

**CAPACITATED VEHICLE ROUTING PROBLEMS
WITH HETEROGENEOUS FLEET**

BY

KONGKOCHEAIPRASITTHIKUL

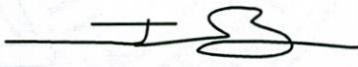
**AN INDEPENDENT STUDY SUBMITTED IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF MASTER OF ENGINEERING (LOGISTICS AND SUPPLY
CHAIN SYSTEMS ENGINEERING)
SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY
THAMMASAT UNIVERSITY
ACADEMIC YEAR 2025**

THAMMASAT UNIVERSITY
SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

INDEPENDENT STUDY

BY

KONGKOC CHAIPRASITTHIKUL


ENTITLED

CAPACITATED VEHICLE ROUTING PROBLEMS
WITH HETEROGENEOUS FLEET

was approved as partial fulfillment of the requirements for
the degree of Master of Engineering (Logistics and Supply Chain Systems Engineering)

on September 9, 2025

Member and Advisor

(Associate Professor Jirachai Buddhakulsomsiri, Ph.D.)

Member

(Assistant Professor Pham Duc Tai, Ph.D.)

Director

(Associate Professor Kriengsak Panuwatwanich, Ph.D.)

Independent Study Title	CAPACITATED VEHICLE ROUTING PROBLEMS WITH HETEROGENEOUS FLEET
Author	Kongkoch Chaiprasitthikul
Degree	Master of Engineering (Logistics and Supply Chain Systems Engineering)
Faculty/University	Sirindhorn International Institute of Technology/ Thammasat University
Advisor	Associate Professor Jirachai Buddhakulsomsiri, Ph.D.
Academic Years	2025

ABSTRACT

This independent study focuses on solving the Capacitated Vehicle Routing Problem for a beverage distributor in Thailand, addressing the challenges posed by heterogeneous fleet vehicles, limited driver working hours, and customer-specific time windows. The study aims to minimize logistics costs by optimizing delivery routes and schedules. The mathematical model formulated in this project considers multiple constraints, such as vehicle capacity, demand at each customer location, and time limitations, and aims to find the optimal routes for a fleet of three types of trucks: small 4-wheelers, big 4-wheelers, and 6-wheelers. The research first applies a mixed-integer linear programming model to small-scale problems to achieve optimal solutions, followed by the development of heuristics for large-scale problems, where exact solutions may not be computationally feasible. The results, derived from data collected from a real beverage distributor's operations in the Eastern part of Thailand, demonstrate the potential of this approach to reduce operational costs and improve logistical efficiency. The study concludes that the proposed methods can effectively manage complexities of heterogeneous fleets, providing a practical solution to the logistics challenges faced by beverage distributors in the region.

(2)

Keywords: Capacitated Vehicle Routing Problem (CVRP), Heterogeneous Fleet, Mixed-Integer Linear Programming (MILP), Heuristic Algorithms, Logistics Optimization, Beverage Distribution

(3)

ACKNOWLEDGEMENTS

This independent study is my interest in studying Vehicle Routing Problems from real case study data. From the beginning to the end of this project, I would like to extend my sincere gratitude to Associate Professor Jirachai Buddhakulsomsiri for providing expert advice and encouragement throughout, and for motivating me to persist with and complete the project. I would also like to thank all the instructors in the LSCSE course for teaching useful knowledge for use in this project and in real-life work.

Kongkoch Chaiprasitthikul

TABLE OF CONTENTS

	Page
ABSTRACT	(1)
ACKNOWLEDGEMENTS	(3)
LIST OF FIGURES	(6)
CHAPTER 1 INTRODUCTION	1
1.1 Problem Statement	1
1.2 Objectives	1
1.3 Overview of Independent Study Report	2
CHAPTER 2 REVIEW OF LITERATURE	3
2.1 Summary of relevant research.	3
2.2 Vehicle Routing Problems	4
2.2.1 Capacitated Vehicle Routing Problems	4
2.2.2 Vehicle Routing Problems with Time Windows.	4
2.2.3 Heterogeneous Fleet Vehicle Routing Problems with time windows.	5
2.3 Solution Approaches	5
2.3.1 Mixed integer linear programming model	6
2.3.2 Heuristics	6
2.4 Research Gap	7
CHAPTER 3 METHOD OF APPROACH	8
3.1 Mathematical Model	8
3.2 Data Collection	10
3.3 Spreadsheet Modelling	10

	(5)
CHAPTER 4 PROJECT RESULTS	15
4.1 Case Study Data	15
4.2 Best Found Results from Model	17
CHAPTER 5 PROJECT CONCLUSION	18
REFERENCES	19
BIOGRAPHY	21

LIST OF FIGURES

Figures	Page
3.1 Customer Location Data In Day Route (Route 1)	10
3.2 Open-Source Routing Machine Code In Google Collab.	11
3.3 Distance Matrix From Open-Source Routing Machine Code.	11
3.4 Decision Variable And Constraint (Const 1,2)	12
3.5 Decision Variable And Constraint (Const 3)	12
3.6 Decision Variable And Constraint (Const 4)	13
3.7 Decision Variable And Constraint (Const 5)	13
3.8 Model Setting Up In Open Slover.	14
3.9 Route Worksheet Display.	14
4.1 Location Of Distributor And Customers (in Latitude, Longitude)	15
4.2 Location Of Distributor And Customers Setting Display In Google Maps.	16
4.3 Demand Of Each Customer.	16
4.4 Optimization Model Of The Project	17
4.5 The Display Worksheet In Excel.	17

CHAPTER 1

INTRODUCTION

From Thailand's logistics report 2021, transport costs account earn 6.4% of GDP or 1,044,200,000 baht. The trend line of the transportation cost is higher every year, which may impact the overall GDP. Saving on transportation costs boosts profits, competitiveness, and sustainability by reducing expenses and enhancing pricing attractiveness.

In Thailand, many entrepreneurs have logistics cost problems. Reducing logistics costs brings good benefits; many businesses have problems with logistics costs, and this project is a problem for one beverage distributor.

