and relational features as LSR.
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3.2.1 Pre-processing

Images of varying sizes and aspect ratios are padded to a square shape with a 1:1 aspect
ratio, regardless of the original width and height, preserving structural integrity and spatial
consistency without distortion. The padding value is obtained from the mode pixel value of the
image to ensure that the padded pixels blend seamlessly with the background.

To correct tilted retinas, a rotation correction algorithm aligns the retina horizontally by
detecting its principal axis.

Noise levels are adaptively estimated per image using the Median Absolute Deviation of
high-frequency components, guiding a two-step denoising process: Gaussian filtering reduces
high-frequency noise proportionally to the estimated noise, followed by fast Non-Local Means
filtering to preserve structural details while further suppressing noise.

Finally, contrast enhancement is applied adaptively based on the Weber contrast metric,
with iterative gamma correction adjusting pixel intensities to optimize retinal layer visibility
within an empirically determined contrast range, thereby facilitating precise layer segmenta-
tion.

The preprocessing steps are shown in Figure 3.6.

(A)

Figure 3.6 (A) Original image. (B) Image after padding with mode value. (C) Padded image
after rotation. (D) Rotated image after denoising. (E) Denoised image after contrast
enhancement.
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3.2.2 Multi-Layer Segmentation

We utilize the Y-Net segmentation model by Farshad et al. (2022), which is designed to
extract seven retinal layers along with the background and fluid regions from OCT images. In
this study, segmentation is focused exclusively on the seven retinal layers and the background.

The Y-Net segmentation pipeline is illustrated in Figure 3.7.

Transform Input === Output

Input image
Pre-Processed Image Size : 224 x 224 model Size: 224 x 224

Segmented Mask

Y-Net

Figure 3.7 Illustration of Y-Net segmentation pipeline.

Prior to inference, each OCT image is transformed to conform to the model’s input
requirements. Specifically, images are resized to 224 x 224 pixels and normalized using a
mean value of 46.3758 and a standard deviation of 53.9434. These normalization parameters
are sourced from the original Y-Net implementation and ensure consistency with the model’s
training conditions.

Following pre-processing, images are fed into the Y-Net model, which produces pixel-
wise segmentation maps delineating each of the seven retinal layers and the background. An

example of the resulting segmentation output is shown in Figure 3.8.

Background

ILM
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ONL-ISM
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OS-RPE

Figure 3.8 Illustration of segmented mask from Y-Net model.
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3.2.3 Feature Extraction

After obtaining the segmented mask, we denote L as any individual segmented retinal
layer, and G as the region encompassing all layers collectively. From these delineated regions,
we extract both global and local features based on thickness and area measurements, as detailed
below. This structured feature extraction enables comprehensive characterization of retinal
morphology and facilitates analysis of inter-layer spatial relationships critical for classification
and clinical interpretation. Figure 3.9 illustrates examples of the global piece G and local piece
L.

Global Thickness

Local Thickness

Local Piece (L)

Global Piece (G)

(A) (B)

Figure 3.9 (A) Global piece G. (B) Local piece L.

Global Features (from combined retinal region G)

Nine features characterize overall retinal morphology:

1. Thickest Layer (GTK): Layer with the highest average thickness.
2. Thinnest Layer (GTN): Layer with the lowest average thickness.

3. Largest Area Layer (GLA): Layer occupying the largest pixel area.
4. Smallest Area Layer (GSA): Layer with the smallest pixel area.

5. Area (GA): Total pixel count of G.

6. Maximum Thickness (GMaxT): Maximum thickness value across all locations.
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7. Minimum Thickness (GMinT): Minimum thickness value across all locations.
8. Coefficient of Variation (GCV): Variability measure of thickness values across G.

9. Ratio of Maximum to Minimum Thickness (GMaxT-GMinT_Ratio): Ratio between

maximum and minimum thickness across the retina.

