

 Volume 19 , Number 5, Pages 60 – 75

*Corresponding author; e-mail: surin_p@kpru.ac.th

Automatic Website Content Change Detection and Notification
Using Image Processing

Bhoomin Tanut, Chitthiwat Ratchathian, Natthawut Matkang, and Surin Petchthai1*

1 Department of Computer Science and Technology, Faculty of Science and Technology, Kamphaeng

Phet Rajabhat University, Kamphaeng Phet 65000, Thailand

Abstract

 This research develops a web application called WatchNSend that allows users to automatically
monitor websites and detects changes in website content using image processing techniques. The
application is built in three modules. First, in the Setup Module, the user creates a monitoring job and
specifies how they would like their website monitored. An Area of Interest (AOI) is selected by the user
within the displayed webpage, and other job details are also set, such as the desired monitoring
frequency. The application then saves the AOI image and job details for later use. The second module
is the job module. This is where all job specifications and all job update information are stored. Also in
this module, a timer controls mechanisms that monitor the specified update intervals of all jobs and
initiate the third module accordingly. The third module is the comparison module. Here the application
automatically collects a current copy of the job’s AOI and then compares this new version of the AOI
with the previous version, using two methods called the edge calculation and the overlay calculation. If
content changes inside the AOI have reached a threshold set by the user, the application automatically
notifies the user via e-mail. Results from multiple evaluations show that WatchNSend can monitor
websites, detect and analyze changes, and notify the webmaster of the changes accurately and
efficiently. WatchNSend is a reliable, robust, and easy-to-use tool that can save users time while
keeping them current on website changes.

Keywords: Automatic Website Monitoring, Digital Image Processing, Image-based Monitoring,
Change Detection

Article history: Received 20 January 2024, Revised 15 August 2024, Accepted 01 October 2024

1. Introduction

 Websites are indispensable tools that both
the government and private sectors rely on for
collecting, processing, and distributing their
organization’s information [1]. Two basic types
of webpages are static webpages and dynamic
webpages [2] . Static webpages remain as they
are. They do not update automatically or in
response to user actions. Static webpages are
built with HTML and CSS and reside on a
server. When a static webpage is requested by a
user, the HTML file is sent by the server to their
browser, which opens the page for viewing. In
contrast, a dynamic webpage is developed not

only with HTML but also with one or more
programming languages such as PHP, C#,
JavaScript, Ruby, or Python, and a dynamic
webpage can update automatically in response
to input from users or other data. A user can
personalize a dynamic webpage, which can
include interactive components such as a
shopping cart or a form to fill out. Data for a
dynamic webpage is stored in a database on the
server and can be requested at any time,
enabling the webpage to update dynamically
according to user input or changes in the
underlying data.

Interdisciplinary Research Review 61

Website content can change at any time, and
many sorts of professions and fields need to be
able to monitor various websites for changes.
Timely knowledge of new updates to websites
can be important or even critical [3]. In order to
monitor one or more websites conveniently,
users or organizations can avail of software that
automatically performs Change Detection and
Notification (CDN) . As the name suggests, a
CDN system automatically detects changes in
webpages and notifies the user when there is a
change [3] . Previous research in the field of
website content change monitoring can be
divided into two groups. The first group of
CDN systems detects changes to text and
HTML element tags. The second group of CDN
systems detects changes by using image
processing. An example of the first type of
CDN system is when M. C. Shobhna [4]
conducted exploratory research on webpage
change detection systems between 2004 and
2013 using various methods such as BIODIFF,
XML Tree Diff, CH Diff, and CX Diff, Level
Order Transversal, Optimized Hungarian,
Hashing Based Algorithm, Node Signature
Comparison, Tree Traversing, and Document
Tree Based Approach. Soobbha and Manoj
found that a document tree- based approach
gave the best performance. Their method relies
on converting the content on a webpage to an
XML structure. The XML structure generates
nodes from the opening and closing tags of the
HTML statements. When the system wants to

monitor the website, it compares the parameters
for each element. Regarding the second group
of CDN systems, those that detect changes by
using image processing, a review of current
CDN systems by Mallawaarachchi, V. et al. [3]
highlighted two examples from this group that
are easy to use and flexible to the needs of
users: Wachete [5] and VisualPing. Both
systems offer a variety of monitoring options,
including the ability to monitor multiple
webpages, to monitor various types of content,
to set a threshold percentage of changes that
triggers notification, to adjust the frequency of
monitoring, and to decide the frequency of
notifications.