The Approach of the project is to resolve the capacitated vehicle routing issues with route as well as customer time window limitations for the beverage distributor with a heterogeneous fleet of vehicles

1.1 Problem Statement

The problem is that a beverage distributor has one depot of beverage stores for sending beverage products by using pallets and hand arrangement to the trucks and has 3 types of trucks (small 4 wheels, big 4 wheels, 6 wheels) with a limited driver time limit (8.00 to 17.00) and customer's time limit (specific for each customer)

1.2 Objectives

The objective is to make the route for the trucks within the limited driver and customer time limits.

- Formulate a mathematical model to solve a small problem and reach the optimal solution.
- Develop heuristics for large problems.

1.3 Overview of Independent Study Report

Chapter 2 contains the papers and articles related to the project problem statement. Chapter 3 describes the working process and method of working on the project. Chapter 4 contains the results after analyzing data with the program. Chapter 5 contains the conclusion.

CHAPTER 2

REVIEW OF LITERATURE

2.1 Summary of Relevant Research.

To summarize the related paper on the topic of optimizing vehicle routing problems, strategically tackling complexities often sidelined by conventional methodologies. Firouzi et al. (2018) introduced a robust mathematical programming model, intricately addressing the dynamics of heterogeneous fleets and flexible time windows. Their comprehensive approach resulted in a remarkable \$156,000 annual cost reduction in cargo transport operations, showcasing practical viability and significant benefits for stakeholders in logistics and supply chain systems. In a complementary vein, Guo et al. (2021) extended the capacity vehicle routing problem to account for incompatible loading constraints, presenting novel heuristic algorithms that demonstrated prowess in handling complex logistics requirements, especially in scenarios with multiple orders from a single customer. Guezouli and Abdelhamid (2018) innovatively tackled the multi-depot heterogeneous vehicle routing problem with time windows, leveraging bio-inspired genetic algorithm heuristics and clustering algorithms. Their method, validated against benchmark instances, showed promising results, offering efficient solutions within reasonable processing times. Fachini and Armentano (2020) addressed the heterogeneous fixed fleet vehicle routing problem with time windows, deploying logic-based Benders decomposition and achieving proven optimality and competitiveness against established methods across various instances. Furthermore, Yousefikhoshbakht et al. (2014) proposed a bone route algorithm coupled with tabu search to efficiently tackle the Heterogeneous Fixed Fleet Open Vehicle Routing Problem, demonstrating practical efficiency in real-world logistics scenarios. Mutzel et al. (2022) took an innovative approach, considering individualized customer time windows and employing a branch-and-price framework to enhance daily delivery tour planning. Finally, Meliani et al. (2019) contributed a Tabu search algorithm specifically for the Heterogeneous Fleet Vehicle Routing Problem (HFVRP), providing efficient solutions and valuable insights into routing problem-solving techniques. Collectively, these studies showcase diverse methodologies—from mathematical programming models to heuristic algorithms—

highlighting their effectiveness in addressing the intricacies of vehicle routing problems and their potential to significantly enhance operational efficiency in real life logistics and transportation scenarios.

2.2 Vehicle Routing Problems

The literature on vehicle routing problems is generally divided into three main subtypes: First Vehicle Routing Problems with Time Windows, which impose time constraints on deliveries; Second Heterogeneous Fleet Vehicle Routing Problems with Time Windows, and Third Capacitated Vehicle Routing Problems, which deal with optimizing routes for vehicles with limited carrying capacity. These subtypes meet the unique requirements of diverse logistics and transportation situations by addressing a variety of route optimization challenges, such as capacity restrictions, time windows, and vehicle heterogeneity.

2.2.1 Capacitated Vehicle Routing Problems

When a fleet of vehicles is used that is limited in how much it can transport, the vehicle routing problems. The primary challenge is determining the most efficient routes for these cars to serve clients while ensuring that they aren't carrying more than they can manage. Reducing distance or logistical expenses is the aim. The study by Guo, F., Huang, Z., & Huang, W. (2021) is one of the reviewed papers. With restrictions on incompatible loading and the practice of dividing supplies by order for improved truck efficiency, the CVRP problem. To reduce the overall routing and receiving costs, the study also focuses on hybrid heuristic methods and formulates this as an integer programming model.

2.2.2 Vehicle Routing Problems with Time Windows.

Delivering goods to clients within predetermined time constraints is the focus of vehicle routing problems with time windows. The goal on this topic is to minimize the total distance traveled or other associated costs and optimize routes, known as the truck capacity and the time windows, all the while guaranteeing punctual delivery to every customer within their designated time limits. The Firouzi et al. (2018) work addresses a heterogeneous fleet vehicle routing problem that includes flexible time

windows, permitting both early and late deliveries within predetermined time constraints. This is one of the two reviewed studies. & Mutzel et al.'s article (2022) Their research is centered on a particular on the heterogeneous vehicle routing problem that takes individual client time frames into account.

2.2.3 Heterogeneous Fleet Vehicle Routing Problems with Time Windows.

Heterogeneous Fleet VRP with time windows involves optimizing routes for diverse number of vehicles, each with unique capacities and characteristics, to deliver goods within specified time constraints. Two of the reviewed papers are. Fachini and Armentano present strategies for addressing the time-windowed routing problem of heterogeneous fixed-fleet vehicles. Their method, which uses logic-based bender decomposition, aims to effectively serve a distributed customer base in a predetermined amount of time. Additionally, Guezouli and Abdelhamid's (2018) paper uses a genetic algorithm-based clustering strategy to optimize the many depot heterogeneous VRPs with time windows. They strive to efficiently plan routes that cater to different customer locations across several depots while adhering to set periods. They address a multitude of objectives and criteria, including the variable capacities of vehicles

2.3 Solution approaches

In addressing vehicle routing problems, the solution approach is often divided into two main strategies: the MILP model and Heuristics. The MILP model presents a methodical, exact solution by formulating the problem as a set of linear equations with integer decision variables, aiming for the optimal solution through precise mathematical formulations. Conversely, Heuristics adopt practical, rule-based strategies to swiftly explore solution spaces, offering satisfactory solutions within reasonable timeframes but without guaranteeing optimality. While the MILP model seeks mathematical rigor in obtaining optimal solutions, Heuristics prioritize practical efficiency, making them valuable for complex problems where computational complexity challenges precise solutions.