Local Features (from each individual layer L)
Five features are derived for each layer, making a total of thirty-five local features,

including:

1. Thickness Ratio at Global Maximum Thickness Location (LT-GMaxT_Ratio): Ratio

of the layer’s thickness to the global maximum thickness at location xg4y-

2. Thickness Ratio at Global Minimum Thickness Location (LT-GMinT _Ratio): Ratio

of the layer’s thickness to the global minimum thickness at location xgpp,.

3. Maximum-to-Minimum Thickness Ratio within Layer (LMaxT-LMinT _Ratio): Ra-

tio of the maximum thickness to the minimum thickness within the layer L.

4. Coefficient of Variation of Thickness (LCV): Measure of the variability of thickness

values across all locations within layer L.

5. Relative Area Ratio (LA-GA _Ratio): Ratio of the area of layer L to the total retinal

area G.

Adjacent Layer Pair Features

For six pairs of adjacent layers, 12 features quantify inter-layer relationships:

1. Average thickness ratio between adjacent layers (LAjT Ratio): This feature mea-

sures the ratio of the average thickness of the layer to that of its adjacent layer.

2. Average area ratio between adjacent layers (LAjA Ratio): This feature measures the

ratio of the area of the layer to that of its adjacent layer.

Combining global features, local features, and adjacent pair features yields a total of
56 features extracted from the segmented masks, enabling detailed characterization of retinal

morphology and inter-layer spatial relationships for improved classification and clinical insight.
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3.3 Classification

To classify OCT images as normal or abnormal, we employed seven ML models: De-
cision Tree, Adaptive Boosting (AdaBoost), Light Gradient-Boosting Machine (LGBM), Sup-
port Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), and K-Nearest
Neighbors (kNN). Each model was trained on the LG and LSR separately and evaluated based

on same metrics.
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CHAPTER 4
EXPERIMENTS

4.1 OCT Dataset Description

This study utilized a privately curated subset of 1,200 OCT images, equally divided
between normal (600) and abnormal (600) cases. The abnormal category includes three retinal
diseases—CNYV, DME, and drusen—each represented equally. The images were selected from

the publicly available dataset provided by Kermany et al. (2018).

The dataset was split into a training set of 1,000 images (500 normal and 500 abnormal)
and a testing set of 200 images (100 normal and 100 abnormal). Additionally, 5% of the
training set (i.e., 50 images) was randomly selected to serve as the validation set. This dataset
configuration is consistent with the prior work by Numsonthi et al. (2025), enabling a direct

performance comparison.

4.2 Implementation Details

All feature extraction and classification processes were implemented in Python. Hy-
perparameters for each model were optimized using grid search based on performance on the

validation set.

4.3 Evaluation Metrics

The evaluation employed five standard classification metrics: Accuracy, Precision, Re-

call, F1-Score, and False Negative Rate (FNR). These metrics are mathematically defined as:

TP+TN
Accuracy = 4.1)
TP+TN+FP+FN
TP
Precision = ———— 4.2)
TP+FP
TP
Recall = ———— 4.3)

TP+FN
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Precision - Recall

Fl1- =2. 4.4
Score Precision + Recall “4
FN
FNR = ———— =1—Recall 4.5)
TP+FN

Here, TP, TN, FP, and FN refer to true positives, true negatives, false positives, and false

negatives, respectively.
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CHAPTER 5
RESULTS AND DISCUSSION

5.1 Classification Performance

5.1.1 Performance of LG

The confusion matrices for each model applied to LG are shown in Figure 5.1. These

matrices summarize classification outcomes in terms of TP, TN, FP, and FN.

Actual

92, 91, 94* 92, 87, 93, 94*| 3 3, 3, 2*, 3, 2*|Abnormal

! !’

Predicted

8 6% 8, 13, 7, 6*|97,97,97,97,98% 97,98*| Normal

Abnormal Normal

Figure 5.1 Confusion metrics report of LG for classification. Confusion matrices of Logistic
Regression (Red), AdaBoost (Pink), Decision Tree (Purple), Random Forest (Blue), KNN
(Green), SVM (Orange), and LGBM (Black). Asterisks denote best-performing metrics in

each category.