E. Fenton reported on the top 5 most popular
Change Detection and Notification (CDN) tools
for 2023 [6]: Visualping.io [7], Fluxguard [8],
Sken [9], Pagescreen [10], and OnWebChange
[11] . Fees charged for these services vary,
depending on the number of monthly checks
desired and other specific features. Limited free
trials are also offered. The systems mentioned
above are all provided from outside Thailand.
In Thailand, there is currently no domestic
developer or provider of this service. M. C.
Shobhna [4] compared the specific features and
detection modes of currently available CDN
tools, including those mentioned by E. Fenton
[6] , and the specific features and detection
modes of those five services are shown in Table
1.

Table 1. Comparison of functionality and detection modes of some popular CDN tools

CDN Tool
Functionality Detection Mode

MSP MMP SSD FICS Notify Visual Text HTML

Visualping.io [7] Yes Yes Yes Yes Yes Yes Yes Yes

Fluxguard [8] Yes Yes Yes Yes Yes Yes No No

Sken [9] Yes Yes Yes Yes Yes Yes No Yes

Pagescreen [10] Yes Yes Yes Yes Yes Yes No No

OnWebChange [11] Yes Yes Yes Yes Yes No Yes Yes

SSD=Server side detection, MMP=Monitor multiple pages, MSP= Monitor a single page, FICS = Fixed
Interval checks, and Notify = Email notification.

62 Vol. 19 No. 5 September – October 2024

As of the end of March 2023, there were
354.0 million domain name registrations across
all top-level domains (TLDs) [12], and the use
of dynamic websites has only increased,
including frequently updated websites such as
news websites, online shopping websites, travel
and accommodation websites, Wikipedia
pages, and social media. When these webpages
update information, users may want to be
informed about changes to webpages
immediately.

The current study develops a web application
called WatchNSend that uses image processing
techniques to detect changes in the content of a
website and then sends notification of the
changes via e-mail to the webmaster in order to
reduce time spent monitoring the website in
person. In the process, this study will
disseminate the techniques involved in creating
such an image-based system for those who want
to develop website change detection and change

notification. This research can also serve as a
guideline for the development of other sorts of
related systems, such as GPS location
monitoring systems using online maps, online
appointment calendar change monitoring
systems, and online retail product promotion
change monitoring systems.

2. Materials and methods

The WatchNSend web application
developed here for automatic website change
detection and notification utilizes a variety of
image processing techniques. The application is
written mainly in PHP [13] , with some
JavaScript and HTML as well. There is a client
side and a server side. Figure 1 shows an
overview of the processes that happen on each
side. The three modules shown (Setup, Job, and
Comparison) are described in detail in Sections
2.1–2.3.

Figure 1. This overview shows the main processes inside the WatchNSend web application.

MW=monitored webpage, i.e., the webpage that the user wishes to monitor.

Interdisciplinary Research Review 63

2.1 Setup Module

The Setup Module contains the steps for
receiving job details from the user on the client
computer. Each monitored webpage (MW) or
portion thereof is one job. Users can add, edit,
and check jobs in their job list using the
WatchNSend website. Here are the steps.

2.1.1 WatchNSend displays an image of

the MW using a screen capture API
(Application Programming Interface).

 The user is prompted to enter the

URL of the MW. WatchNSend then uses the
specified URL to go capture a current image of
the MW. (A description of how this image is
captured using a screen capture API appears in
Section 2.3.1.)

2. 1. 2 The user defines the area of

interest by cropping the MW image.

 When the MW image appears in

the display area, an adjustable rectangular
selection tool will also be automatically
activated for the user to indicate the Area of
Interest (AOI) . The AOI is the specific part of
the image that the user would like to monitor. It
can be designated to be anything from a small
portion of the full image to the full image itself.
The size and position of the selection tool are
easy to adjust. The coordinates of the AOI
chosen by the user are captured using
JavaScript’ s Cropper command [14] and then
saved as part of the data for the current job.

 2.1.3 User sets job monitoring details

 After selecting the AOI, the user
specifies the frequency to check for changes,
the threshold of change within the AOI at which
the user would like to receive notification, and
the e-mail address to which notifications should
be sent. This threshold set by the user is referred
to in this study as the notification threshold.
The frequency to check for changes can be set
to every 5, 15, or 30 minutes, daily, weekly, or
monthly [15]. If the frequency is daily, the user
can select the hour that they would like to check
for changes. If the frequency is weekly, the
user can select the day and hour to check. If the
frequency is monthly, the user can select the
date and hour to check.