2.3.1 Mixed integer linear programming model

The Mixed integer linear programming model is used as a mathematical framework to optimize the routing of vehicles. It's a powerful tool that helps find the best routes for vehicles while considering various constraints and objectives.

One of the reviewed papers is the paper by Guo, F., Huang, Z., & Huang, W. (2021). This paper focuses on an integer programming model to minimize total routing and receipt costs, making it relevant to both the MILP and the heuristic categories.

2.3.2 Heuristics

Heuristics are strategies or methods used to find good or near-optimal solutions efficiently, considering the complexities of routing vehicles to serve customers.

Genetic Algorithms: These are inspired by natural selection processes. In VRP, genetic algorithms create a population of potential solutions represented as chromosomes, each denoting a route for vehicles. One of the reviewed papers is Guezouli and Abdelhamid (2018) address the Multi-Depot Heterogeneous Fleet VRP with Time Windows using a genetic algorithm-based clustering approach. This paper focuses on multi-objective optimization, where a genetic algorithm is employed to explore solutions considering multiple conflicting objectives.

Tabu Search: Tabu search is a local search metaheuristic that iteratively investigates the neighborhoods surrounding existing solutions. In VRP, it iteratively moves toward better solutions by exploring surrounding routes, assessing their quality, and so on. Its use of a memory structure known as a tabu list, which maintains track on previously visited solutions, is what distinguishes it. Among the two publications that were assessed are Yousefikhoshbakht et al. (2014): They tackle the Heterogeneous Fixed Fleet Open VRP using a combined metaheuristic algorithm known as the bone route algorithm, which incorporates tabu search. This algorithm combines different metaheuristic techniques to address the complexities of the problem efficiently. Meliani et al. (2019): This study concentrates on the Heterogeneous Fleet VPR and introduces a dedicated Tabu search heuristic. The approach is to minimize the total costs associated with routing in this problem scenario.

2.4 Research Gap

Research gaps found in the research of the reviewed paper, such as unanswered questions and unclear context, are divided into two topics

Contextual Gaps: Environmental Considerations: There's a limited exploration of environmentally conscious routing strategies, such as minimizing carbon emissions or integrating alternative-energy vehicles into the routing models.

Dynamic Real-Time Adaptability: Many studies focus on static or predefined scenarios, but there's a lack of research into dynamic routing models that can adapt in real time to changing traffic conditions, unexpected events, or varying customer demands.

Integration of Last-Mile Logistics: Research focusing on integrating last-mile logistics optimization, considering factors like urban congestion, pedestrianized zones, and micro-mobility solutions, could significantly enhance the practical applicability of routing models in urban settings.

Algorithmic Gaps: Hybrid Algorithm Enhancement: While several studies use hybrid approaches (combining heuristics, metaheuristics, and exact methods), there's room to explore more effective combinations or novel hybrid algorithms that leverage the strengths of different techniques.

Machine Learning Integration: A limited exploration of integrating machine learning techniques for predictive modeling, adaptive routing, or decision support systems could enhance the ability of routing algorithms to learn from past experiences and adapt to new scenarios.

Robustness and Scalability: Many algorithms exhibit strong performance in small to medium-sized instances but might lack robustness or scalability for larger and more complex real-world scenarios. There's a need to develop algorithms that maintain efficiency and accuracy as problem sizes increase

CHAPTER 3

METHOD OF APPROACH

3.1 Mathematical Model

The mathematical Model of this project uses Capacitated Vehicle Routing Problems with a Heterogeneous Fleet Model to solve this problem. The variables, objective function, and constraints of the model are to minimize the total distance of trucks in the Capacitated Vehicle Routing Problem.

For the **variable**, set it as follows:

Sets:

- \mathcal{C} set of customers; $\mathcal{C} = \{1, 2, \dots, n\}$
- N set of all nodes (where a depot is represented by node 0); $N = \{0, 1, \dots, n\}$
- K set of vehicles; $K = \{1, 2, \dots, m\}$

Parameters:

- n number of customers
- D_i demand of customer i (pallet)
- m number of (heterogeneous) vehicles
- Q_k Capacity of vehicle k (pallet)
- d_{ij} distance from node i to node j (km)
- Variables:
 - $x_{ijk} = 1$ if vehicle k travels from node i to node j (binary);
otherwise, $x_{ijk} = 0$
 - y_{ij} load (weight of cargo) carried by a vehicle when it travels from node i to node j (pallet)

The objective function of this study is to minimize the total travel distance of the vehicle.

$$\text{Min} \sum_i \sum_j \sum_k d_{ij} x_{ijk}$$

The constraint of the model is as follows.

- Each customer must be visited once by only one vehicle (Const 1).

$$\sum_j \sum_k x_{ijk} = 1 \text{ for all } i$$

- Path-flow constraint. If vehicle k arrives at node i , it must leave from that node (Const 2).

$$\sum_j x_{ijk} - \sum_j x_{ijk} = 1 \text{ for all } i \text{ and } k$$

- Demand and sub-tour elimination constraint. To satisfy the demand of customer i , the reduced cargo of the vehicle after it visits customer i is equal to its demand (Const 3).

$$\sum_j y_{ij} - \sum_j y_{ij} = D_i \text{ for all } i$$

- vehicle capacity constraint. The maximal supply carried by the vehicle (y_{ij}) is limited by Q and x_{ij} . (Const 4).

$$y_{ij} \leq Q x_{ij}; \text{ for all } i \text{ and } j$$

- Only available vehicles can be dispatched from the depot (Const 5).

$$\sum_{j \in C} x_{0j} \leq m$$

- Binary and non-negativity conditions. (Const 6,7).

$$x_{ijk} \in \{0, 1\} \text{ for all } i, j \text{ and } k$$

$$y_{ij} \geq 0 \text{ for all } i \text{ and } j$$

3.2 Data collection

Data collection from real cases of beverage distributor hubs in the Eastern part of Thailand. The following data have been collected. First, Location of Distributor and customers (in Latitude, Longitude) Location of 1 distribution center and customers collected in Latitude, Longitude. Second, Demand data from each customer. Demand of each customer collected in daily demand in each customer. And Number and capacity of trucks for each type of truck. Capacity of trucks collected in units of pallet.

