
13

Abstract
The cultivation of Kappaphycopsis cottonii seaweed needs to comply with the health, 
waste, and sustainability in the Blue Economy standards. However, early observation 
showed that K. cottonii in Bomo Beach, Banyuwangi, East Java was potentially 
contaminated by microplastics. This research was performed to evaluate the density, 
polymer type, and contamination mechanism of microplastics in K. cottonii and the 
correlation between the planting age of K. cottonii and the total concentrations of 
microplastics in the seaweed. In this research, seaweed and seawater in the cultivated 
area were sampled using a simple random sampling technique every week for 5 weeks. 
Seaweed suspected of being contaminated with microplastics was digested using wet 
peroxide oxidation, followed by identification of polymer types through Fourier-
Transform Infrared Spectroscopy (FTIR). The results indicated that the predominant 
suspected microplastics (MPs) contaminating K. cottonii were fibers, measuring less than 
1.5 mm in size, and primarily composed of transparent polypropylene. MPs contaminate 
K. cottonii by wrapping around the thallus and being trapped by Melanothamnus savatieri 
(Hariot) Díaz-Tapia & Maggs epiphytes. The planting age of K. cottonii has a strong 
positive correlation with the number of suspected MPs contaminating K. cottonii. The 
growth of M. savatieri over a period of 3-4 planting weeks increases the suspected MPs 
on the thallus of K. cottonii. The results of this research can serve as a preventive measure 
and basis for developing strategic policies to reduce microplastic contamination.
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1. Introduction
Bomo Beach is located on the Bali 

Strait on the eastern side of Java, where 
the seaweed species K. cottonii is widely 
cultivated. Research conducted by the 
Republic of Indonesia’s Ministry of Maritime 
and Fisheries Affairs from 2015 to 2020 
showed that trash originating from West Java 
is carried by currents east to Bali Strait and 

Lombok Strait during westerly monsoons 
(Subandriyo, 2021). Consequently, the water 
off Bomo Beach is potentially polluted by 
microplastics (MPs). The MP pollution 
in Bali Strait accumulates from different 
directions (Bagaskara et al., 2020). Several 
forms of MPs have been found at Bangsring 
Beach, including filaments (48%), fragments 
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(32%), films (14%), and granules (6%) 
(Aji, 2017). The abundance and diversity of 
MPs have been observed to be increasing 
in tandem with increasing anthropogenic 
activity (Govender et al., 2020). In addition 
to being a place where seaweed is cultivated, 
Bomo Beach is a favorite tourist destination. 
Residential areas are located only 10 – 50 
meters away from the littoral area. Therefore, 
the existence of settlements close to Bomo 
Beach might also contribute to MP pollution 
in the water. Browne et al. (2011) point 
out that residential areas often produce 
MP fibers. MPs also come from fishery 
and aquaculture equipment. Most of the 
people who reside around Bomo Beach are 
fishermen and cultivators in the fisheries 
sector, which uses many plastic tools. Plastic 
tools that are intensely exposed to UV light, 
ocean waves, and temperature changes can 
become brittle and fragmented, thus resulting 
in MP particles (FAO, 2017). 

MPs in seawater can contaminate 
seaweed. Li et al. (2022) report that the MP 
contamination of seaweed is influenced by 
the morphology of the thallus. That is, the 
more structurally complex it is the greater 
the capacity to adsorb MPs by wrapping, 
attachment, entanglement, and entrapment 
by epibionts that live on the surface of the 
thallus. Seaweed contaminated with MPs can 
be a vector for the entry of MPs into the food 
chain (Gutow et al., 2016).

Plastics contain additives, such as 
polybrominated diphenyl ether (PBDE), 
phthalates, nonylphenol (NP), bisphenol 
A (BPA), and antioxidants (Hermabessiere 
et al., 2017), that are harmful to marine 
organisms. MPs can also contaminate 
human food, having a carcinogenic effect 
on the human body (Saeed et al., 2023). 
Human exposure to MPs can cause digestive 
problems, endocrine disorders, and even 
become a vector for pathogens to infect the 
body (Emenike et al., 2023). Pham et al. 
(2023) have examined human exposure 
to MPs through food in Korea, where 
the highest exposure was via seaweed. 
Therefore, it is necessary to research MP 
contamination in all types of food, including 
K. cottonii seaweed. 