 2.1.4 Store the AOI image and all job details

 Once the job monitoring details are
complete, WatchNSend will immediately save
a current copy of the AOI image as well as all
the job details. This information will be used
later to schedule checks for MW changes and to
assess those changes.

2.2 Job Module

The Job Module resides on the server, and
it has two functions: job information storage
and identification of jobs that are due to be
checked so that they can be sent to the
Comparison Module for processing. Each of
these functions is explained in detail here.

 2.2.1 Job information storage

 The Job Module is the storage area for
all data on jobs, including all the job
specifications that were inputted during the
Setup Module, the original AOI image, and all
information collected each time the MW is
checked for changes. The first fetching of the
AOI is initiated in the Setup Module when the
new job is created, and all MW checks that
follow are initiated by the timer function here in
the Job Module.

 2. 2. 2 Identifying jobs that are due to be
checked and sending them to the Comparison
Module

 A system of timed mechanisms

identifies jobs that are due to be checked. There
are seven of these mechanisms, one for each
possible frequency that users can specify for a
job to be checked. Because these seven
mechanisms are dispatched on a schedule to
perform a designated task, they are called
“JobFlights” here, like flights being dispatched
from an airport. The seven JobFlights used in
this study are shown in Figure 2. The 24- hour
schedule by which the JobFlights depart, i. e. ,
are run, is shown in Figure 3.

64 Vol. 19 No. 5 September – October 2024

Figure 2. These are the seven mechanisms called JobFlights that identify jobs due to be checked. The

last three job flights in the list leave every hour in order to check for and respond to the user’s preferred

hour for checking changes.

Figure 3. This is the 24-hour schedule by which the JobFlights depart, i.e. are run.

 Operation of the JobFlights is managed by
two things on the server: the Task Scheduler
[16] , which is part of Windows, and a set of
seven PHP code scripts, one for each JobFlight
type. The task scheduler is able to run the code
scripts automatically in the background without
opening a browser or any other program.

 The seven JobFlight scripts vary by nature,
with the most complex being the script for
JobFlightMonth, because the user can select the
monthly date and hour to check the job.

JobFlightMonth’ s actions will be explained
here as an example, but the other six JobFlights
operate similarly with their respective selection
criteria. As mentioned above, JobFlightMonth
leaves once an hour. Here is what happens.
Every hour on the hour, the Task Scheduler
automatically runs the PHP script specifically
for JobFlightMonth. The script performs two
important actions. The first action is to build a
recordset of all job records that meet the criteria
shown in Figure 4.

Interdisciplinary Research Review 65

Figure 4. JobFlightMonth will pick up all records that meet these criteria.

Any records that enter the recordset defined
in Figure 4 are due to be checked now. The
second action of the JobFlight script is to take
any records that have just been collected in the
recordset and process them in the Comparison
Module shown in Figure 1. The code that
carries out the steps of the Comparison Module
is here in the JobFlight script. If the JobFlight
did not encounter any records to collect, the
Comparison Module steps are not called.

2.3 Comparison Module

 The job records delivered by each JobFlight
need to have the current version of their
monitored webpage (MW) captured and
compared to the previously captured version.
This happens in the Comparison Module, and
the details of each step are described here.

2.3.1 Capture complete current webpage

image from URL via screen capture API

 This procedure relates to both

capturing the initial webpage image of the MW
during job initiation in the Setup Module and to
capturing the current webpage image of the
MW when a JobFlight has determined that the
job is due to be checked for changes.
WatchNSend utilizes a screen capture API to
collect a current, complete screenshot of the
user’ s monitored webpage. The underlying
reason for using a screen capture API is that the
application needs more than just a normal
display of the MW as it would usually appear
on a monitor. Many webpages are longer than
the monitor display and use scrollbars to make
the complete webpage accessible. An image of
the full webpage that is complete and without
any scrollbars will be referred to here as a
Complete Webpage Image (CWI). Capturing a
CWI is not a straightforward programming task
because it requires installation of Selenium

software [17] , which is also not a minor task.
Various providers simplify this process by
offering screen capture API services that collect
and deliver CWIs for a small fee. Each API
provider has different capabilities and different
pricing. Three important performance criteria
when selecting a screen capture API provider
for an application like WNS are: the
completeness of the webpage delivered, the
accuracy of the webpage delivered, and the
speed of delivery. Since WatchNSend uses PHP
as its primary language for development, it also
requires an API that supports PHP. Requests to
the screen capture API are made through the
GET or POST methods of PHP.