3.3 Spreadsheet Modelling

3.3.1 Calculate Distance matrix

The distance matrix is a matrix to show the distance of one place to another place for this study, which is calculated by using Google Collab python open source routing machine code. The first step to make a distance matrix, is to classify customers by following the company's day route and preparing location data.

A	B	C	D
1	Location	Latitude	Longitude
2	สิงหนาท	14.05638	101.38
3	ปัตตานี	13.89659	101.5854
4	เชียงราย	13.90226	101.5772
5	หนองบัวลำภู	13.97144	101.5133
6	อุบลราชธานี	13.95757	101.5617
7	ประจวบคีรีขันธ์	13.9718	101.5117
8	สระบุรี	13.97194	101.511
9	ปัตตานี โภคภานุ	13.94956	101.5096
10	ศรีสะเกษ	14.14825	101.3172
11	สกล สารสหบ	13.85528	101.4246
12	ปัตตานี	13.89313	101.4033
13	ชุมพร โภคภานุ	13.89235	101.4005
14	ตาก	13.87191	101.4033
15	อุส อาช ไทร	13.85249	101.423
16	แสบปัน	13.89367	101.403
17	ปัตตานี ภานุ	13.88145	101.4086
18	เลือดลูกชุบการค้า	13.89409	101.404
19	จันทบุรี	14.06888	101.5817

Figure 3.1 Customer Location Data In Day Route (Route 1)

Using Google Collab Python open-source routing machine code. To generate the Distance Matrix.

```

# file path
f_path = '/content/IS_Location_Coordinates_MON.xlsx'
input_ws='MON'

[ ] import requests
# function to get a distance matrix from OSRM given an input dataframe
def get_dist_mat(loc_df,osrm_url="http://router.project-osrm.org/table/v1/driving/",osrm_option='distance'):
    if osrm_option=='distance':
        osrm_option_const=1000
    elif osrm_option=='duration':
        osrm_option_const=3600

    # create a long_lat col
    loc_df['long_lat'] = loc_df['Longitude'].astype(str) + ',' + loc_df['Latitude'].astype(str)
    # print(loc_df) # for debugging purpose

    # the list of long-lat pairs
    loc_coord = loc_df['long_lat'].tolist()
    loc_coord = ';' .join(loc_coord)
    # print(loc_coord) # for debugging purpose

    # define additional options for osrm service
    options = '?annotations=' + osrm_option

    # send a request to osrm service and retrieve the returning result
    # print(osrm_url + loc_coord + options) # for debugging purpose
    r = requests.get(osrm_url + loc_coord + options)
    res = r.json()
    dist_df=pd.DataFrame(res[osrm_option+'s'])
    dist_df=dist_df/osrm_option_const
    return dist_df

```

Figure 3.2 Open-Source Routing Machine Code In Google Collab.

Distance Matrix											
สิ่งที่มารถิน	ปั๊งเจริญ	ป้องการสุนัขบ้าแม่	ลุงเหลือ	ประชภาพ	สำราญ	นนเล็ โตกา	ศ.ศอกกิจ	กอก	สาระชื่อ	ป้ารุน	
สิ่งที่มารถิน	0	34.4072	32.3207	19.4439	30.1565	19.2645	19.1833	22.3316	14.6163	25.6842	21.0663
ปั๊งเจริญ	34.375	0	2.1621	14.6135	9.5509	14.793	14.8741	11.9807	53.5497	30.3287	25.7108
เจปองการสร่า	32.7457	2.0865	0	12.9843	7.9216	13.1637	13.2448	10.3515	51.9204	28.6994	24.0816
หนอนบ้านชิง	19.7615	14.9632	12.8768	0	10.7126	0.1795	0.2606	2.8877	39.6009	21.2051	16.5872
ลุงเหลือ	30.5029	9.8831	7.7967	10.7415	0	10.9209	11.002	8.1087	43.955	26.4566	21.8388
ประชภาพ	19.582	15.1427	13.0562	0.1795	10.8921	0	0.0811	3.0672	39.7804	21.3846	16.7667
สำราญ	19.5009	15.2238	13.1373	0.2606	10.9732	0.0811	0	3.1483	39.8615	21.4657	16.8478
ปั๊งวันเล็ก โตกาขาว	24.5218	14.2726	12.1861	4.7603	10.0219	4.9398	5.0209	0	43.6965	20.4755	15.8576
ศ.ศอกกิจ	14.1109	53.8927	51.8063	39.5943	43.9484	39.7738	33.3168	41.8172	0	35.9845	31.3666
สกอ สาระชื่อ	26.0087	30.707	28.6205	21.177	26.4564	21.3565	21.4376	18.6315	35.9899	0	4.9113
ป้ารุน	21.0974	25.7957	23.7092	16.2657	21.545	16.4452	16.5263	13.7201	31.0786	5.0767	0
ชักน โตกาปีป	21.3593	26.0576	23.9711	16.5276	21.8069	16.7071	16.7882	13.982	31.3405	5.3386	0.7208
ตันโพธิ์	24.6567	29.355	27.2685	19.825	25.1043	20.0045	20.0856	17.2794	34.6379	3.9041	3.5593
ເອສ ອາວ່າໄຫ້	26.2448	30.9432	28.8567	21.4131	26.6925	21.5926	21.6737	18.8676	36.226	0.5986	5.1475
ແສນເບີນ	21.0513	25.7497	23.6632	16.2196	21.499	16.3991	16.4802	13.6741	31.0325	5.0307	0.4128
ປ.ສິນມາຮັກ	22.536	27.2343	25.1479	17.7043	22.9837	17.8838	17.9649	15.1588	32.5172	3.4727	1.4386
ເລືດສິນບົນກົດກົດຄາ	21.118	25.6261	23.5396	16.096	21.3754	16.2755	16.3566	13.5505	31.0992	5.0723	0.4544
ຈ້ານອີຍ	24.4211	44.8287	31.8103	19.5983	23.9524	19.7778	19.8589	21.8212	33.7709	40.1386	35.5208

Figure 3.3 Distance Matrix From Open-Source Routing Machine Code.