K. cottonii is the main seaweed commodity 
in Indonesia and is used as raw material in 
the carrageenan industry. Carrageenan is 
commonly used to form gels, thickeners, 
and binders in the food industry (Critchley 
et al., 2017). Carrageenan is also used as 
an alternative to gelatin, which is produced 
from livestock (cows and pigs) (Morrison 
et al., 1999). Unfortunately, the methane gas 
from livestock farming is often associated 
with global warming (Moumen et al., 
2016). This situation increases the demand 
for carrageenan from K. cottonii seaweed. 
Furthermore, issues regarding the hygiene in 
the production of Indonesian fishery products 
also remains the factor that cause the product 
to have a high rejection rate in the US and 
Europe (Nurkhasanah et al., 2022). Therefore, 
research related to the contamination of 
MPs in K. cottonii is crucial as a preventive 
measure and a basis for developing various 
policies to reduce microplastic contamination. 

In this research, the density, polymer 
type, and contamination mechanisms of 
microplastics in K. cottonii, the correlation 
between the planting age of K. cottonii and 
the total concentrations of microplastics on the 
seaweed were examined. The results of this 
research were used as the basis to formulate 
various strategies aiming to prevent K. cottonii 
products from microplastic contamination.

 
2. Methodology

2.1 Research Site

This research was conducted from 20 
May – 17 June 2022 at Bomo Beach, Bomo 
Village, Blimbingsari District, Banyuwangi 
Regency, East Java, Indonesia. Bomo 
Beach was selected as the observation site 
as it is located in the waters of the Bali 
Strait, where waste carried by currents from 
West Java (Subandriyo, 2021) accumulate, 
resulting in higher possibility of microplastics 
contamination. Bomo Beach is classified as 
a sloping beach, with an area for seaweed 
cultivation reaching 10,000 m2. The seaweed 
samples were taken from 9 sampling points 
(Table 1 and Figure 1). 
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Table 1. Coordinate points of seaweed K. cottonii sampling points

Figure 1. Sampling points in Bomo Beach, East Java, Indonesia.

2.2 A Sampling of Seawater and K. cottonii

At each sampling point, 1 thallus sample 
of K. cottonii was taken and put into a silicone 
bag. Samples of rope used for cultivation 
were also collected and stored in glass bottles 
to determine whether the rope used for 
cultivation is the main source of microplastics 
that contaminate K. cottonii.

Furthermore, seawater was taken 
vertically from each sampling point using 
a water sampler of 2 L (depth 20 cm). The 
water was transferred into a 2-L bottle and 
kept in cool storage for MPs analysis in the 
laboratory. Several environmental parameters 
were also measured at each sampling point, 
including water salinity measured using a 
hand refractometer, temperature measured 
using a thermometer, and pH level measured 
using a pH meter. 

2.3 Visual Analysis of Suspected MPs in 
Seawater

Suspected MPs in seawater were collected 
using a sieve of 60 - mm and 250 - mm mesh 
sizes (Herrera et al., 2018). MPs retained 
by the sieve then visually sorted, while 
suspected MPs that passed through the sieve 
were filtered using a glass microfiber filter 
(Whatman, grade GF/B) with a filtration 
unit on a Buchner funnel. The filter paper 
containing the suspected MPs was put into a 
petri dish for MPs count and characteristics 
analysis, including the form, size, and 
color using a microscope. The forms of 
microplastics were classified into fragments, 
fibers, films, foam and pellets. The size of 
microplastics is classified into small ( < 1.5 
mm); medium (1.6 - 3.3 mm); and large ( > 3.3 
mm). Meanwhile, the color of microplastics is 
classified into white, blue, green, red, yellow, 
brown, black, and transparent.
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2.4 Visual Identification of Physical Interaction 
Between Suspected MPs and K. cottonii

The thallus of K. cottonii was placed 
on the microscope stage and then observed 
visually using a microscope. Through this 
observation, it was known how the thallus 
interacted with microplastics.