Among all classifiers, the LGBM model demonstrated the strongest performance, achiev-
ing the best values for TP, TN, FP, and FN. The Decision Tree model produced similar TN and
FP values, while KNN matched LGBM in TP and FN. Depending on the evaluation objective
(e.g., minimizing false positives or maximizing true positives), Decision Tree and kNN remain

viable alternatives.

5.1.2 Performance of LSR

The confusion matrices for each model applied to LSR features are shown in Figure 5.2.

These matrices summarize classification outcomes in terms of TP, TN, FP, and FN.
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Actual

85, 86, 88, 83, 84,91+, 87 | 3, 2%, 2%, 2% 2% 4, 2* | Abnormal
Predicted

15,14,12,17, 16, 9,13 [97,08+,98%,98*,98% 96,98% Normal

Abnormal Normal

Figure 5.2 Confusion metrics report of LSR for classification. Confusion matrices of Logistic
Regression (Red), AdaBoost (Pink), Decision Tree (Purple), Random Forest (Blue), KNN
(Green), SVM (Orange), and LGBM (Black). Asterisks denote best-performing metrics in

each category.

Among all classifiers, the LGBM model achieved the best values for TN and FP, while
SVM achieved the best values for TP and FN. However, in terms of accuracy and FNR, the
SVM model achieved the highest accuracy of 93.5% with the lowest FNR among all classifiers
of 0.09%.

5.1.3 Performance Comparison

Figure 5.3 compares the proposed models: LG and LSR against the state-of-the-art
method that uses line profile features (LP) proposed by Numsonthi et al. (2025).

Performance Comparison

H'P BLG LSR

Accuracy

0.94
0.96
0.91

.g
16 Recall
F1-score
0.93
0.09
0.00 0.25 0.50 0.75 1.00

Figure 5.3 Metric comparison between MLLG and MLLP.

Ref. code: 25686722040943CYK



22

As shown, LG achieved superior results across all categories. LG achieved the highest
accuracy at 96%, followed by LSR at 94% and MLLP at 91%. Precision is also highest for LG
at 98%, surpassing LSR (96%) and MLLP (90%). Recall values are equal for MLLP and LSR
at 91%, while LG is slightly higher at 94%. For the Fl-score, LG leads with 96%, followed
by LSR at 93% and MLLP at 91%. The false negative rate (FNR) is lowest for LG at 6%,
indicating fewer missed positive cases, while both MLLP and LSR share a higher FNR of 9%.
Overall, LG demonstrates superior performance, particularly in precision, accuracy, F1-score,

and FNR, highlighting its effectiveness relative to MLLP and LSR.

5.2 Discussion

The results demonstrate the effectiveness of using structural and geometric features
from retinal layers for automated OCT image classification. Two feature sets were examined:
high-level LG from the ILM and RPE layers, and detailed LSR from seven segmented retinal
layers.

The first study, LG with four features, yielded exceptional classification performance.
The best-performing model in this study, LGBM, achieved an accuracy of 96%, precision of
98%, and a low false negative rate of 6%.

The second study, LSR, expanded the analysis to a granular level by extracting 56 fea-
tures from seven segmented retinal layers, capturing thickness, area, and inter-layer dynamics.
While this approach was designed to provide deeper clinical insights, its best-performing model
in this study, SVM, achieved a slightly lower accuracy of 93.5% and a higher FNR of 9% com-
pared to the LG method. This counterintuitive result, where more comprehensive features led
to slightly lower binary classification performance, may be attributable to several factors:

Potential factors for performance discrepancy between LG and LSR

1. Lack of pathology-focused features: While the LG features (foveal concavity, bilateral
symmetry, RPE smoothness) were chosen because they directly represent the fundamen-
tal structural integrity of a healthy retina. A healthy fovea has a distinct concave shape,
and the retinal layers are symmetrical and smooth. Pathological conditions like macu-
lar edema, drusen, or CNV often cause direct and obvious disruptions to these specific
high-level characteristics (e.g., flattening the fovea, breaking symmetry, creating bumps
in the RPE layer). Therefore, these few features are highly “focused” and act as powerful,

direct indicators for the binary classification task of healthy vs. unhealthy.