 2. 3. 2 Crop user- defined area of interest
automatically

 When an updated, complete
webpage image is acquired from the screen
capture API, it is cropped automatically to the
AOI using the stored coordinates of the AOI
from the job record. JavaScript’ s Cropper
command is used for this purpose as before.
The AOI cropped from a current version of the
web page is referred to as the Current Image
(CI) , while the previously stored AOI is
referred to as the Previous Image (PI).

 2.3.3 Perform the edge calculation and the
overlay calculation on the current image and
previous image.

 Whenever a webpage is checked for
updates, both the CI and the PI are sent to
feature extraction algorithm 1 to perform the
edge calculation and the overlay calculation.
Each of these two calculations compares the CI
with the PI and provides a percent change
between the two images. The two calculations
complement each other because the edge
calculation is best at detecting actual text

66 Vol. 19 No. 5 September – October 2024

changes, while the overlay calculation is best at
detecting changes in presentation of the text and
changes in color. Because these two
calculations are used at the same time and

because they share some variables, they appear
together in Algorithm 1. The steps in Algorithm
1 are described in detail here.

Step 1: Convert the CI and the PI to grayscale. These will be called the Grayscale Current Image

(GCI) and Grayscale Previous Image (GPI).

Step 2: Find all the edge pixels of the GCI and GPI using the Canny Edge Detection algorithm [18].
These will be called the Edge (pixels of the) CI and PI (ECI and EPI)

Step 3: Count the number of edge pixels in the ECI and EPI. These will be called the NECI and
NEPI.

Step 4: Perform the Edge Calculation using Equation 1 [19].

Edge Calculation result =
|୒୉୔୍ି ୒୉େ୍ |

|୒୉୔୍|
× 100 (1)

Step 5: The Overlay Grayscale Image (OGI) is a construct that reflects changes between the GCI
and the GPI. Create the OGI by calculating the OGI value of every pixel using Equation 2 [20].

OGI (x, y) = (abs (GCI (x, y) - GPI (x, y)) + abs (GPI (x, y) - GCII (x, y))) % 255 (2)

If the intensity value of a given pixel has changed between the GPI and the GCI, the intensity of that
pixel in the OGI will be greater than 0. If not, it will be 0.

Step 6: Use Otsu’s thresholding method [21] to calculate the Otsu threshold value of the OGI. The
result will be between 0 and 1, which corresponds to the grayscale pixel value range between 0 and 255.

Step 7: Convert the OGI image to a binary image (BOGI) using the Otsu threshold value calculated
in the previous step.

Step 8: Count the number of white pixels in the BOGI (WBOGI).

Step 9: Perform the Overlay Calculation using Equation 3.

Overlay Calculation result =
୛୆୓ୋ୍

୑∗୒
× 100 (3)

 Where: M is the Area Of Interest Image height

 N is the Area Of Interest Image width

2.3.4 Select the calculation results

 After the Edge Calculation and Overlay
Calculation have been performed, their results,
which both estimate the Percent Change (PC)
between the CI and the PI, are compared, and
the higher of the two numbers [22] is selected

to represent the PC for this MW check and
referred to as the MWPC.

 2.3.5 Notify user of changes

 Once the MWPC is obtained, its value
is compared with the Notification Threshold

Interdisciplinary Research Review 67

originally specified by the user in the job
record. If the MWPC is greater than or equal to
the Notification Threshold, an email is sent to
the user to notify them of changes. Whether or
not the Notification Threshold is met, the
following items are stored in the job history
record after each MW check: the time of the
MW check, the CI, the Edge Calculation result,
the Overlay Calculation result, and the MWPC.