2.5 Extraction of Suspected MPs on K. cottonii 

Suspected MPs on K. cottonii samples 
were extracted using the wet peroxide 
oxidation method (Masura et al., 2006). 
Furthermore, seaweed sample (30 g) was put 
into a 500 - mL Beaker glass and was added 
with 20 mL of 0.05 M Fe (II) as a catalyst, 
and 40 mL of 30% H2O2 to be set at room 
temperature for 5 minutes. The Beaker was 
then stirred on a hotplate using a magnetic 
stirrer at 75 °C for 3 minutes. The digestion 
solution was allowed to stand for 30 minutes 
and was added with distilled water to reduce 
the risk of overflow from the reaction. The 
digestion solution was then filtered using 
a mesh sieve and using Whatman glass 
microfiber filter GF/B. The filter paper was 
placed in a petri dish to be dried out in an 
oven at 60 °C for 4 hours. The suspected MPs 
were isolated and photographed under a stereo 
microscope for counting and classification 
based on the form (fragments, fibers, films, 
foam, and pellets), size (small ( < 1.5 mm); 
medium (1.6 - 3.3 mm); and large ( > 3.3 mm)),
and color (white, blue, green, red, yellow, 
brown, black and transparent).

2.6 Identification of Suspected MPs Polymers

The identification of suspected MPs 
polymers was carried out using Fourier-
transform infrared spectroscopy (FT-IR) 
Thermo Scientific Nicolet iS10 with a 
wave number of 4000 – 650 per cm. Not all 
suspected MPs were analyzed using FTIR 
due to small size (< 1.5 mm) and inability 
to completely mix with KBr. Out of 206 
suspected MPs found in seawater and 125 
suspected MPs found in K. cottonii, only 14 
suspected MPs were analyzed using FTIR. 
In addition, K. cottonii samples were also 
analyzed using FTIR to identify the chemical 

interaction between suspected MPs and 
K. cottonii tissue. The rope used for cultivating 
K. cottonii was also analyzed using FTIR to 
determine if the polymer that contaminates 
K. cottonii sourced from the rope used in the 
cultivation process. The emerging spectrum 
was compared with the standard spectrum 
using Thermo Scientific OMNIC software.

3. Results and Discussion

3.1 Types and Mechanisms of  MPs 
Contamination on K. cottonii

This research identified various sizes, 
forms, and colors of suspected MPs that 
contaminated the thallus of seaweed 
K. cottonii in Bomo Beach, Banyuwangi 
Regency, East Java. Suspected MPs with 
small sizes (< 1.5 mm) mostly contaminated 
K. cottonii (92.8%; n = 116) (Figure 2). The 
abundance of small MPs attached to the 
seaweed thallus is in line with the abundance 
of MPs in seawater (100%; n = 206) (Figure 2). 
Cui et al., (2022) previously mentioned that 
small MPs dominated MPs contamination 
in the sea surface of the Western Pacific 
Ocean, South China Sea, and Northern South 
China Sea. Higher amount of small-sized 
MPs in thallus and seawater proves that the 
degradation process of plastic waste in the sea 
is increasing (Zhang et al., 2017). Medium and 
large sized microplastics were not present in 
the seawater where K. cottonii was cultivated 
could be due to the regular cleaning done 
every 2 weeks. Medium and large sized 
microplastics could have been caught in nets 
used to clean cultivation areas, while small 
sized microplastics escaped the nets.

The majority of suspected microplastics 
(MPs) contaminating K. cottonii were fibers 
(86%; n = 108), followed by fragments (14%; 
n = 17) (Figure 4.2). This pattern is similar to 
the MPs found in seawater from Bomo Beach, 
where fibers dominated (97%; n = 199), with 
smaller proportions of fragments (1%; n = 3) 
and films (2%; n = 4) (Figure 3).