3.3.2 The model followed by the objective function and constraint.

The diagram shows the constraint that each customer must be visited once by only one vehicle (Const 1). And path-flow constraint. If vehicle k arrives at node i , it must leave from that node (Const 2).

For constraint 1, set x_{ijk} binary variable and sum the variable to be 1, and for constraint 2, search x_{ijk} of each customer and subtract by the sum of several trucks in each customer must be equal 0.

$x_{ijk} k=1$	สิ่งที่ปราจิน	ปีงเจริญ	ปีปองการสุนนอบน้ำแม่	ลุงเหลือ	...	จำนวน	Sum	Const. (1)	Const. (2) $k=1$
สิ่งที่ปราจิน	0	0	0	0		0	1	1	0
ปีงเจริญ	0	1	0	0		0	1	==	0
เจปองการสุรา	0	0	1	0		0	1	==	0
หนอนน้ำแม่ชี	0	0	0	0		0	1	==	0
ลุงเหลือ	0	0	0	0	1	0	1	==	0
เอก วาร์ โพธิ์	0	0	0	0		0	1	==	0
แสนยืน	0	0	0	0		0	1	==	0
ปัมมินาทร์	0	0	0	0		0	1	==	0
เลิศลักษณ์การค้า	0	0	0	0		0	1	==	0
...									
จำนวน	0	0	0	0	0	1	1	==	0
	1	1	1	1	1	1			

Figure 3.4 Decision Variable And Constraint (Const 1,2)

The diagram shows the constraint that is the demand constraint to satisfy the demand of customer i ; the reduced cargo of the vehicle after it visits customer i is equal to its demand (Const 3).

Constraint 3 is set by the Sum of y_{ij} not below by Q^*x_{ijk} of every customer.

y_{ij}	สิ่งที่ปราจิน	ปีงเจริญ	ปีปองการสุรา	น้ำแม่ชี	ลุงเหลือ	...	จำนวน	Sum	Const. (3)
สิ่งที่ปราจิน	0	0	0	0	0		0	11	0 == 0
ปีงเจริญ	0	0	0	0	0		0	0	0 == 0
เจปองการสุรา	0	0	0	0	0		0	2	1 == 1.1
หนอนน้ำแม่ชี	0	0	0	0	0		0	0	0 == 0
ลุงเหลือ	0	0	0	0	0		0	0	0 == 0
ปัมมินาทร์	0	0	0	0	0		0	0	0 == 0
เอก วาร์ โพธิ์	0	0	0	3.1	0		0	3	0 == 0
แสนยืน	0	0	0	0	0		0	0	2 == 2
ปีงวนหลักโภคภัณฑ์	0	0	0	0	0		0	0	0 == 0
...									
จำนวน	0	0	0	3	0		0		
	0	0	0	3	0	0			

Figure 3.5 Decision Variable And Constraint (Const 3)

capacity constraint. The maximal supply carried by the vehicle (y_{ij}) is limited by Q and x_{ijk} . (Const 4). The diagram shows multiplies of Q and x_{ijk} for every customer.

Q*xij k=2							
	ลิ้งที่ปราจีน	ปั๊บเจริญ	เจ้ป่องการสุรา	น้อยน้ำแข็ง	จุงเหลือ	...	จำนวน
สิงห์ปราจีน	0	0	0	0	0	0	0
ปั๊บเจริญ	0	3.5	0	0	0	0	0
เจ้ป่องการสุรา	0	0	3.5	0	0	0	0
หน่อยน้ำแข็ง	0	0	0	3.5	0	0	0
จุงเหลือ	0	0	0	0	3.5	0	0
ประชาพร	0	0	0	0	0	0	0
สำราญ	3.5	0	0	0	0	0	0
ปั๊บงานหลี โคกขาวง	0	0	0	0	0	0	0
...							
จำนวน	0	0	0	0	0	0	3.5
SUM Q*xij							
	ลิ้งที่ปราจีน	ปั๊บเจริญ	เจ้ป่องการสุรา	น้อยน้ำแข็ง	จุงเหลือ	...	จำนวน
สิงห์ปราจีน	0	0	0	0	0	0	0
ปั๊บเจริญ	0	12	0	0	0	0	0
เจ้ป่องการสุรา	0	0	12	0	0	0	0
หน่อยน้ำแข็ง	0	0	0	3.5	0	0	0
จุงเหลือ	0	0	0	0	12	0	0
ประชาพร	0	0	0	0	0	0	0
สำราญ	3.5	0	0	8.5	0	0	0
ปั๊บงานหลี โคกขาวง	0	0	0	0	0	0	0
...							
จำนวน	0	0	0	0	0	0	12

Figure 3.6 Decision Variable And Constraint (Const 4)

available vehicles constraint that only available vehicles can be dispatched from the depot (Const 5) is a binary condition for x_{ij} . This constraint is a constraint for a limited number of vehicles that can be used.

Const. (5)		
1	=	1
1	=	1

Figure 3.7 Decision Variable And Constraint (Const 5)

3.3.3 After assigning all constraints, calculate objective function, total distance by sum of all decision variables and distance matrix, and set all constraints in Open Slover.

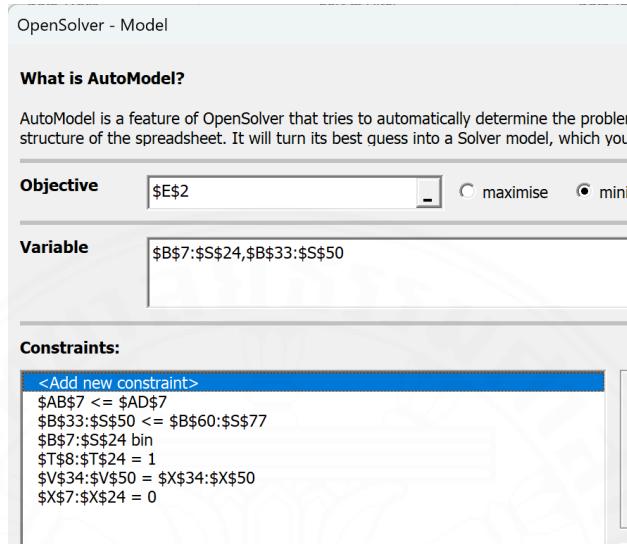


Figure 3.8 Model Setting Up In Open Slover.