2.4 Experiments
 2. 4. 1 Screenshot API service provider
comparison test

 The purpose of this test is to

determine the best- performing screenshot API
service from among those that are available at
any given time, based on the three previously
mentioned performance criteria: the
completeness of the webpage delivered, the
accuracy of the webpage delivered, and the
speed of delivery. In addition to these three
performance criteria, the Screenshot API
service needs to be able to handle two basic
kinds of webpage banners [23] : scrolling
banners (simple banners that move with the rest
of the webpage and can scroll out of sight) and
static banners (banners that are fixed in position
and do not move in response to scrolling) . Six
different screenshot API providers were tested,
and a total of ten URLs were used for testing.
Five of them have scrolling banners:
https: / / th. wikipedia. org/ ,
https: / / www. kpru. ac. th/ index. php,
http: / / omayo. blogspot. com/ ,
https://www.diald.nu.ac.th/th/clinic_calendar.p
hp, https: / / store. steampowered.com/?l= thai,
The other five have static scrolling banners:
https: / / stackoverflow. com/ ,
https: / / www. w3schools. com/ ,
https: / / www. lazada. co. th/ shop/ skechers,
https: / / shopee. co. th/ m/ super- brand- day, and
https: / /www.deviantart.com. The test was run
on an internet connection measured with
Google Fiber [24] as having a download speed
of 216. 8 Mbps and an upload speed of 53. 2
Mbps. The speed of actual image captures
during the test was measured using PHP
commands to record the time before and after
the image capture. Test scores for the three

performance criteria were normalized to values
in the range of 0- 100 using the Min- Max
Normalization Method [25] shown in Equation
4.

𝑥௦௖௔௟௘ௗ =

௫ି ௫೘೔೙

௫೘ೌೣି ௫೘೔೙
∗ 100 (4)

 In this normalization method, the highest
score received during the test becomes 100 and
the lowest score received becomes 0. All other
scores fall between this minimum and
maximum, and the proportions between the
original scores are maintained. Results of the
three performance criteria are normalized in
this way so that they share a common unit and
can be conveniently compared.

 2.4.2 The AOI processing time test

 The purpose of this test is to time how
long the application takes to crop an incoming
Screenshot API image down to the AOI and
then perform both the Edge Calculation and
Overlay Calculation on the AOI. To run the test,
a timer is started in the application code when
the MW image is received, and the timer is
stopped right after the results of the two
calculations are complete. This test used 70
sample images of the same starting size and
cropped them in 7 different patterns
(representing different size AOIs) . Each
cropping pattern was applied to 10 images.

 2.4.3 The comparison module test

 The purpose of this experiment is to
test the functionality of the comparison module
and the ability of the Edge Calculation and
Overlay Calculation to accurately detect
content changes in the AOI. The experiment
consists of 4 tests, each with an original image
and four progressively changing update images,
as shown in Figure 5. Each update image was
compared to the original image of its test. In test
1, the amount of text changes. In test 2, the
background color changes. In test 3, the text
color changes. In test 4, the sequence of the text
changes.

68 Vol. 19 No. 5 September – October 2024

Figure 5. The image dataset used for the four tests that evaluate the functionality of the Comparison
Module. In test 1, the amount of text changes. In test 2, the background color changes. In test 3, the text

color changes. In test 4, the sequence of the text changes.

3. Results

 3.1 Screenshot API service provider comparison test

 The results of this test are divided into two figures. Figure 6 shows the results from scrolling
banner webpages, and Figure 7 shows the results from static banner webpages.

Figure 6. Results of the API performance test using scrolling banner webpages. Scores for the three
criteria range from 0% (center point) to 100% (outermost ring) . The last three providers in the list
(Restpack, Urlbox, and ApiFlash) fully overlap as the pink triangle.

Interdisciplinary Research Review 69

 Figure 6 shows the three test criteria results (speed, accuracy, and completeness) displayed visually
as a triangle for each provider. In the completeness category, Screenshotlayer, Screenshot API,
Restpack, Urlbox, and ApiFlash all scored 100% , followed by Abstract API at 80% . In the accuracy
category, Screenshot API, Restpack, Urlbox, and ApiFlash all scored 100% , but Screenshotlayer and
Abstract API both had issues displaying Thai language content correctly. Finally, the average speed
performance of Screenshotlayer was the best, followed by Abstract API, Restpack, Urlbox, ApiFlash,
and Screenshot API.

Figure 7. Results of the API performance test using static banner webpages. Scores for the three criteria
range from 0% (center point) to 100% (outermost ring). The providers shown in black, green, and red
(Abstract API, Screenshotlayer, and Restpack) share overlapping segments in the two pink lines.