MPs in the form of fibers commonly 
found on K. cottonii and in seawater may 
source from household and fishery waste 
in Bomo Beach area. Aji (2017) found that 
the microplastics found in the Bangsring 
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Figure 3. Forms of suspected MPs found in K. cottonii and Bomo Beach seawater

Figure 2. Size of suspected MPs that contaminated K. cottonii and Bomo Beach seawater 
(Small: < 1.5 mm; Medium:1.6 – 3.3 mm; Large: > 3.3 mm)

Figure 4. Examples of the form of suspected MPs found in K. cottonii: (a) Fiber, (b) 
Fragment, (c) Film

sea waters Banyuwangi in the Bali Strait 
were also dominated by fiber/filament forms 
(48%). Similarly, González-Pleiter et al., 
(2020) and Rebelein et al., (2021) stated that 
fibers are the most abundant in the aquatic 
environment. Fibers can come from household 
waste (laundry) as well as capture fisheries 
and aquaculture activities (Xue et al., 2020). 
Bomo Beach is close to residential areas, 

where local residents mostly work in the 
aquaculture and fisheries sector, allowing 
residues from household waste (washing 
clothes) and waste from fish farming activities 
to pollute the water. 

The FT-IR analysis identified the 
polymer type that contaminated K. cottonii, 
where Polypropylene dominating (50%), 
followed by Polyethylene (36%) (Figure 4). 
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Several researchers also found similar results, 
including Digka et al., (2018) and Takarina 
et al., (2022) who also found that polyethylene 
and polypropylene dominating the sea water 
pollution. According to Erni-Cassola et al., 
(2019), polyethylene and polypropylene are 
polymers that have low density that are often 
found on the surface of seawater.

The density of each form of microplastic 
is an important factor in determining its 
distribution. Fiber microplastics are lighter, 
making them easily transported (Acharya 
et al., 2021). In addition, fiber microplastics 
have certain structure and aspect ratio that 
easily pass through wastewater treatment 
filters (Okoffo et al., 2019).

S u s p e c t e d  M P s  i n  K .  c o t t o n i i 
contamination showed colors ranging from 
white, blue, green, red, brown, black, and 
transparent. The colors of suspected MPs 
found on the seaweed were transparent (28%; 
n = 35), black (28%; n = 35), and blue (22.4%; 
n = 28) (Figure 5). The color of suspected 
MPs found in Bomo Beach seawater was also 
dominated by transparent (37.86%; n = 78), 
black (26.21%; n = 54), and blue (16.99%; 
n = 35) MPs. These findings suggest that 
microplastics can contaminate organisms at 
the first trophic level of marine ecosystems, 
such as primary producers. Through the food 
chain, microplastics can then contaminate 
consumers at higher trophic levels, leading 

Figure 5. Polymer types of Suspected MPs that contaminated K. cottonii.

Figure 6. Colors of Suspected MPs that contaminated K. cottonii.
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Figure 8. M. savatieri living as epiphytes on the surface of the thallus of K. cottonii.

Figure 9. Epiphyte M. savatieri has grown on the surface of K. cottonii and trapped 
Suspected MPs.

to pollution throughout the marine food 
chain. This supports Mariani et al., (2023) 
who provided the evidence of trophic transfer 
of microplastics from producers to primary 
consumers.

The suspected microplastics (MPs) found 
on K. cottonii thallus and in seawater were 
predominantly transparent, consistent with 
findings by Di and Wang (2018) and Martí 
et al. (2020), which showed that most MPs in 
marine environments are transparent, followed 
by yellow, brown, and blue. The transparency 
of these MPs is likely due to color degradation 
from prolonged exposure to sunlight in the 
marine environment (Martí et al., 2020). 

K. cottonii has a hard thallus surface 
structure with high cellulose content, where 
MPs contamination might occur through 
an entanglement mechanism (Figure 6) 
and was trapped by Melanothamnus savatieri 
epiphyte (Figure 7). Zhang et al. (2022)

investigated the mechanism of MPs 
contamination on Sargasssum horneri which 
also has a hard thallus structure and is rich in 
cellulose. The results of this research revealed 
that microplastic (MP) contamination in 
Sargassum horneri occurred primarily 
through entanglement, with no evidence of 
MPs adhering to or penetrating the thallus.

M. savatieri is one of the epiphytes that 
infects K. cottonii seaweed with the highest 
percentage (80 - 85%) among other epiphytic 
seaweeds. It has vertical axis body, height 
of 4 - 20 mm and a basal attachment system 
consisting of primary rhizoids and several 
secondary rhizoids (Vairappan, 2006).