3.3.4 After solving the model objective function, make other worksheets to display the results.

客户	节点	节点	节点	节点	...	节点	节点	节点	节点
客户1	0	1	2	3	...	10	11	12	13
客户2	1	0	0	0	...	0	0	0	0
客户3	0	0	0	0	...	0	0	0	0
客户4	1	0	0	0	...	0	0	0	0
客户5	1	0	0	0	...	0	0	0	0
客户6	1	0	0	0	...	0	0	0	0
客户7	1	0	0	0	...	0	0	0	0
客户8	0	0	0	0	...	0	0	0	0
客户9	0	0	0	0	...	0	0	0	0
客户10	1	0	0	0	...	0	0	0	0
客户11	0	0	0	0	...	0	0	0	0
客户12	0	0	0	0	...	0	0	0	0
客户13	1	0	0	0	...	0	0	0	0
客户14	0	0	0	0	...	0	0	0	0
客户15	1	0	0	0	...	0	0	0	0
客户16	0	0	0	0	...	0	0	0	0
客户17	0	0	0	0	...	0	0	0	0
客户18	0	0	0	0	...	0	0	0	0

客户	节点	节点	节点	节点	...	节点	节点	节点	节点
客户1	0	1	2	3	...	10	11	12	13
客户2	1	0	0	0	...	0	0	0	0
客户3	0	0	0	0	...	0	0	0	0
客户4	1	0	0	0	...	0	0	0	0
客户5	1	0	0	0	...	0	0	0	0
客户6	1	0	0	0	...	0	0	0	0
客户7	1	0	0	0	...	0	0	0	0
客户8	0	0	0	0	...	0	0	0	0
客户9	0	0	0	0	...	0	0	0	0
客户10	1	0	0	0	...	0	0	0	0
客户11	0	0	0	0	...	0	0	0	0
客户12	0	0	0	0	...	0	0	0	0
客户13	1	0	0	0	...	0	0	0	0
客户14	0	0	0	0	...	0	0	0	0
客户15	1	0	0	0	...	0	0	0	0
客户16	0	0	0	0	...	0	0	0	0
客户17	0	0	0	0	...	0	0	0	0
客户18	0	0	0	0	...	0	0	0	0

Route 1	Route 2	Route 3	...	Route 11	Route 12
客户1	客户2	客户3	...	客户11	客户12
客户2	客户1	客户4	...	客户10	客户13
客户3	客户5	客户6	...	客户9	客户14
客户4	客户7	客户8	...	客户12	客户15
客户5	客户10	客户11	...	客户18	客户16
客户6	客户12	客户13	...	客户17	客户17
客户7	客户14	客户15	...	客户16	客户18
客户8	客户16	客户17	...	客户18	客户18
客户9	客户18	客户18	...	客户18	客户18
客户10	客户18	客户18	...	客户18	客户18
客户11	客户18	客户18	...	客户18	客户18
客户12	客户18	客户18	...	客户18	客户18
客户13	客户18	客户18	...	客户18	客户18
客户14	客户18	客户18	...	客户18	客户18
客户15	客户18	客户18	...	客户18	客户18
客户16	客户18	客户18	...	客户18	客户18
客户17	客户18	客户18	...	客户18	客户18
客户18	客户18	客户18	...	客户18	客户18

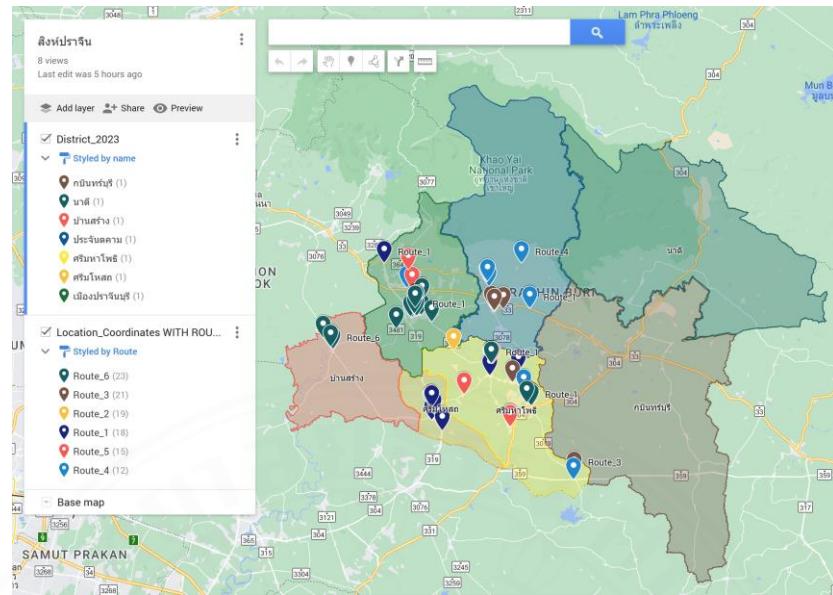
Figure 3.9 Route Worksheet Display.

3.3.5 Repeat all of the steps to make the model for 10-20 customers by using the same constraints and model interface

CHAPTER 4

PROJECT RESULTS

4.1 Case Study Data


- Location of Distributor and customers (in Latitude, Longitude)

After observing the data location from the distributor and classifying in 6 route