 Figure 7 shows that when using static banner webpages, the completeness criteria was led by
ApiFlash with a score of 100% , followed by Screenshotlayer at 80% , and then the others. In the
accuracy category, ApiFlash again performed best, this time with a score of 80%, with other providers
trailing. The average speed score performance of Screenshotlayer was the best, followed by Restpack.
After considering the results from both scrolling and static banner webpages, ApiFlash was chosen as
the API provider for WatchNSend because ApiFlash can handle both types of banners and it scores an
average of 86.01% on the three performance criteria.

 3.2 The AOI processing time test

 The results of this experiment to determine the time required to crop an incoming image to the
AOI and then perform both the Edge Calculation and Overlay Calculation are shown in Figure 8.

70 Vol. 19 No. 5 September – October 2024

Figure 8. The time required to process various size Areas Of Interest (AOI)

These results show that the time required to
process an AOI corresponds to the size of the
AOI. The larger the AOI, the longer the
processing time. The largest size took 1 .336
seconds to process and the smallest took 0.026
seconds. The average processing time across all
7 sizes was 0 . 3 3 1 seconds, indicating that
WatchNSend can process an average of 1 8 1
images per minute.

 3.3 The Comparison Module test

 The results of this test to investigate
WatchNSend’ s ability to detect the four kinds
of progressive image changes from Figure 5
using a combination of the Edge Calculation
and Overlay Calculation are shown in Table 2.

Table 2. The results of the Edge Calculation and Overlay Calculation for four kinds of progressive
image changes from Figure 5, along with the Monitored Webpage Percent Change (MWPC)

Test
PI and CI

Comparison
Edge

Calculation Result
Overlay Calculation

Result
MWPC

1

A compared to B 25.00 4.52 25.00
A compared to C 49.99 9.05 49.99
A compared to D 74.99 13.57 74.99
A compared to E 99.98 18.10 99.98

2

F compared to G Inf (0) 25.21 25.21
F compared to H Inf (0) 50.08 50.08
F compared to I Inf (0) 75.13 75.13
F compared to J Nan (0) 100.00 100.00

3

K compared to L 2.95 4.53 4.53
K compared to M 5.91 9.07 9.07
K compared to N 8.86 13.60 13.60
K compared to O 11.81 18.14 18.14

4

P compared to Q 1.16 4.42 4.42
P compared to R 2.32 8.84 8.84
P compared to S 3.49 13.26 13.26
P compared to T 4.65 17.69 17.69

Interdisciplinary Research Review 71

Remember that whichever result from the Edge
Calculation or Overlay Calculation is larger,
that result is designated as the Monitored
Webpage Percent Change (MWPC). In Table
2 , the MWPC results for Test 1 and Test 2 are
very tidy. They reflect that the progression of
changes to the original image is approximately
2 5 % , 5 0 % , 7 5 % , and 1 0 0 % . The image
differences in Test 3 and Test 4 were more
difficult for the Edge Calculation and Overlay
Calculation to evaluate, however the MWPC
results for these two tests still reflect a steady
and proportional increase, which is good. Users

of the application can be notified of these types
of webpage changes by selecting one of the
lower Notification Thresholds. In general, a
high result for the Edge Calculation occurs
when text changes on the MW. On the other
hand, a high result for the Overlay Calculation
generally occurs when the background color,
text color, or text orientation change. Examples
of the image results from each stage of the Edge
Calculation and Overlay Calculation for the
four Comparison Module tests are shown in
Table 3.

Table 3 . Examples of the image results from each stage of the Edge Calculation and Overlay
Calculation for the four Comparison Module tests

Compared
Image

Pair from
Figure 5

GPI GCI EPI ECI OGI BOGI

A and C

F and H

K and M

P and R

GPI = Grayscale image converted from the color PI, GCI = Grayscale image converted from the color
CI, EPI = Edge of the PI by Canny edge detection, ECI = Edge of the PI by Canny edge detection, OGI
= Overlay Grayscale Image, and BOGI = the binary image from the OGI image using the threshold
value.

 3.4 Application Development

 WatchNSend was developed into a web
application with which users can easily create
jobs to monitor and then view or update current
or past jobs. There are two screens, and they are
shown in Figure 9. Figure 9(A) is the Job
Creation screen, where users can enter new jobs
and specify the area of interest to monitor,
along with other job details. Figure 9(B) is the
dashboard screen where users can see an

overview of current and past/ inactive jobs. By
clicking on one of the jobs in the list on the left,
the user can view the details of that specific job
on the right and initiate changes if desired. Also
in the dashboard job details is the monitoring
history of the selected job, along with access to
current and past notifications of webpage
changes, which pop open when the notification
icon is clicked (not shown).