The attachment mechanism of M. savatieri 
epiphytes to Kappaphycus cottonii begins 
with the appearance of black dots containing 
tetraspores on the cuticle layer surface. These 
dots gradually increase, causing the surface of 
K. cottonii to become rough. After 3-4 weeks, 
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the epiphytes enter the vegetative phase. 
Subsequently, they grow reproductively, 
with a density of up to 40-48 epiphytes per 
centimeter of the host’s surface (Vairappan, 
2006). K. cottonii cultivation usually becomes 
more susceptible to epiphytic infection in 
March – June, and September – November 
(Vairappan, 2006). A sampling of K. cottonii 
conducted in May – June showed relevance to 
the results of this study that many M. savatieri 
epiphytes infect K. cottonii.

M. savatieri infects almost the entire 
surface of K. cottonii thallus. The fine fiber 
morphology of M. savatieri triggers the 
accumulation of mud between the thalli, 
leading to the accumulation of mud which 
further strengthens the trapping of suspected 
MPs. Therefore, it can be assumed that the 
higher M. savatieri contamination can trigger 
the higher MPs contamination of K. cottonii.

Figure 10. The number of MPs contaminating K. cottonii in a cropping cycle.

Figure 11. The number of MPs found in the seawater of Bomo Beach for 5 weeks.

3.2 Correlation of Planting Age of K. cottonii 
with Microplastic Contamination

T h e  n u m b e r  o f  m i c r o p l a s t i c s 
contaminating seaweed shows an increasing 
trend along with the age of seaweed cultivation 
(weeks 1 to 5), with the highest value reached 
in the 4th week (n = 40) before decreasing 
slightly at the 5th week (Figure 9). In the 
seawater, the number of MPs also showed a 
similar pattern (Figure 10). MPs pollution in 
the aquatic environment greatly affects the 
contamination of marine organisms. Zhang 
et al. (2022) showed that in an aquatic 
ecosystem with lower levels of plastic 
pollution, the MPs contamination in seaweeds 
is also lower. The results of the Pearson 
correlation test which showed a value of 
0.604 (p < 0.05) also indicated the presence 
of a positive strong relationship between the 
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planting age of K. cottonii and the number of 
MPs on the seaweed. 

The presence of epiphyte M. savatieri 
affected the number of MPs trapped on 
the seaweed. The growth of the epiphytic 
M. savatieri naturally coincided with 
K. cottonii, using seaweed thallus as a host 
(Vairappan, 2006). Observations of 1-week-old 
K. cottonii thalli revealed a lower number 
of MPs, corresponding to the relatively low 
presence of attached epiphytes at that stage. 
After 2-4 weeks of planting, the number of 
MPs increased along with the increase in 
the rate of epiphytic infection of the adult 
thallus. Therefore, longer planting age is 
followed by higher number of M. savatieri 
growing on the surface of the thallus, thereby 
triggering the accumulation of MPs trapped 
by the epiphyte.

4. Conclusion

This research presents the results of 
an in-depth exploration of microplastic 
contamination in macroalgae K. cottonii at 
Bomo Beach, Banyuwangi. The findings 
indicate that microplastics contaminate 
K. cottonii due to the presence of M. savatieri 
epiphytes growing on its surface. These 
epiphytes facilitate the accumulation of 
mud and microplastics on their thalli, which 
subsequently attach to K. cottonii. Small 
microplastics (< 1.5 mm) in the form of 
fibers, and transparent in color dominated the 
contamination. Meanwhile, polypropylene 
is the most contaminating plastic polymers. 
Throughout the planting cycle of K. cottonii, 
the growth of Melanothamnus savatieri 
increases significantly, with densities 
reaching 40 - 48 epiphytes per centimeter 
on the thallus surface. Consequently, the 
accumulation of mud and microplastics 
trapped by M. savatieri also rises with 
the increasing age of the seaweed. These 
findings not only enhance our understanding 
of the mechanisms underlying microplastic 
contamination in K. cottonii, but they 
also provide a scientific foundation for 
formulating policies aimed at ensuring that 
Indonesia’s leading export products remain 
free from microplastic contamination.
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