On the other hand, LSR features are broader. The approach extracts 56 features, capturing

a vast amount of granular data, including thickness, area, and various ratios for seven
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different layers without specific focus on particular layers.

2. Feature redundancy and dimensionality: The large set of LSR features may contain re-
dundant or less discriminative information, potentially complicating the decision bound-
ary for the classifiers. While these features can potentially offer deeper clinical insights
into how a retina is deteriorating, they also risk introducing noise and irrelevant informa-

tion for a simple binary classification.

3. Segmentation dependency: Performance of LSR is heavily reliant on the accuracy of
the Y-Net segmentation model. In cases of severe pathology where retinal layers are
highly distorted, segmentation errors could introduce noise into the feature set, degrading

classifier performance.

The high performance of the LG approach, despite its relative simplicity, underscores
its potential for practical clinical applications, such as rapid pre-screening. The features are not
only computationally simple to extract but are also clinically intuitive, addressing the black-box
problem often associated with deep learning models.

Given the limitations and challenges of LSR, future work could focus on addressing
the identified limitations and synergizing the strengths of both methodologies. A key direc-
tion would be to apply feature selection techniques to the comprehensive LSR set to isolate
the most impactful predictors, thereby reducing noise and redundancy. Additionally, exploring
alternative, more robust segmentation algorithms could enhance the accuracy of layer delin-
eation, particularly in severely diseased images where current methods may falter. A powerful
next step would be to create a hybrid model that integrates the focused, highly discriminative
LG with a refined subset of the most informative LSR features.

It is also important to note that the dataset in this study includes common retinal diseases
such as AMD, DME, and drusen, which have high prevalence. However, it lacks representation
of a broader range of retinal diseases found in real life. Although the proposed feature sets
perform well on this dataset, this may reflect its adaptation to the specific diseases included.
To ensure broader generalizability, the method should be further validated using a more diverse

dataset.
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CHAPTER 6
CONCLUSION

This thesis introduced and evaluated two complementary machine learning frameworks
for the automated classification of retinal OCT images, demonstrating that analyzing retinal
layer characteristics provides a highly effective basis for automated disease detection.

The first study, called Layer Geometry (LG), developed a framework using simple,
clinically intuitive geometric features from the ILM and RPE layers, such as foveal concavity,
bilateral symmetry, and RPE smoothness. This approach achieved an outstanding accuracy of
96% and a low false negative rate of 6% using a Light Gradient Boosting Machine (LGBM)
model. It significantly outperformed a baseline method that used intensity-based line profiles,
highlighting the robustness of structural biomarkers. This method is computationally efficient
and highly accurate, making it suitable for rapid pre-screening applications.

The second study, called Layer Structural and Relational (L.SR), expanded this analysis
by extracting a comprehensive set of 56 features derived from the thickness, area, and inter-
layer relationships of seven segmented retinal layers. This deeper, layer-wise analysis yielded
slightly lower accuracy for binary classification, achieving 94% accuracy and a slightly higher
FNR of 9%. This approach revealed that retinal layers exhibit distinct patterns and that retinal
deterioration can be captured through changes within the retinal structure.

In conclusion, this research successfully demonstrates that machine learning models
based on retinal layer morphology from simple geometries to complex inter-layer dynamics,
offer a powerful, transparent, and accurate framework. Both frameworks outperformed the
state-of-the-art approach by 5% and 3%, respectively. The proposed frameworks provide an
alternative to black-box deep learning methods and support ophthalmologists by improving
diagnostic efficiency and providing deeper clinical insights, contributing to the early detection
and prevention of vision loss.

Future work will aim to improve classification performance by integrating all features,
applying feature importance techniques, and incorporating feature interpretability to enhance
understanding. Additionally, experiments will be conducted on more diverse datasets to further

validate the approach and its generalizability.
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