A	B	C	D	E	F
1	Location	Latitude	Longitude	Route	
2	สิงห์ปราจีน	14.05638	101.38	Route_1	
3	ปั๊วเรียน	13.89659	101.5854	Route_1	
4	เจป่องการสุรา	13.90226	101.5772	Route_1	
5	หนองบัวแม่จั่ง	13.97144	101.5133	Route_1	
6	ลุงเบลือ	13.95757	101.5617	Route_1	
7	ประน้ำพร	13.9718	101.5117	Route_1	
8	สีรยำ	13.97194	101.511	Route_1	
9	เมืองวนหลี โคกขาว	13.94956	101.5096	Route_1	
10	ศศภกจ	14.14825	101.3172	Route_1	
11	สกุล สรชบอย	13.85528	101.4246	Route_1	
12	ป่าจาน	13.89313	101.4033	Route_1	
13	ชากุ โคกปีป	13.89235	101.4005	Route_1	
14	ตันโพธิ์	13.87191	101.4033	Route_1	
15	เอส อาร์ ไทย	13.85249	101.423	Route_1	
16	แสนเย็น	13.89367	101.403	Route_1	
17	ปั๊วบ้านรบท	13.88145	101.4086	Route_1	
18	เลศลักษณ์การค้า	13.89409	101.404	Route_1	
19	จันอุ่น	14.06888	101.5817	Route_1	
20	สิงห์ปราจีน	14.05638	101.38	Route_2	
21	ปั๊วเรียน	13.89659	101.5854	Route_2	
22	เจป่องการสุรา	13.90226	101.5772	Route_2	
23	โชคชัยพาณิช	14.05204	101.3678	Route_2	
24	แม่นญูใจน	14.05346	101.3682	Route_2	
25	ป้าไส	14.05391	101.3684	Route_2	
26	ปีสุ่น	14.07086	101.3757	Route_2	
27	ใจดูรพา	14.07144	101.3761	Route_2	
28	ทวีผล รัตน์	14.05206	101.368	Route_2	
29	อุรตตัด	14.05261	101.3676	Route_2	
30	วรรณพิทย์	14.05421	101.3743	Route_2	
31	ใจบ้านพึ่งเรียน	14.05545	101.3758	Route_2	
32	จรุณ เมืองชัย	14.07025	101.3741	Route_2	
33	ทวีผล หาดใหญ่	13.99458	101.4442	Route_2	
34	ร้านค้าทับปูรชุม	13.97098	101.515	Route_2	
35	เจริญเกลี้ยง	14.07169	101.3743	Route_2	
36	ตี่ ทับปูรชุม	13.97172	101.5118	Route_2	

Figure 4.1 Location Of Distributor And Customers (in Latitude, Longitude)

Built the display of each route on Google Maps. By using the function, we built a saved map with the Location coordinates of the Distributor and customers (in Latitude and longitude)

Figure 4.2 Location Of Distributor And Customers Setting Display In Google Maps.

- Demand data from each customer.

After collecting demand data from the distributor, the demand data in each category of product and collect vehicle and route data. Then, calculate the sum of all the orders in units of pallets.

	A	B	C	D	E	F	G	H	I	J	K	L
1			Number of box in 1 pallet		90	150	126	70	90	150	126	70
2	D/M/YY	ร้าน	硕	Pallet	เมียร์สิงห์							
3	1/3/2023	เจปอง	66อ	8.119047619	150	36			303	120	126	
4	1/3/2023	เจปอง	66อ	6.666666667					600			
5	1/3/2023	ส.ศุภกิจ	66อ	6.042857143	50	10			301	40		
6	1/3/2023	จันนอย	66อ	7.666666667					600			
7	1/3/2023	ตี	66อ	8.571428571	150	30			600			
8	1/3/2023	วรรณาพิพัฒ	4สอ	0.744047619								
9	1/3/2023	วรรณา	4สอ	0.535714286								
10	1/3/2023	ไบศรีวนทอง	4สอ	0.111111111					10			
11	1/3/2023	วรรณา	4สอ	0.535714286								
12	1/3/2023	อมรทัด	4สอ	0.498015873					10			
13	1/3/2023	แสตนเดิน	66อ	6.342063492	30				431	10	30	
14	1/3/2023	ป.ภัณฑ์รักษ์	66อ	3.344444444					301			
15	1/3/2023	ตันโพธิ์	66อ	2.666666667	20				200	30		
16	1/3/2023	สกอล	66อ	1.091269841	10				40			
17	1/3/2023	ตี	66อ	7.00968254	50				500			
18	1/3/2023	ตันคุด	4สอ	0.222222222	8				12			
19	1/3/2023	หัวใจรัตน์	4สอ	1.339285714								
20	1/3/2023	วรรณา	4สอใหญ่	2.085714286	50				100			
21	1/3/2023	เจริญ	4สอใหญ่	5.710714286	50	5			350	20	50	
22	1/4/2023	คณียจั่ว	ไม่ส่ง		7							
23	1/4/2023	เจปอง	66อ	7.938095238	150	30			453			
24	1/4/2023	เจปอง	66อ		7				450			
25	1/4/2023	big c ศรี	66อ	1.500396825					40	20		
26	1/4/2023	หนอย	4สอใหญ่	2.895238095	15				165			
27	1/4/2023	สามารม	66อ	7.201984127	30				501			
28	1/4/2023	หัวใจรัตน์	4สอ	0.200047619	5	1			24	2	7	

Figure 4.3 Demand Of Each Customer.

4.2 Best Found Results from Model

After building the model, objective function and constraint. The results of the model (x_{ijk}) are shown in a binary variable.

xij k=1		ลังเด่น	ปีงเจริญ	เจป้องการศรรฯ	น้อมนำเยชี	ลุงเหลือ	...	จำนวน	Sum	Const. (1)	Const. (2) k=1
0	ลังเด่น	0	0	0	0	0		0	1	1 == 1	0 == 0
1	ปีงเจริญ	0	1	0	0	0		0	1	0 == 0	0 == 0
2	เจป้องการศรรฯ	0	0	1	0	0		0	1	0 == 0	0 == 0
3	น้อมนำเยชี	0	0	0	0	0		0	1	1 == 1	0 == 0
4	ลุงเหลือ	0	0	0	0	1		0	1	1 == 1	0 == 0
5	เจส อาร์ ไทร์	0	0	0	0	0		0	1	1 == 1	0 == 0
6	แสตนดี้	0	0	0	0	0		0	1	1 == 1	0 == 0
7	ปั๊มบันทวน	0	0	0	0	0		0	1	1 == 1	0 == 0
8	เลิศลักษณ์การค้า	0	0	0	0	0		0	1	1 == 1	0 == 0
9	...										
10	จำนวน	0	0	0	0	0		1	1	1 == 1	0 == 0
11		1	1	1	1	1		1			