72 Vol. 19 No. 5 September – October 2024

(A)

(B)

Figure 9. Sample screenshots of WatchNSend’s (A) Job Creation screen and (B) Dashboard screen.

4. Discussion

 Beyond its ability to accurately and
efficiently detect webpage content changes,
WatchNSend is also able to perform functions

and detection modes on par with commercially
available webpage monitoring tools, as shown
in Table 4.

Interdisciplinary Research Review 73

Table 4. The functionality and detection mode of WatchNSend compared with some other CDN tools

CDN Tool
Functionality Detection Mode

MSP MMP SSD FICS Notify Visual Text HTML
WatchNSend Yes Yes Yes Yes Yes Yes No No
Visualping.io [7] Yes Yes Yes Yes Yes Yes Yes Yes
Fluxguard [8] Yes Yes Yes Yes Yes Yes No No
Sken [9] Yes Yes Yes Yes Yes Yes No Yes
Pagescreen [10] Yes Yes Yes Yes Yes Yes No No
OnWebChange [11] Yes Yes Yes Yes Yes No Yes Yes

SSD=Server side detection, MMP=Monitor multiple pages, MSP= Monitor a single page, FICS =
Fixed Interval checks, and Notify = Email notification

 The six tools shown use different
combinations of detection modes, but the one
detection mode that most all of the tools have in
common is the visual mode. The exact
analytical methods of the other tools shown are
assumed to vary; however, this information is
proprietary and not available. Through the
current research, the authors wish to
disseminate a full example of how such a tool
can be created, including robust scheduling and
accurate detection. WatchNSend utilizes visual
detection. Text detection and HTML tag
detection predate the advent of visual detection,
which functions broadly in this application to
accurately detect changes to a webpage’ s text,
its background color, its text color, or the
direction of the text. Possibilities for future
extension of this research include exploring
novel algorithms for change detection beyond
edge and overlay calculations, enabling
detection of changes in HTML structure,
delivering trend analysis to users, and
conducting user studies to evaluate their
experiences with WatchNSend.

5. Conclusion

The most distinguishing features of
WatchNSend are its Edge Calculation, Overlay
Calculation, JobFlights scheduling method, and
use of Screenshot API. These features are
written and combined using PHP, CSS, and
JavaScript, which integrate well with the
database, creating a flexible and user- friendly
tool that can accurately perform an average of
181 website update checks per minute.
WatchNSend’ s non- proprietary methods hold
their own against commercial products, making
WatchNSend an economical and expandable
application for any individuals or businesses

that need to monitor webpages in a convenient,
reliable way.

6. Acknowledgements

The authors would like to thank the
Research and Development Institute of
Kamphaeng Phet Rajabhat University as well as
the Computer Vision and Human Interaction
Technologies Laboratory at Kamphaeng Phet
University (KPRU Vision Lab) for their kind
assistance with this project. Thank you also to
Paul Freund of Naresuan University Writing
Clinic (DIALD) for editing this manuscript.

7. References

[1] Altulaihan, E. A., A. Alismail and M.
Frikha. A survey on web application
penetration testing. Electronics 2023, 12,
1229. https://www.mdpi.com/2079-
9292/12/5/1229.

[2] Xing, Y., J. Shell, C. Fahy, T. Xie, H.
Kwan and W. Xie. Web xr user interface
research: Design 3d layout framework in static
websites. Applied Sciences 2022, 12, 5600.
https://www.mdpi.com/2076-
3417/12/11/5600.

[3] Mallawaarachchi, V., L. Meegahapola, R.
Madhushanka, E. Heshan, D. Meedeniya and
S. Jayarathna.Change detection and
notification of web pages: A survey. ACM
Computing Surveys (CSUR) 2020, 53, 1-35.
https://dl.acm.org/doi/pdf/10.1145/3369876.

[4] Shobhna, M. C. A survey on web page
change detection system using different
approaches. International Journal of Computer
Science and Mobile Computing 2013, 2, 294-
99.

74 Vol. 19 No. 5 September – October 2024

https://ijcsmc.com/docs/papers/June2013/V2I6
201391.pdf.