Xijk K=2		ลังเด่น	ปีงเจริญ	เจป้องการศรรฯ	น้อมนำเยชี	ลุงเหลือ	...	จำนวน	Sum	Const. (2) k=2	
0	ลังเด่น	0	0	0	0	0		0	1	0 == 0	
1	ปีงเจริญ	0	1	0	0	0		0	1	0 == 0	
2	เจป้องการศรรฯ	0	0	1	0	0		0	1	0 == 0	
3	น้อมนำเยชี	0	0	0	1	0		0	1	0 == 0	
4	ลุงเหลือ	0	0	0	0	1		0	1	0 == 0	
5	ประชารพ	0	0	0	0	0		0	1	0 == 0	
6	ล่ารับ	1	0	0	0	0		0	1	0 == 0	
7	ปั๊มบันทวน	0	0	0	0	0		0	1	0 == 0	
8	โคกกระดิ่ง	0	0	0	0	0		0	1	0 == 0	
9	...										
10	สถานะช่อง	0	0	0	0	0		0	1	1 == 1	0 == 0
11	เลิศลักษณ์การค้า	0	0	0	0	0		0	1	1 == 1	0 == 0
12	จำนวน	0	0	0	0	0		1	1	1 == 1	0 == 0
13		1	1	1	1	1		1			

Figure 4.4 Optimization Model Of The Project

The results interface from a worksheet in Excel. Shows Results from the origin to customers in each route. all of the customers are divided into each route for delivery. Every model can serve the demand of each customer sufficiently.

ลังเด่น		ปีงเจริญ	เจป้องการศรรฯ	น้อมนำเยชี	ลุงเหลือ	...	พัฒโนเมิน	ลั่นพีร์	จำนวน
1	ลังเด่น	1	0	1	1	1	0	1	1
2	ปีงเจริญ	1	0	0	0	0	0	0	0
3	เจป้องการศรรฯ	0	0	0	0	0	0	0	0
4	น้อมนำเยชี	1	0	0	0	0	0	0	0
5	ลุงเหลือ	1	0	0	0	0	0	0	0
6	ประชารพ	1	0	0	0	0	0	0	0
7	ล่ารับ	0	0	0	0	0	0	0	0
8	ปั๊มบันทวน	0	0	0	0	0	0	0	0
9	...								
10	สถานะช่อง	1	0	0	0	0	0	0	0
11	โคกกระดิ่ง	0	0	0	0	0	0	0	0
12	ล่ารับ	0	0	0	0	0	1	0	0
13	พัฒโนเมิน	1	0	0	0	0	0	0	0
14	ลั่นพีร์	1	0	0	0	0	0	0	0
15	ลั่นพีร์	1	0	0	0	0	0	0	0
16	...								
17	ลั่นพีร์	0	0	0	0	0	0	0	0
18	จำนวน	0	0	0	0	0	0	0	0

Route 1	Route 2	Route 3	...	Route 11	Route 12
ลังเด่น	ลังเด่น	ลังเด่น		ลังเด่น	ลังเด่น
ปีงเจริญ	ปีงเจริญ	ปีงเจริญ		ปีงเจริญ	ปีงเจริญ
เจป้องการศรรฯ	เจป้องการศรรฯ	เจป้องการศรรฯ		เจป้องการศรรฯ	เจป้องการศรรฯ
น้อมนำเยชี	น้อมนำเยชี	น้อมนำเยชี		น้อมนำเยชี	น้อมนำเยชี
ลุงเหลือ	ลุงเหลือ	ลุงเหลือ		ลุงเหลือ	ลุงเหลือ

1	3	2	0	0
18				

Figure 4.5 The Display Worksheet In Excel.

CHAPTER 5

PROJECT CONCLUSION

The objective of this project is to make the route for the trucks on the limited driver time limit and customer's time limit. Also, I am trying to formulate a mathematical model to solve small problems to optimal solutions. And develop heuristics for large problems.

After collecting the data and analyzing it by using the Excel Open-solver, the results from the project can solve the problem belonging to the project's objective. The model can solve the Heterogeneous fleet VRP with demand constraints from customers.

REFERENCES

Fachini, R. F., & Armentano, V. A. (2020). Logic-based Benders decomposition for the heterogeneous fixed fleet vehicle routing problem with time windows. *Computers & Industrial Engineering*, 148, 106641.
<https://doi.org/10.1016/j.cie.2020.106641>

Firouzi, M., Jouzdani, J., Shirouyehzad, H., & Paydar, M. M. (2018). A rich heterogeneous fleet vehicle routing problem with flexible time windows: A case study of dairy supply chain. *International Journal of Logistics Systems and Management*, 30(3), 386–405.

Guezouli, L., & Abdelhamid, S. (2018). Multi-objective optimisation using genetic algorithm-based clustering for multi-depot heterogeneous fleet vehicle routing problem with time windows. *International Journal of Mathematics in Operational Research*, 13(3), 332–349.

Guo, F., Huang, Z., & Huang, W. (2021). Heuristic approaches for a vehicle routing problem with an incompatible loading constraint and splitting deliveries by order. *Computers & Operations Research*, 134, 105379.
<https://doi.org/10.1016/j.cor.2021.105379>

Meliani, Y., Hani, Y., Elhaq, S. L., & El Mhamedi, A. (2019). A developed Tabu Search algorithm for heterogeneous fleet vehicle routing problem. *IFAC-PapersOnLine*, 52(13), 1051–1056
<https://doi.org/10.1016/j.ifacol.2019.11.305>

Mutzel, P., Niemann, T., Schürmann, L., Stiller, S., & Tillmann, A. M. (2022). Vehicle routing with heterogeneous time windows. *Optimization Online*.

Yousefikhoshbakht, M., Didehvar, F., & Rahmati, F. (2014). Solving the heterogeneous fixed fleet open vehicle routing problem by a combined metaheuristic algorithm. *International Journal of Production Research*, 52(9), 2565–2575. <https://doi.org/10.1080/00207543.2013.849015>

BIOGRAPHY

Name	Kongkoch Chaiprasitthikul
Education	2023: Bachelor of Engineering (Industrial Engineering and Logistics Systems) Sirindhorn International Institute of Technology Thammasat University