[5] Wachete - monitor web changes. Available
online: https://www.wachete.com/. (accessed
on 20 January 2024).

[6] Fenton, E. Best 5 free website change
monitoring software 2023. Available online:
https://visualping.io/blog/best-free-website-
change-detection-monitoring-tools/.(accessed
on 20 January 2024).

[7] Visualping - website change detection and
alerts. Available online: https://visualping.io/.
(accessed on 20 January 2024).

[8] Fluxguard - monitor website changes with
chatgpt. Available online:
https://fluxguard.com/. (accessed on 20
January 2024).

[9] Sken - monitor website changes. Available
online: https://sken.io/. (accessed on 20
January 2024).

[10] Pagescreen - automated website change
detection, monitoring and alerts. Available
online: https://pagescreen.io/. (accessed on 20
January 2024).

[11] Onwebchange - track web page changes
and get notified. Available online:
https://onwebchange.com/. (accessed on 20
January 2024).

[12] Verisign - domain name industry brief:
354.0 million domain name registrations in the
first quarter of 2023 Available online:
https://blog.verisign.com/domain-
names/verisign-q1-2023-the-domain-name-
industry-brief/. (accessed on 20 January 2024).

[13] Odeh, A. Analytical and comparison
study of main web programming languages -
asp and php. TEM Journal 2019, 8, 1517-
1522.
https://www.temjournal.com/content/84/TEMJ
ournalNovember2019_1517_1522.pdf.

[14] kaduru, N. - Cropper js. Available online:
https://codepen.io/Narendrakaduru/pen/oWev
XY. (accessed on 20 January 2024).

[15] Meegahapola, L., R. Alwis, E.
Nimalarathna, V. Mallawaarachchi, D.
Meedeniya and S. Jayarathna. Detection of
change frequency in web pages to optimize
server-based scheduling. Presented at 2017
Seventeenth International Conference on

Advances in ICT for Emerging Regions
(ICTer), 2017; pp. 1–7.
https://doi:10.1109/ICTER.2017.8257791.

[16] Setareh and Mehdi. A new method of
scheduling tasks in cloud computing. Revista
Publicando. 2018, 5, 227–45.
https://revistapublicando.org/revista/index.php
/crv/article/view/1661.

[17] Selenium - selenium automates browsers.
Available online: https://www.selenium.dev/.
(accessed on 20 January 2024).

[18] Canny, J. A computational approach to
edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-8.
1986, 32, 679–98.
https://doi.org/10.1109/TPAMI.1986.4767851.

[19] Bansilal, S. The application of the
percentage change calculation in the context of
inflation in mathematical literacy. Pythagoras.
2017, 38, 1362–1363.
https://doi.org/10.4102/pythagoras.v38i1.314.

[20] Niitsuma, H. and T. Maruyama. Sum of
absolute difference implementations for image
processing on fpgas. In Proceedings of the
International Conference on Field
Programmable Logic and Applications, 2010;
pp. 167–70.
https://doi.org/10.4102/pythagoras.v38i1.314.

[21] Otsu, N. A threshold selection method
from gray-level histograms. IEEE
Transactions on Systems, Man, and
Cybernetics. 1979, 9, 62–66.
https://doi.org/10.1109/TSMC.1979.4310076.

[22] Jin, L., L. Zhang and L. Zhao. Max-
difference maximization criterion: A feature
selection method for text categorization.
Frontiers of Computer Science. 2023, 17,
171337. https://doi.org/10.1007/s11704-022-
2154-x.

[23] Peker, S., G. G. Menekse Dalveren and Y.
 ̇Inal. The effects of the content elements of
online banner ads on visual attention:
Evidence from an-eye-tracking study. Future
Internet 2021, 18, 657–658.
https://www.mdpi.com/1999-5903/13/1/18.

[24] Google alerts - monitor the web for
interesting new content. Available online:
https://www.google.com/alerts.. (accessed on
20 January 2024).

Interdisciplinary Research Review 75

[25] Islam, M. J., S. Ahmad, F. Haque, M. B.
I. Reaz, M. A. S. Bhuiyan and M. R. Islam.
Application of min-max normalization on
subject-invariant emg pattern

recognition.Transactions on Instrumentation
and Measurement. 2022, 71, 1–12.
https://doi.org/10.1109/TIM.2022.3220286.

